82,743 research outputs found

    Fast vision through frameless event-based sensing and convolutional processing: Application to texture recognition

    Get PDF
    Address-event representation (AER) is an emergent hardware technology which shows a high potential for providing in the near future a solid technological substrate for emulating brain-like processing structures. When used for vision, AER sensors and processors are not restricted to capturing and processing still image frames, as in commercial frame-based video technology, but sense and process visual information in a pixel-level event-based frameless manner. As a result, vision processing is practically simultaneous to vision sensing, since there is no need to wait for sensing full frames. Also, only meaningful information is sensed, communicated, and processed. Of special interest for brain-like vision processing are some already reported AER convolutional chips, which have revealed a very high computational throughput as well as the possibility of assembling large convolutional neural networks in a modular fashion. It is expected that in a near future we may witness the appearance of large scale convolutional neural networks with hundreds or thousands of individual modules. In the meantime, some research is needed to investigate how to assemble and configure such large scale convolutional networks for specific applications. In this paper, we analyze AER spiking convolutional neural networks for texture recognition hardware applications. Based on the performance figures of already available individual AER convolution chips, we emulate large scale networks using a custom made event-based behavioral simulator. We have developed a new event-based processing architecture that emulates with AER hardware Manjunath's frame-based feature recognition software algorithm, and have analyzed its performance using our behavioral simulator. Recognition rate performance is not degraded. However, regarding speed, we show that recognition can be achieved before an equivalent frame is fully sensed and transmitted.Ministerio de EducaciĂłn y Ciencia TEC-2006-11730-C03-01Junta de AndalucĂ­a P06-TIC-01417European Union IST-2001-34124, 21677

    Sistema de reconocimiento de caracteres de alta velocidad basado en eventos

    Get PDF
    Spike-based processing technology is capable of very high speed throughput, as it does not rely on sensing and processing sequences of frames. Besides, it allows building complex and hierarchically structured cortical-like layers for sophisticated processing. In this paper we summarize the fundamental properties of this sensing and processing technology applied to artificial vision systems and the AER (Address Event Representation) protocol used in hardware spiking systems. Finally a four-layer system is described for character recognition. The system is slightly based on the Fukushima´s Neocognitron. Realistic simulations using figures of already existing AER devices are provided, which show recognition delays under 10μs.Ministerio de Ciencia e Innovación (VULCANO) TEC2009-10639-C04-0

    A Vision-Based Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing Techniques and a Heterogamous Dual-Core Embedded System Architecture

    Get PDF
    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system

    High-Speed Character Recognition System based on a complex hierarchical AER architecture

    Get PDF
    In this paper we briefly summarize the fundamental properties of spikes processing applied to artificial vision systems. This sensing and processing technology is capable of very high speed throughput, because it does not rely on sensing and processing sequences of frames, and because it allows for complex hierarchically structured cortical-like layers for sophisticated processing. The paper describes briefly cortex-like spiking vision processing principles, and the AER (Address Event Representation) technique used in hardware spiking systems. Afterwards an example application is described, which is a simplification of Fukushima’s Neocognitron. Realistic behavioral simulations based on existing AER hardware characteristics, reveal that the simplified neocognitron, although it processes 52 large kernel convolutions, is capable of performing recognition in less than 10µs.Ministerio de Educación y Ciencia TIC-2003-08164-C03-01Ministerio de Educación y Ciencia TEC-2006-11730-C03-01European Union IST-2001-34124 (CAVIAR)Junta de Andalucía P06-TIC-0141

    Hybrid Neural Network, An Efficient Low-Power Digital Hardware Implementation of Event-based Artificial Neural Network

    Get PDF
    Interest in event-based vision sensors has proliferated in recent years, with innovative technology becoming more accessible to new researchers and highlighting such sensors’ potential to enable low-latency sensing at low computational cost. These sensors can outperform frame-based vision sensors regarding data compression, dynamic range, temporal resolution and power efficiency. However, available mature framebased processing methods by using Artificial Neural Networks (ANNs) surpass Spiking Neural Networks (SNNs) in terms of accuracy of recognition. In this paper, we introduce a Hybrid Neural Network which is an intermediate solution to exploit advantages of both event-based and frame-based processing.We have implemented this network in FPGA and benchmarked its performance by using different event-based versions of MNIST dataset. HDL codes for this project are available for academic purpose upon request

    ColibriUAV: An Ultra-Fast, Energy-Efficient Neuromorphic Edge Processing UAV-Platform with Event-Based and Frame-Based Cameras

    Full text link
    The interest in dynamic vision sensor (DVS)-powered unmanned aerial vehicles (UAV) is raising, especially due to the microsecond-level reaction time of the bio-inspired event sensor, which increases robustness and reduces latency of the perception tasks compared to a RGB camera. This work presents ColibriUAV, a UAV platform with both frame-based and event-based cameras interfaces for efficient perception and near-sensor processing. The proposed platform is designed around Kraken, a novel low-power RISC-V System on Chip with two hardware accelerators targeting spiking neural networks and deep ternary neural networks.Kraken is capable of efficiently processing both event data from a DVS camera and frame data from an RGB camera. A key feature of Kraken is its integrated, dedicated interface with a DVS camera. This paper benchmarks the end-to-end latency and power efficiency of the neuromorphic and event-based UAV subsystem, demonstrating state-of-the-art event data with a throughput of 7200 frames of events per second and a power consumption of 10.7 \si{\milli\watt}, which is over 6.6 times faster and a hundred times less power-consuming than the widely-used data reading approach through the USB interface. The overall sensing and processing power consumption is below 50 mW, achieving latency in the milliseconds range, making the platform suitable for low-latency autonomous nano-drones as well

    RN-Net: Reservoir Nodes-Enabled Neuromorphic Vision Sensing Network

    Full text link
    Event-based cameras are inspired by the sparse and asynchronous spike representation of the biological visual system. However, processing the event data requires either using expensive feature descriptors to transform spikes into frames, or using spiking neural networks that are expensive to train. In this work, we propose a neural network architecture, Reservoir Nodes-enabled neuromorphic vision sensing Network (RN-Net), based on simple convolution layers integrated with dynamic temporal encoding reservoirs for local and global spatiotemporal feature detection with low hardware and training costs. The RN-Net allows efficient processing of asynchronous temporal features, and achieves the highest accuracy of 99.2% for DVS128 Gesture reported to date, and one of the highest accuracy of 67.5% for DVS Lip dataset at a much smaller network size. By leveraging the internal device and circuit dynamics, asynchronous temporal feature encoding can be implemented at very low hardware cost without preprocessing and dedicated memory and arithmetic units. The use of simple DNN blocks and standard backpropagation-based training rules further reduces implementation costs.Comment: 12 pages, 5 figures, 4 table

    Pervasive Monitoring - An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures

    Get PDF
    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.Seventh Framework Programme (European Commission) (FP7 project GENESIS no. 223996)Austria. Federal Ministry of Transport, Innovation and TechnologyERA-STAR Regions Project (G2real)Austria. Federal Ministry of Science and Researc

    High Speed Neuromorphic Vision-Based Inspection of Countersinks in Automated Manufacturing Processes

    Full text link
    Countersink inspection is crucial in various automated assembly lines, especially in the aerospace and automotive sectors. Advancements in machine vision introduced automated robotic inspection of countersinks using laser scanners and monocular cameras. Nevertheless, the aforementioned sensing pipelines require the robot to pause on each hole for inspection due to high latency and measurement uncertainties with motion, leading to prolonged execution times of the inspection task. The neuromorphic vision sensor, on the other hand, has the potential to expedite the countersink inspection process, but the unorthodox output of the neuromorphic technology prohibits utilizing traditional image processing techniques. Therefore, novel event-based perception algorithms need to be introduced. We propose a countersink detection approach on the basis of event-based motion compensation and the mean-shift clustering principle. In addition, our framework presents a robust event-based circle detection algorithm to precisely estimate the depth of the countersink specimens. The proposed approach expedites the inspection process by a factor of 10Ă—\times compared to conventional countersink inspection methods. The work in this paper was validated for over 50 trials on three countersink workpiece variants. The experimental results show that our method provides a precision of 0.025 mm for countersink depth inspection despite the low resolution of commercially available neuromorphic cameras.Comment: 14 pages, 11 figures, 7 tables, submitted to Journal of Intelligent Manufacturin

    A sub-mW IoT-endnode for always-on visual monitoring and smart triggering

    Full text link
    This work presents a fully-programmable Internet of Things (IoT) visual sensing node that targets sub-mW power consumption in always-on monitoring scenarios. The system features a spatial-contrast 128x64128\mathrm{x}64 binary pixel imager with focal-plane processing. The sensor, when working at its lowest power mode (10ÎĽW10\mu W at 10 fps), provides as output the number of changed pixels. Based on this information, a dedicated camera interface, implemented on a low-power FPGA, wakes up an ultra-low-power parallel processing unit to extract context-aware visual information. We evaluate the smart sensor on three always-on visual triggering application scenarios. Triggering accuracy comparable to RGB image sensors is achieved at nominal lighting conditions, while consuming an average power between 193ÎĽW193\mu W and 277ÎĽW277\mu W, depending on context activity. The digital sub-system is extremely flexible, thanks to a fully-programmable digital signal processing engine, but still achieves 19x lower power consumption compared to MCU-based cameras with significantly lower on-board computing capabilities.Comment: 11 pages, 9 figures, submitteted to IEEE IoT Journa
    • …
    corecore