
Towards Reproducible Research of
Event Detection Techniques for Twitter

Andreas Weiler
Institute of Applied Information Technology

Zurich University of Applied Sciences
Winterthur, Switzerland

andreas.weiler@zhaw.ch

Harry Schilling, Lukas Kircher, Michael Grossniklaus
Department of Computer and Information Science

University of Konstanz
Konstanz, Germany

firstname.lastname@uni-konstanz.de

Abstract—A major challenge in many research areas is re-
producibility of implementations, experiments, or evaluations.
New data sources and research directions complicate the repro-
ducibility even more. For example, Twitter continues to gain
popularity as a source of up-to-date news and information.
As a result, numerous event detection techniques have been
proposed to cope with the steadily increasing rate and volume
of social media data streams. Although some of these works
provide their implementation or conduct an evaluation of the
proposed technique, it is almost impossible to reproduce their
experiments. The main drawback is that Twitter prohibits the
release of crawled datasets that are used by researchers in
their experiments. In this work, we present a survey of the
vast landscape of implementations, experiments, and evaluations
presented by the different research works. Furthermore, we pro-
pose a reproducibility toolkit including Twistor (Twitter Stream
Simulator), which can be used to simulate an artificial Twitter
data stream (including events) as input for the experiments or
evaluations of event detection techniques. We further present the
experimental application of the reproducibility toolkit to state-
of-the-art event detection techniques.

Index Terms—reproducibility, evaluation, event detection, twit-
ter stream processing

I. INTRODUCTION

Reproducibility of results is gaining importance in all re-

search areas. For example, the SIGMOD1 conference honors

publications that fulfill replication criteria with the “ACM

Results Replicated” label and the most-reproducible paper

award. Furthermore, the data, scripts, and code of the paper

can be hosted on the ACM servers to get the “ACM Artifacts

Available” label. This movement demonstrates the importance

of availability, replicability, and reproducibility of research

results. The fast and easy access to Twitter data streams

and the possibility to analyze these streams in real-time have

fostered many research efforts specialized on social media data

streams. In this area, the task of event detection is one of

the major topics which led to countless approaches in this

direction. In general, all event detection approaches have in

common that they attempt to detect patterns that differ from

the normal behavior of the data stream. However, almost all

of them also have in common that very little attention is

being paid to reproducibility. Cheung [7] extracts a number of

characteristics from 50 Twitter event detection publications in

1http://db-reproducibility.seas.harvard.edu/ (Feb 10, 2019)

order to estimate a reproducibility score. While the presented

experiment shows no significant correlation between estimated

reproducibility scores and actual reproduction efforts, it still

reveals that almost none of the reviewed works put effort into

reproducibility. For example, the source code of most works

is not provided by their authors and, therefore, it is a chal-

lenging task to correctly implement these techniques. Notable

exceptions to this poor reproducibility are SocialSensor [2] and

MABED [11], which are both freely available as source code.

However, even if the source code is available, the diversity of

implementations makes it very difficult to recreate the original

environment and to exactly reproduce the research results

obtained in the original work. In this context, Weiler et al. [32]

show that minor modifications in the different phases or pa-

rameters of event detection techniques can strongly impact the

stability of their results. Another challenge is that experiments

and evaluations are done in very different ways. For example,

the used datasets are very diverse with regard to type, size,

time frame, granularity, and data source. In this work, we,

therefore, propose a solution to share and distribute a common

data stream and ground truth for evaluation purposes. To

address this problem, we introduce Twistor (Twitter Stream

Simulator), a simulator for the Twitter data stream based on

a statistical analysis of historical Twitter data. It is possible to

simulate the default background noise and to inject predefined

events, which are also defined based on a statistical analysis

of historical events that appeared in the original Twitter data

stream. It is also possible to scale the simulated data stream

to different resolutions and therefore simulate the hundred

percent public Twitter stream (Firehose), which is otherwise

extremely costly to obtain. Twistor is publicly shared and all

researchers in the area of event detection for Twitter data

streams can apply their work to a common data stream and

ground truth without painstakingly collecting any data. The

two main contributions of this paper are as follows. First, we

highlight the main issues of reproducibility in existing research

works on event detection techniques for Twitter (cf. Section II).

We also give an overview of existing research on creating or

simulating Twitter corpora. Second, we present our proposed

reproducibility toolkit including Twistor, which can be used

to simulate an artificial Twitter stream (including events) as

input for the evaluation of event detection techniques (cf. Sec-

tion III). In addition, we present experiments to automatically

evaluate state-of-the art event detection techniques applied to

the Twistor data stream. Finally, we draw conclusions about

the presented proposal and indicate aspects for future work.

II. ISSUES OF REPRODUCIBILTY

Over the last years, Twitter gained significant importance

for researchers, especially in the context of event detection

techniques applied to social media data streams. The great

variety of event detection techniques for Twitter is also re-

flected in a couple of recently presented surveys [6], [9],

[18], [23], [36]. At the same time and with the same variety,

methods to evaluate the results of event detection techniques

for Twitter appeared. For example, the “Social News on

the Web” (SNOW) challenge [24] attempted to compare the

results of different event detection techniques. However, in-

stead of evaluating the different submissions of the teams

automatically or even semi-automatically, a manual evaluation

was conducted by a group of human evaluators. This choice

is just one example that demonstrates the challenging and

complex problem of evaluating event detection techniques

automatically. As a consequence, proposals [32], [34], [35]

for semi-automatic evaluation have been presented. In the

following, we present the two major issues of reproducibility

of event detection techniques: (i) the difficulty of reproducing

the implementations of the techniques itself and (ii) the chal-

lenge to reproduce the evaluation or experiments of previous

research works. We evaluated a total of 48 research works

with regard to these issues.

A. Implementation Issues

A major goal of reproducible research is that successive

researchers are able to reproduce previous works in order to

build on them. Unfortunately, most current research works

do not provide sufficient implementation details, source code,

or even pseudo code to do so. We can derive that only 9

of the 48 research works provide the source code of their

implementation to the public. The programming language of

the source code is divided into Java (5), Python (3), and

R (1). However, most of the works also depend on further

components such as databases or libraries for which they fail to

provide exact product or version information. At least, further

10 of the left 38 research works, provide pseudo code in the

paper to enable partly reimplementation of the technique. The

remaining publications offer a description of the algorithm,

but lack all other information vital to support reproducibility.

B. Evaluation Issues

By investigating the different evaluation methods, we fig-

ured out that only 12 of the 48 research works perform a

comparative evaluation. The largest number of competitors

(three) is considered by Hua et al. [12] by comparing to [16],

[27], [38]. Two competitors are each considered by Guille and

Favre [11], Unankard et al. [29], Doulamis et al. [8], Xie et
al. [40], and Zhang et al. [41]. One competitor is considered

by further six research works [2], [3], [15], [38], [39], [42].

This analysis also shows that Weng and Lee [38] is the most

commonly used comparison technique for the evaluations. We

can observe that most works (17 of 48) performed one or

several case studies to show the effectiveness and usefulness

of their technique. Another large group of works (23 of 48)

perform a stand-alone evaluation in order to rate the outcomes

of their own technique only. In this case, the focus of the

evaluation consists of tuning different parameters or improving

the different steps of a single technique. Unfortunately, the

results obtained with this type of evaluation are very hard to

interpret w.r.t. other techniques. A small fraction of evaluations

(4 of 48) is based on user studies, where the results are

evaluated by human evaluators. Most of the works are based

on the Streaming API, but with different levels or restrictions.

The Filter API (16 of 48) is the most popular choice. With

this API, it is possible to obtain the data in a streaming

fashion and to predefine filter queries based on keywords or

geographical locations. The Spritzer access level (7 of 48)

provides a uniform random 1% stream of the public timeline

and is freely available to everyone. In contrast, the Gardenhose

level (5 of 48) provides elevated access to a 10% stream,

but needs special authorization. Note that Twitter does no

longer provide Gardenhose access since the end of 2014.

Apart from the streaming APIs, the Search API (9 of 48) can

be used to retrieve tweets that match a given query. Which

of these APIs is used to evaluate event detection techniques

also impacts the number of tweets that can be retrieved. The

sizes of these collections range from 0.6 million to around 1.2

billion tweets. With regard to the diversity in types of ground

truths that are used to evaluate the results of a techniques,

we figured out that most works (31 of 48) use a manually

labeled set of events. Some of them also check the results of

the technique manually to distinguish between real and non-

real events. For example, Walther and Kaisser [30] manually

checked for 1,000 clusters whether they belonged to a real-

world event or not. 319 clusters were labeled as positives

(describe a real-world event), while the remaining 681 were

labeled as negatives (do not describe a real-world event). We

note that domain-specific event detection techniques can often

be evaluated using an existing ground truth. For example,

statistics of the Centers for Disease Control and Prevention

can be used as ground truth to evaluate techniques that detect

diseases (2 of 48). Similarly, match reports can be used

for sport events, such as football games (cf. Meladianos et
al. [21]). Finally, one work uses Wikipedia and another one

uses Twitter’s Trending Topics as ground truth. We also figured

out that the works are very diverse in the measures that were

proposed to evaluate the different techniques. Most of the

times, precision and recall are used (18 of 48). Additionally,

some works calculate the F1 score, average precision, or the

area under the receiver-operating curve. While such measures

that evaluate the task-based performance of a technique are

quite common, only six works ([3], [13], [22], [25], [39],

[41]) apply a measure to evaluate the run-time performance.

Apart from these well-known measures, some novel measures

were defined. For example, Alvanaki et al. [3] measure relative

accuracy, whereas both Li et al. [15] and Guille and Favre [11]

study the duplicate event rate of their techniques. Wurzer et
al. [39] present the normalized topic-weighted minimum cost,

which is a combination of miss and false alarm probabilities.

C. Evaluation Corpora

The second main issue in reproducible research on event

detection techniques for Twitter is the lack of a common

corpora of data, which can be used in experiments and

evaluations. A couple of works focus on supplying evaluation

corpora for Twitter-related analysis techniques. On the one

hand, there are tools to create special tailored Twitter corpora,

e.g., TWORPUS [4] and TweetCaT [17]. However, both are

simply interfaces to crawl the Twitter API for tweets that are

defined by their identifier or other characteristics. On the other

hand, there are research works which offer predefined tweet

collections. Since the publication of the tweets themselves

is prohibited by Twitter, these corpora are given as lists

of tweet identifiers. McCreadie et al. [19] created a set of

approximately 16 million tweet identifiers for a two-week

period. Therefore, the proposed corpus contains an average

of about 50,000 tweets per hour. Since no language filtering

is performed, which can be estimated to retain approximately

30% of these tweets, we can assume that only about 4,800,000

tweets of the corpus are in English. Furthermore, their list of

49 reference topics for the two-weeks period is very limited

and no description is given how these topics were created.

Finally, this corpus focuses on ad-hoc retrieval tasks and

is, therefore, not very well suited for large-scale evaluation

of event detection approaches. Becker et al. [5] created a

Twitter corpus that consists of over 2,600,000 tweet identifiers

posted during February 2010. Since they only used their own

approach to detect and label the events, the corpus is strongly

biased to their technique and not very well-suited for general

evaluation purposes. Furthermore, no list of reference events is

provided and the dataset is geographically restricted to tweets

from users who are located in NYC. Petrović et al. [26]

presented a corpus of 50 million tweet identifiers, created

from a manual analysis of the Twitter data stream from July

to September 2011. This analysis led to the definition of 27

events for the whole time-frame. This very low number of

labeled events makes it difficult to compare different event

detection methods as they typically produce far larger numbers

of events during the same period of time. McMinn et al. [20]

propose a methodology for creating a corpus in order to

evaluate event detection methods. They use two existing state-

of-the-art event detection approaches [1], [26] together with

Wikipedia to create a set of candidate events together with

a list of associated tweets. The final corpus covers four

weeks with about 120 million tweet identifiers and more than

500 events. However, events are described in prose and can,

therefore, not be easily compared automatically to the results

of various event detection techniques. Again, it is important

to note that all of these corpora only consist of lists with

tweet identifiers. In order to use these corpora for evaluation

purposes, the actual tweets have to be crawled from Twitter,

which is a time-consuming and error-prone process as tweets

can get deleted over time. In order to study the implications

of this process on reproducibility, we attempted to download

the corpus of McMinn et al. [20]. The standard restriction of

crawling tweets with the Twitter API is set to 180 calls per 15

minute window. With one call, it is possible to obtain a bulk

of 100 tweets. Therefore, it would be possible to crawl 18,000

tweets per 15 minute window and it would take about 6,666

windows with an estimated total response time of 100,000

minutes (∼1,666 hours or ∼69 days) on a single machine

to crawl all tweets of the corpus. As this waiting time is

prohibitive in practice, we implemented an alternative crawler

that retrieves the content of tweets only using their identifiers.

Even so, our crawler was only able to retrieve about 740,000

still available tweets out of a total of 1,850,000. More evidence

of this phenomenon is shown by Lee et al. [14] by trying to

recreate a Twitter corpora with originally 10,822 tweets, they

could only reacquire 7,100 tweets (65.6%).

III. EXPERIMENTS

In the previous section, we argued that it is currently almost

impossible to reproduce existing evaluations of Twitter event

detection techniques. In this section, we, therefore, present

an approach—consisting of the design and implementation

of a reproducibility toolkit2 —to improve the reproducibility

of experiments and evaluations in this setting. The survey

presented in the previous section clearly outlines that there are

three major issues propelled by the great diversity of research

on Twitter event detection techniques. First, the input data used

in the different research works is not common. Researchers

are unable to publish their datasets for use in future research

efforts. To solve this problem, we designed a simulator for the

Twitter data stream specifically for the task of event detection.

In this domain, the artificially created data stream can be used

to detect events with techniques that build on statistic distri-

butions on terms in the stream. Second, the implementations

of the different techniques are not standardized. For this, we

implemented two event detection techniques [33], [37] in a

single data stream management system, which also can be

extended with further techniques. Third, the results of the

different event detection techniques are not evaluated in a

common way. We solved this issue by designing an evaluation

module with an integrated ground truth (dependent on the

content of the artificial Twistor stream), that can be used for

evaluation purposes with three evaluation measures. The three

measures consist of the F1 score for quality, the throughput
for performance, and the latency as a usability measurement.

A. Setup

1) Twistor [28]: simulates the Twitter stream and provides

the ability to embed predefined events into the data. With

Twistor, it is possible to create artificial Twitter streams with

very similar statistical properties as the original public Twitter

stream. Twistor itself consists of two components. The first

2https://github.com/AWe/ecir2019 (Feb 10, 2019)

Fig. 1: Architecture of the reproducibility toolkit and query

plans of the techniques implemented in the data stream system.

component is the general simulation of the Twitter stream and

the second one is the integration of events into the simulated

stream. As a consequence, Twistor can be used as standardized

input for evaluating different event detection techniques in

a consistent way. To create a precise representation of the

original Twitter stream the simulated Twitter stream is based

on original Twitter data (collected with the Gardenhose access

which represents 10% of the original Twitter stream). Over a

time period of 24 hours the statistical term distribution in the

original Twitter data is captured in a resolution of one-minute

windows. The term distribution is stored for each window as

base information. This base information needs to be created

only once. As we need to make sure that no original informa-

tion, with regard to contents, of the Twitter stream is contained

in the artificial stream, we choose new terms with a random

selection from the Leipzig Corpora Collection [10], which

consists of terms in all languages. Since the distribution of

the terms is quantified on the base information, the simulated

stream can also be scaled up to 100% (still based on the

10% Gardenhose access) and so the Firehose (100% of the

original Twitter stream) access level can be simulated. The

integration of events into the simulated Twitter stream is also

realized on the basis of original Twitter data. We provide the

statistical representation of 10 predefined events. However,

further events can easily be added by describing them with

parameters or by providing their statistical properties. An event

itself is represented by at least two words. The IDF values of

the words representing the event are captured with a sample

rate of one second at the time the event happened and stored as

event description. To embed an event into the simulated Twitter

stream, the IDF values of the terms representing the event are

mapped into it. To map the IDF values of an event term into

the artificial Twitter stream, the number of tweets per second

which should contain the event term is computed and the event

term is then inserted into this number of tweets. Figure 2

presents the evolution of event terms (“goetze”, “princess”,

“habemus”) and non-event terms (“fruitbasket”, “pigkeeper”)

during one hour of simulated Twitter data. We can see that the

event terms have a drastic drop in their values, while the non-

event terms have an almost constant rate. We can also see that

0 10 20 30 40 50 60

0
2

4
6

8
10

12
14

minute

ID
F

habemus
princess

goetze
fruitbasket

pigkeeper

Fig. 2: IDF time-series of events (“habemus”, “princess”,

“goetze”) and non-events (“fruitbasket”, “pigkeeper”).

the term “fruitbasket” is a very common term and the term

“pigkeeper” is rarely used. However, note that these are the

random selected terms from the Leipzig Corpora Collection
and not the terms from the original stream.

2) Event Detection Modules: consist of the two event

detection techniques—Shifty [33] and Log-Likelihood Ratio

(LLH) [37]—that are realized as query plans (cf. Figure 1) in

a data stream management system. Shifty is a technique that

detects “abnormal” shifts in the IDF frequency of terms with a

sliding window model. In contrast to that LLH detects events

by calculating the difference of the log-likelihood ratio of

terms in subsequent windows. Since the simulated data stream

of Twistor is already cleaned-up, we removed all preprocessing

steps of the event detection techniques. In previous works,

events are defined as a collection of an event term with the

corresponding most co-occurring terms as context. However,

as the content of simulated data stream is not reflecting real

terms as co-occurrences of terms in the tweets, we modified

some of the operators in the query plans. We modified the

output operators (cf. yellow marked operators in Figure 1)

of the two techniques to only report the event terms without

any added co-occurrence terms to them. The output operators

create a result file which contains tab-separated rows with the

attributes id, date, and event term.

3) Evaluation Module: The evaluation module analyzes

the reported events from the event detection modules against

the ground truth, i.e., the events introduced by Twistor into

the data stream. For this, the Twistor module shares the

information about the injected events as a description file

with the evaluation module. In the description of an event,

the properties of an event as the terms for the F1 score mea-

surement and the starting time for the latency measurement are

included. To compare the task-based performance of the event

detection modules, the evaluation module calculates values

for precision, recall, and F1 score. Additionally, it can be

used to compare the run-time performance by tracking the

throughput (tweets per second) of the event detection modules.

As a further important measure, we evaluate the latency of the

techniques. Especially for event detection it is very important

that the techniques report the detected events as soon and close

as possible to the real occurrence of the event.

B. Results

To evaluate the presented reproducibility toolkit, we applied

the two aforementioned event detection techniques as well

as two baseline techniques (TopN and RandomEvents) to

an artificial Twistor data stream and automatically evaluated

the results with the evaluation module. All experiments were

conducted on virtual machines with two Intel single core

processors at 2 GHz with 32 GB of main memory, running

Oracle Java 10.0.1 (64-bit). As basis for the evaluation, we

created a 10% Twitter data stream with 10 embedded events

(e.g.“Boston Marathon Bombing, 2013”, “Papal Conclave,

2013” or “MH17 Airline Crash, 2014”), which need to be

detected by the techniques. The creation of the artificial stream

takes less than a minute and results in a stream with about 1.5

million tweets in total and an average of 25,000 tweets per

minute. In our experiments, we modified different parameters

of each technique. For the RandomEvents, TopN, and LLH

technique, we adjusted the size of the input window to 5, 10,

15, or 20 minutes and varied the number of reported events

from 6 to 20. For Shifty, we adjusted the threshold value,

which indirectly controls the number of reported events, from

10 to 69. The modification of these parameters results in 61

term sets for each technique. We then removed result sets that

did not correspond to the detection of an event. Consequently,

we excluded all results of the RandomEvents approach from

further study. To improve the comparison of the results, we

normalized the scores between 0 and 1. The latency measure

is hereby calculated using difference between the detection

time and the actual start of the event as a percentage of the

full duration of the stream (60 minutes). For the throughput

measure we had a look at the evolution of tweets per seconds

for major events in the Twitter history. For example, the airing

of the animation movie Castle in the Sky, caused an average of

about 25,000 tweets per second in the year 2013. Therefore,

we calculate the throughput measure on the assumption that

processing of 30,000 tweets per second would be a perfect

processing performance and leads to the best score of 1.0.

Figure 3 presents the results of these experiments. For the

F1 score, we can derive that LLH provides the best score

for all parameter settings. Shifty provides a slightly better F1

score than TopN. However, the variance of the F1 score is

much higher than TopN. The reason for this is that Shifty only

performs well for a certain range of threshold values. Also,

LLH and TopN analyze larger time windows and therefore

have more data available than the streaming event detection

technique Shifty. In terms of latency, we can observe that

Shifty only has a latency of a few seconds, due to its streaming

implementation. In contrast, the other two techniques have a

latency of a couple of minutes. By looking at the throughput

score, we can derive that Shifty is the slowest approach. Due

to its streaming implementation, Shifty processes many small

windows over the data stream. Nevertheless, the throughput is

still high enough to process all incoming tweets in real-time

and report events with very low latency.

F1 Latency Throughput

TopN LLH Shifty

sc
or
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 3: F1, Latency, and Throughput of TopN, Shifty, and LLH.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of reproducibility

of event detection techniques by applying our techniques to

a simulated artificial data stream. Our results show that it

is possible to evaluate the techniques in respect to quality,

latency, and performance. Since all of the techniques require

a certain set of parameters, it is possible to tune the parameter

setting by using our reproducibility toolkit. One drawback of

the artificial data stream is that, because of the lack of metadata

such as retweet information, location, or user information, only

event detection techniques using statistical measures to detect

the events can be applied to this stream. Therefore techniques

that integrate metadata into the event detection (e.g., [30],

[31]) are currently unable to use the artificial stream created

with Twistor. As future work, it is important to categorize

the injected events according to importance levels as some

events need to be detected (e.g., “Goal at the final of the World

Cup”), while others could be detected (e.g., “Boston Marathon

Bombing”) or are almost impossible to detect (e.g., “Killing

of Boris Nemzow”). With this information, the different tech-

niques can be evaluated in a more detailed manner. Since the

ground truth only contains events that are known beforehand,

it will be interesting to combine these evaluations with studies

(e.g., [34]–[36]) that are also allow for serendipitous events.

From a technical point of view, it would be a great opportunity

to have a framework in which researchers could add their own

event detection modules and evaluate their approach against

all others.

ACKNOWLEDGEMENT

The research presented in this paper is funded in part by

the Deutsche Forschungsgemeinschaft (DFG), Grant No. GR

4497/4: “Adaptive and Scalable Event Detection Techniques

for Twitter Data Streams”.

REFERENCES

[1] C. C. Aggarwal and K. Subbian. Event Detection in Social Streams. In
Proc. SIAM Intl. Conf. on Data Mining (SDM), pages 624–635, 2012.

[2] L. M. Aiello, G. Petkos, C. Martin, D. Corney, S. Papadopoulos,
R. Skraba, A. Göker, and I. Kompatsiaris. Sensing Trending Topics
in Twitter. IEEE Transactions on Multimedia, 15(6):1268–1282, 2013.

[3] F. Alvanaki, S. Michel, K. Ramamritham, and G. Weikum. See What’s
enBlogue: Real-time Emergent Topic Identification in Social Media. In
Proc. Intl. Conf. on Extending Database Technology (EDBT), pages 336–
347, 2012.

[4] A. Bazo, M. Burghardt, and C. Wolff. TWORPUS - An Easy-to-Use
Tool for the Creation of Tailored Twitter Corpora. In Proc. Intl. Conf. on
Language Processing and Knowledge in the Web (GSCL), pages 23–34,
2013.

[5] H. Becker, M. Naaman, and L. Gravano. Beyond Trending Topics: Real-
World Event Identification on Twitter. In Proc. Intl. Conf on Weblogs
and Social Media (ICWSM), pages 438–441, 2011.

[6] K. Bontcheva and D. Rout. Making Sense of Social Media Streams
through Semantics: a Survey. Semantic Web, 5(5):373–403, 2014.

[7] W.-L. Cheung. Reproducibility of Event Detection Techniques on Social
Media Data. Master’s thesis, University of Konstanz, 2017.

[8] N. Doulamis, A. Doulamis, P. Kokkinos, and E. Varvarigos. Event
Detection in Twitter Microblogging. IEEE Transactions on Cybernetics,
46(12):2810–2824, 2016.

[9] A. Farzindar and W. Khreich. A Survey of Techniques for Event
Detection in Twitter. Computational Intelligence, 31(1):132–164, 2015.

[10] D. Goldhahn, T. Eckart, and U. Quasthoff. Building large monolingual
dictionaries at the leipzig corpora collection: From 100 to 200 languages.
In Proc. Intl. Conf. on Language Resources and Evaluation (LREC),
pages 759–765.

[11] A. Guille and C. Favre. Mention-anomaly-based Event Detection and
Tracking in Twitter. In Proc. Intl. Conf. on Advances in Social Networks
Analysis and Mining (ASONAM), pages 375–382, 2014.

[12] T. Hua, F. Chen, L. Zhao, C.-T. Lu, and N. Ramakrishnan. Automatic
targeted-domain spatiotemporal event detection in twitter. GeoInformat-
ica, 20(4):765–795, 2016.

[13] S. Kaleel and A. Abhari. Cluster-discovery of Twitter messages for
event detection and trending. Journal of Computational Science, 6:47–
57, 2015.

[14] K. Lee, A. Qadir, S. A. Hasan, V. Datla, A. Prakash, J. Liu, and
O. Farri. Adverse Drug Event Detection in Tweets with Semi-Supervised
Convolutional Neural Networks. In Proc. Intl. Conf. on World Wide Web
(WWW), pages 705–714, 2017.

[15] C. Li, A. Sun, and A. Datta. Twevent: Segment-based Event Detection
from Tweets. In Proc. Intl. Conf. on Information and Knowledge
Management (CIKM), pages 155–164, 2012.

[16] R. Li, K. H. Lei, R. Khadiwala, and K. C.-C. Chang. TEDAS: A Twitter-
based Event Detection and Analysis System. In Proc. Intl. Conf. on Data
Engineering (ICDE), pages 1273–1276, 2012.

[17] N. Ljubešić, D. Fišer, and T. Erjavec. TweetCaT: a Tool for Building
Twitter Corpora of Smaller Languages. In Proc. Intl. Conf. on Language
Resources and Evaluation (LREC), pages 2279–2283, 2014.

[18] A. Madani, O. Boussaid, and D. E. Zegour. What’s Happening : A Sur-
vey of Tweets Event Detection. In Proc. Intl. Conf. on Communications,
Computation, Networks and Technologies (INNOV), pages 16–22, 2014.

[19] R. McCreadie, I. Soboroff, J. Lin, C. Macdonald, I. Ounis, and D. Mc-
Cullough. On Building a Reusable Twitter Corpus. In Proc. Intl. Conf.
on Research and Development in Information Retrieval (SIGIR), pages
1113–1114, 2012.

[20] A. J. McMinn, Y. Moshfeghi, and J. M. Jose. Building a Large-scale
Corpus for Evaluating Event Detection on Twitter. In Proc. Intl. Conf.
on Information and Knowledge Management (CIKM), pages 409–418,
2013.

[21] P. Meladianos, G. Nikolentzos, F. Rousseau, Y. Stavrakas, and M. Vazir-
giannis. Degeneracy-Based Real-Time Sub-Event Detection in Twitter
Stream. In Proc. Intl. Conf. on Weblogs and Social Media (ICWSM),
pages 248–257, 2015.

[22] D. T. Nguyen and J. E. Jung. Real-time event detection for online
behavioral analysis of big social data. Future Generation Computer
Systems, 66:137–145, 2017.

[23] A. Nurwidyantoro and E. Winarko. Event Detection in Social Media:
a Survey. In Proc. Intl. Conf. on ICT for Smart Society (ICISS), pages
1–5, 2013.

[24] S. Papadopoulos, D. Corney, and L. M. Aiello. SNOW 2014 Data Chal-
lenge: Assessing the Performance of News Topic Detection Methods in
Social Media. In Proc. Workshop on Social News on the Web (SNOW)
in conjunction with Intl. Conf. Companion on World Wide Web (WWW),
pages 1–8, 2014.

[25] R. Parikh and K. Karlapalem. ET: Events from Tweets. In Proc. Intl.
Conf. Companion on World Wide Web (WWW), pages 613–620, 2013.

[26] S. Petrović, M. Osborne, and V. Lavrenko. Using Paraphrases for
Improving First Story Detection in News and Twitter. In Proc. Conf.
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL HLT), pages 338–
346, 2012.

[27] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake Shakes Twitter
Users: Real-time Event Detection by Social Sensors. In Proc. Intl. Conf.
Companion on World Wide Web (WWW), pages 851–860, 2010.

[28] H. Schilling. Twistor - Simulation des Twitterstroms für Evalua-
tionszwecke. In 46. Jahrestagung der Gesellschaft für Informatik,
Informatik, pages 2133–2143, 2016.

[29] S. Unankard, X. Li, and M. Sharaf. Emerging event detection in social
networks with location sensitivity. World Wide Web, 18(5):1393–1417,
2015.

[30] M. Walther and M. Kaisser. Geo-spatial Event Detection in the Twitter
Stream. In P. Serdyukov, P. Braslavski, S. O. Kuznetsov, J. Kamps,
S. Rüger, E. Agichtein, I. Segalovich, and E. Yilmaz, editors, Advances
in Information Retrieval, volume 7814 of Lecture Notes in Computer
Science, pages 356–367. Springer-Verlag, 2013.

[31] H. Wei, J. Sankaranarayanan, and H. Samet. Finding and Tracking Local
Twitter Users for News Detection. In Proc. Intl. Conf. on Advances in
Geographic Information Systems (SIGSPATIAL), pages 64:1–64:4, 2017.

[32] A. Weiler, J. Beel, B. Gipp, and M. Grossniklaus. Stability Evaluation of
Event Detection Techniques for Twitter. In Proc. Advances in Intelligent
Data Analysis (IDA), pages 368–380, 2016.

[33] A. Weiler, M. Grossniklaus, and M. H. Scholl. Event Identification
and Tracking in Social Media Streaming Data. In Proc. Workshop on
Multimodal Social Data Management (MSDM) in conjunction with Intl.
Conf. on Extending Database Technology (EDBT), pages 282–287, 2014.

[34] A. Weiler, M. Grossniklaus, and M. H. Scholl. Evaluation Measures for
Event Detection Techniques on Twitter Data Streams. In Proc. British
Intl. Conf. on Databases (BICOD), pages 108–119, 2015.

[35] A. Weiler, M. Grossniklaus, and M. H. Scholl. Run-time and Task-based
Performance of Event Detection Techniques for Twitter. In Proc. Intl.
Conf. on Advanced Information Systems Engineering (CAiSE), pages
35–49, 2015.

[36] A. Weiler, M. Grossniklaus, and M. H. Scholl. Survey and Experimental
Analysis of Event Detection Techniques for Twitter. Oxford Computer
Journal, 60:329–346, 2017.

[37] A. Weiler, M. H. Scholl, F. Wanner, and C. Rohrdantz. Event Identi-
fication for Local Areas Using Social Media Streaming Data. In Proc.
Workshop on Databases and Social Networks (DBSocial) in conjunction
with Intl. Conf. on Management of Data (SIGMOD), pages 1–6, 2013.

[38] J. Weng and B.-S. Lee. Event Detection in Twitter. In Proc. Intl. Conf
on Weblogs and Social Media (ICWSM), pages 401–408, 2011.

[39] D. Wurzer, V. Lavrenko, and M. Osborne. Twitter-scale New Event
Detection via K-term Hashing. In Proc. Conf. on Empirical Methods in
Natural Language Processing (EMNLP), 2015.

[40] W. Xie, F. Zhu, J. Jiang, E.-P. Lim, and K. Wang. TopicSketch: Real-
Time Bursty Topic Detection from Twitter. IEEE Transactions on
Knowledge and Data Engineering, 28(8):2216–2229, 2016.

[41] C. Zhang, G. Zhou, Q. Yuan, H. Zhuang, Y. Zheng, L. Kaplan, S. Wang,
and J. Han. GeoBurst: Real-Time Local Event Detection in Geo-Tagged
Tweet Streams. In Proc. Intl. Conf. on Research and Development in
Information Retrieval (SIGIR), pages 513–522, 2016.

[42] X. Zhou and L. Chen. Event Detection over Twitter Social Media
Streams. The VLDB Journal, 23(3):381–400, 2014.

