
Hybrid Neural Network, An Efficient Low-Power Digital Hardware
Implementation of Event-based Artificial Neural Network

Amirreza Yousefzadeh1, Garrick Orchard2,
Evangelos Stromatias1, Teresa Serrano-Gotarredona1, and Bernabe Linares-Barranco1

1Instituto de Microelectronica de Sevilla (CSIC and Univ. de Sevilla), Sevilla, Spain Bernabe@imse-cnm.csic.es
2Singapore Institute for Neurotechnology (SINAPSE) at National University of Singapore garrickorchard@nus.edu.sg

Abstract— Interest in event-based vision sensors has prolifer-
ated in recent years, with innovative technology becoming more
accessible to new researchers and highlighting such sensors’
potential to enable low-latency sensing at low computational
cost. These sensors can outperform frame-based vision sensors
regarding data compression, dynamic range, temporal resolu-
tion and power efficiency. However, available mature frame-
based processing methods by using Artificial Neural Networks
(ANNs) surpass Spiking Neural Networks (SNNs) in terms of
accuracy of recognition. In this paper, we introduce a Hybrid
Neural Network which is an intermediate solution to exploit
advantages of both event-based and frame-based processing. We
have implemented this network in FPGA and benchmarked its
performance by using different event-based versions of MNIST
dataset. HDL codes for this project are available for academic
purpose upon request.

I. INTRODUCTION

In Dynamic Vision Sensors (DVS) each pixel spikes as
soon as it detects a change in light intensity. Several different
event-based temporal contrast DVSs exist [1] [2] [3] [4]. Son
et al. [5] recently presented a 640 × 480 pixel DVS which
consumes a total of 27mW at a data rate of 100keps and
50mW at 300Meps, has better temporal resolution than a
2000fps camera and a wide dynamic range of more than
80db.

New techniques for efficient event processing are grad-
ually being introduced. Synaptic Kernel Inverse Method
(SKIM) [6], a new learning method for synthesizing SNNs,
achieved 92.87% accuracy on the N-MNIST dataset [7].
Kheradpishe et al. [8] developed a multi-layer SNN equipped
with Synaptic Time Dependent Plasticity (STDP), achieving
98.4% accuracy on the MNIST dataset [9] by converting
all the MNIST frames to events through intensity to delay
conversion. J.H.Lee et al. [10] developed a new method to
adapt the famous error backpropagation technique for SNNs,
achieving 98.66% accuracy on the N-MNIST dataset.

Even though SNNs are improving, training an efficient
SNN for hardware implementation is still an open problem.
This can be seen in major research initiatives involving
training Artificial Neural Networks (ANNs) in frame-based
domains and using trained synaptic weights for their SNN
counterparts [11] [12]. Although the results of these works
seem promising, they also entail serious disadvantages.
Firstly, further parameter optimization is required to map
from ANN to SNN, because the parameters in SNNs with

Leaky Integrate and Fire (LIF) neurons (for example leak
rates, threshold and refractory time) are sensitive despite
the trained synaptic weights. Secondly, in these works in-
formation is coded in the event rate rather than in the exact
timing of events [13] [11], so multiple events are needed to
transfer information between neurons, thus increasing power
consumption and delay.

One major challenge when implementing Leaky Integrate
and Fire neurons is to make sure all the neurons have
normal activity [12]. Another problem is premature firing
before enough information (events from the previous layer)
is received. Extra logic also needs to be added for inhibitory
connections between neurons, to guarantee competition and
eliminate high event rates. Additionally, implementing leak-
age in digital hardware is not a straightforward task and can
be expensive (depending on accuracy).

This paper adopts a hybrid approach combining features of
non-spiking synchronous Artificial Neural Network (ANN)
and asynchronous Spiking Neural Network (SNN). Our
Hybrid Neural Network is a hardware implementation of
ANN that uses event-based vision sensors as its input as
described in Section II. This Hybrid Neural Network has
been implemented in FPGA using Hardware Description
Language (HDL). We describe the experimental results of
this work in Section III. We have used different event-based
versions of MNIST dataset to benchmark our implementa-
tion. Additionally, to compare our results with state of the
art SNN hardware implementations, we have implemented on
FPGA a modified version of the SNN that has been trained
with the algorithm presented in [10]. A brief conclusion to
this paper is provided in Section IV.

II. PROPOSED HYBRID NEURAL NETWORK

The proposed Hybrid Neural Network is an ANN that uses
a DVS as its input sensor. As mentioned in Section I, a
DVS is a power efficient vision sensor and has considerably
less latency than conventional frame-based sensors. When
something moves in front of a DVS, multiple pixels almost
simultaneously generate events that evoke synchrony-based
neural coding [14]. In this kind of coding, information is
not spike rate coded or spike rank/order coded [13]. In the
DVS even though neurons spike asynchronously information
is coded in the simultaneous firing of a group of spikes
together. To extract information efficiently, we proposed to

Fig. 1: Block diagram of “frame-maker” hardware implemen-
tation. Size of frame-memory should be equal to the size of
DVS or smaller (in case of subsampling DVS pixels)

process groups of events that are generated close together in
time rather than individual events. There is some evidence
that this kind of processing also takes place in the biological
cortex [15]. A similar approach has been used in some
efficient hardware implementations [16] [17]. A circuit called
“frame-maker” was therefore designed to group the events
that occurring close together in time into a packet (equivalent
to a frame in conventional image processing). By using this
“frame-maker” after the DVS, it was possible to create an
automatic adaptive frame-rate camera as our system input.

Fig. 1 shows a simplified block diagram of the “frame-
maker” circuit. The “Frame-maker” only captures DVS
events when the input event rate is higher than a given
threshold. That is to say a meaningful movement in front
of the DVS or a saccade occurred. The frame memory block
gathers all the events into a packet or binary frame after
receiving an “Active” signal from the Controller (Active
state). As soon as the controller deactivates this signal, the
frame-memory stops registering DVS events and issues a
Frame rdy signal, indicating that the frame is ready for
further processing (Non-active state). The controller is a
Finite State Machine (FSM) based on a simple algorithm (see
Algorithm 1). The “AER-INTERFACE” logic block converts
the asynchronous communication protocol of the DVS to a
synchronous protocol which is more efficient inside an FPGA
[18].

To implement our proposed Hybrid Neural Network in
hardware, communications between different layers of im-
plemented feedforward ANN is done by using AER events.
In this case, each neuron puts its output value and its address
into an AER packet and sends it to the next layer after
receiving a specific command. This command is coded in
AER format as well. We designed a “Frame2AER Converter”
logic block to convert the frames into an AER packet.

To explain how our Hybrid Neural Network works, an
example block diagram is shown in Fig.2. First, a frame-
maker logic block is implemented to convert DVS events into
a frame. In this network, we implemented a 28 × 28 pixel
frame-maker by subsampling DVS pixels prior to storing
them in the frame-memory1. When a frame is ready to
propagate, it will be sent to the next layer. An end of frame

1In addition to sub-sampling, 2 × 2 pixels of each border were also
cropped to make frames with the exact size of the original MNIST dataset.

Algorithm 1 Frame-maker Controller algorithm. Refractory
(Ref) time and Hold time are the parameters that depend on
the nature of stimulus and parameters of DVS.

1: C1← (Event Rate ≥ Threshold)
2: C2← (time ≥ Last Non-active time + Ref time)
3: C3← (Event Rate < Threshold)
4: C4← (time ≥ Last Active time + Hold time)
5: procedure
6: Non-active State:
7: if C1 & C2 then
8: Next State← Active State
9: end if

10: Active State:
11: if C3 & C4 then
12: Next State← Non-active State
13: end if
14: end procedure

(EOF) command event will be generated at the end of each
frame.

After the frame-maker, the neural network structure should
be implemented. Neurons in the Hybrid Neural Network are
using the Rectified Linear unit (ReLu) as activation function
[19] which can be efficiently implemented in hardware.
When a layer of the neural network receives AER events
from the previous layer, it will update the neurons that are
connected to that specific input. After receiving an EOF
command from the prior layer, each neuron with a positive
membrane value sends one event to the next layer and
resets to zero. Finally, an EOF event will be generated
for the next layer. In this scheme neurons in a layer need
to be synchronized with each other, but there is no need
for synchronization between different layers. This feature
(no need for global synchronization) makes it easier to
implement this network in massively parallel platforms like
SpiNNaker [20].

To implement the ANN we used 4-bit synaptic weights
and neuron membranes. Consequently, each event contains
the source address and a 4-bit parameter indicating the
membrane voltage of the source neuron. Rather than using
extra bits in the AER packet to encode the neurons output,
we could have used exact intensity to delay conversion (as in
[8]). However, intensity to delay conversion needs to sort all
neuron’s membrane voltages for each layer and send them
out in AER links with exact timing. Sorting thousands of
numbers may decrease design performance, so we decided
not to use temporal coding in this design. Casting neuron
membrane values to 4-bit reduces the number of non-zero
neuron outputs that need to be transmitted to the next layer.

In this work, we have implemented configurable cores for
fully connected and convolutional processing. Fig.2 illus-
trates our implemented Hybrid Neural Network for handwrit-
ing digit recognition. It contains three convolutional proces-
sors with a kernel size of 5×5 in the first layer of the neural
network. A 2×2 sub-sampling layer after convolutional cores

SubSampling
 &
Frame Maker

Frame-Maker

Fig. 2: Block Diagram of FPGA implementation of HybridNet

Fig. 3: Hardware setup for real-time processing with DVS.
A video of the real-time demonstration is available in [22].

detects the most activated neuron. The last layer contains
ten fully connected neurons. After processing all the input
events, a MAX logic operation finds the most activated
neuron and presents it as the predicted digit. To train this
network, we used the TensorFlow software library [21] and
downloaded the synaptic weights to the FPGA after training
with 4-bit precision. In TensorFlow, inputs of ANNs are
frames. To convert events of neuromorphic datasets to a
frame, we have used a software model of the “Frame-maker”
logic block.

III. RESULTS

As mentioned earlier, we implemented a small Hybrid
Neural Network in FPGA for MNIST dataset recognition.
Fig.3 shows our hardware setup with a DVS as the input
sensor, an AER-NODE board [24] with Xilinx SPARTAN-
6 for implementation of the Hybrid Neural Network and a
USB-AER (USBAERmini2) Board[23] for sending events
back to a computer in real-time. To test the system with a
pre-recorded dataset, rather than using a DVS we used an

Fig. 4: Hardware setup for processing event-based MNIST
dataset by using pre-recorded events in event-player [23].

event player board [23], which played the recorded events in
real-time as shown in Fig.4.

To report the accuracy of the network implemented in Fig.
2 we used three different event-based MNIST datasets. First,
we used the artificial conversion of MNIST to events by
generating one event per non-zero pixels from the MNIST
dataset samples and no event for others. We called this
dataset synthetic e-MNIST.

The second dataset that we used was the FLASH-MNIST-
DVS dataset. The FLASH-MNIST-DVS dataset [25] is a full
recording of the MNIST dataset obtained by flashing MNIST
digits with a monitor in front of the IMSE-DVS [3]. This
dataset is very similar to the artificial conversion of MNIST
to events, but it also includes practical noise and statistics
from a real DVS.

The last dataset is N-MNIST [7]. This dataset is captured
by mounting the ATIS sensor [2] on a motorized pan-
tilt unit and having the sensor move while it views the
MNIST samples on an LCD monitor. N-MNIST contains
three saccades for each MNIST sample. In our Hybrid Neural
Network each saccade can be captured as a frame. We have
trained one independent Hybrid Neural Network for each set
of saccades. Therefore we implemented three Hybrid Neural

TABLE I: The accuracy of FPGA implementation for two-
layer Hybrid Neural Network using event-based datasets

Dataset Train Accuracy Test accuracy
Synthetic e-MNIST 97.91% 97.09%

FLASH-MNIST-DVS 97.99% 96.80%
N-MNIST 96.59% 96.23%

Networks in parallel (one for each saccade direction). To
report the accuracy, we averaged the predictions of all the
three networks for each sample.

Table I shows the accuracy of the Hybrid Neural Network
implemented in the FPGA. The Spartan-6 (XC6SLX150T-3)
implementation of the network illustrated in Fig.2 works up
to a clock frequency of 220MHz. The convolutional layer
processes each event in ‘30’ clock cycles (135ns). A fully
connected layer needs just one clock cycle for each incoming
event. In the case of using one spike per non-zero pixels,
each frame will be converted to ‘125’ spikes in average.
Therefore convolutional processing takes less than 17us for
each frame in average. An additional 3us delay will be
added by the fully connected layer and the communication
system, so that processing latency for each frame is less than
20us. In a pipelined architecture every 17us a new frame
can be processed by the FPGA, resulting in more than 58k
MNIST frames per second. This FPGA design consumes
approximately 363mW for processing 58k frames per second
which is equal to less than 7uJ for each frame. Adding more
layers will increase latency and power consumption but will
not decrease throughput because the layers are implemented
in a pipeline.

Most of the logic blocks do not need to process anything
when there is no activity in front of the DVS. This implemen-
tation consumes ‘1270’ LUTs (1.4%) and ‘5’ Block-RAMs
(1.8%) of the FPGA resources2

To compare an SNN implementation in FPGA with our
proposed Hybrid Neural Network, we have implemented a
small SNN with the algorithm presented in [10] by using the
MNIST dataset. In this case, we used the Poisson distribution
method to convert MNIST frames to spikes because this
network does not work correctly with only one spike per
non-zero pixels3. This SNN uses LIF neurons and contains
ten convolutional populations with 5 × 5 kernel size in the
first layer (after input) followed by a ten fully connected
neurons output layer.

The original SNN presented in [10] includes complicated
synaptic equations. To train the SNN in software, we used
the original proposed SNN. However, in the FPGA dynamic
synapses have been replaced by static ones and exponential
leakage has been implemented with bit-wise shifts [26]. We
have used the same hardware setup as shown in Fig.4 for this
experiment. Like in our previous design, for each incoming
spike, ‘30’ clock cycles were needed for the convolutional
process and one clock cycle for updating the fully connected

2A video demonstration of real-time handwrite digit recognition in
FPGA using Hybrid Neural Network is available here [22].

3Around 43 events per non-zero pixel on average is generated which
is recommended in the original article [10].

TABLE II: Comparison of energy efficiency between the
proposed approach and the other two famous neromorphic
platforms

Platform Accuracy Power consumption Frame-rate
Hybrid-NN on FPGA 97.09% 7uJ per image 58000fps
IBM-TrueNorth [28] 95% 4uJ per image 1000fps

SpiNNaker [29] 95% 6mJ per image 50fps

neurons. This implementation occupied ‘1500’ LUTs and
‘47’ Block-RAMs in our Spartan-6 FPGA, and it consumes
approximately 388mW when working at full capacity (7M
events per second at 220MHz). In this SNN each non-zero
pixel is converted to ‘43’ spikes in average (5k spikes for
each frame in average) while we only used one spike per
non-zero pixels in our proposed Hybrid Neural Network
(‘125’ spikes for each frame in average). Consequently, this
design can process less than 1.4k MNIST frames per second
which results in consuming in average 300uJ per frame. The
accuracy of the implemented SNN in FPGA for MNIST
dataset is 97.35%4. Even-though FPGA is normally not as
power efficient as ASIC design, Table II shows our FPGA
approach has good energy efficiency compared to other
famous neromorphic platforms in the same digit recognition
task.

IV. CONCLUSION

In this work, we present a hybrid architecture for hardware
implementation of ANN that uses DVS as its input. We
introduce an FPGA implementation of the proposed Hybrid
Neural Network that can be trained off-line by using con-
ventional deep-learning software tools. We demonstrate that
a small two-layer Hybrid Neural Network can reach 97%
accuracy for MNIST dataset while consuming 7uJ per frame.
Finally, we prove that this network can consumes less power
than state of the art SNNs in FPGA because each neuron
can fire maximum one time for each input frame.

ACKNOWLEDGMENT

This work was supported in part by EU H2020 grants
ECOMODE, by Samsung Advanced Institute of Technology
grant NPP, and NEURAM3, and by Spanish grant TEC2015-
63884-C2-1-P (COGNET) (with support from the European
Regional Development Fund).

REFERENCES

[1] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, T. Delbruck,
Retinomorphic event-based vision sensors: Bioinspired cameras with
spiking output, Proceedings of the IEEE 102 (10) (2014) 1470–1484.
doi:10.1109/JPROC.2014.2346153.

[2] C. Posch, D. Matolin, R. Wohlgenannt, A qvga 143 db dynamic range
frame-free pwm image sensor with lossless pixel-level video compres-
sion and time-domain cds, IEEE Journal of Solid-State Circuits 46 (1)
(2011) 259–275. doi:10.1109/JSSC.2010.2085952.

4This is the result of using ’10’ convolutional cores while in the
proposed Hybrid-NN we used only ’3’ convolutional cores. A video
demonstration of this SNN while doing handwritten digit recognition in
FPGA is available in [27].

[3] T. Serrano-Gotarredona, B. Linares-Barranco, A 128,×128
1.5sensitivity 0.9vision sensor using transimpedance preamplifiers,
IEEE Journal of Solid-State Circuits 48 (3) (2013) 827–838.
doi:10.1109/JSSC.2012.2230553.

[4] J. A. Lenero-Bardallo, T. Serrano-Gotarredona, B. Linares-Barranco,
A 3.6µs latency asynchronous frame-free event-driven dynamic-
vision-sensor, IEEE Journal of Solid-State Circuits 46 (6) (2011)
1443–1455. doi:10.1109/JSSC.2011.2118490.

[5] B. Son, Y. Suh, S. Kim, H. Jung, J. S. Kim, C. Shin, K. Park,
K. Lee, J. Park, J. Woo, Y. Roh, H. Lee, Y. Wang, I. Ovsiannikov,
H. Ryu, 4.1 a 640x480 dynamic vision sensor with a 9um pixel
and 300meps address-event representation, in: 2017 IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), 2017, pp. 66–67.
doi:10.1109/ISSCC.2017.7870263.

[6] G. K. Cohen, G. Orchard, S. H. Leng, J. Tapson, R. Benos-
man, A. van Schaik, Skimming digits: Neuromorphic classi-
fication of spike-encoded images, Frontiers in Neuroscience-
doi:10.3389/fnins.2016.00184.

[7] G. Orchard, A. Jayawan, G. K. Cohen, N. Thakor, Converting static
image datasets to spiking neuromorphic datasets using saccades, Fron-
tiers in Neuroscience 9 (2015) 437. doi:10.3389/fnins.2015.00437.

[8] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, T. Masquelier,
STDP-based spiking deep neural networks for object recognition,
CoRR abs/1611.01421.
URL http://arxiv.org/abs/1611.01421

[9] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86 (11)
(1998) 2278–2324.

[10] J. H. Lee, T. Delbruck, M. Pfeiffer, Training deep spiking neural
networks using backpropagation, Frontiers in Neuroscience.

[11] J. A. Prez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-
Gotarredona, S. Chen, B. Linares-Barranco, Mapping from frame-
driven to frame-free event-driven vision systems by low-rate rate
coding and coincidence processing–application to feedforward con-
vnets, IEEE Transactions on Pattern Analysis and Machine Intelligence
35 (11) (2013) 2706–2719. doi:10.1109/TPAMI.2013.71.

[12] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, M. Pfeiffer, Fast-
classifying, high-accuracy spiking deep networks through weight and
threshold balancing, in: 2015 International Joint Conference on Neural
Networks (IJCNN), 2015, pp. 1–8.

[13] R. V. Rullen, S. J. Thorpe, Rate coding versus temporal order coding:
What the retinal ganglion cells tell the visual cortex, Neural Compu-
tation 13 (6) (2001) 1255–1283. doi:10.1162/08997660152002852.

[14] T. Masquelier, G. Portelli, P. Kornprobst, Microsaccades enable ef-
ficient synchrony-based coding in the retina: a simulation study,
Scientific Reports 6. doi:0.1038/srep24086.

[15] A. Luczak, B. L. McNaughton, K. D. Harris, Packet-based communi-
cation in the cortex, Nature Reviews Neuroscience 16 (12).
URL http://dx.doi.org/10.1038/nrn4026

[16] A. G. Andreou, A. A. Dykman, K. D. Fischl, G. Garreau, D. R.
Mendat, G. Orchard, A. S. Cassidy, P. Merolla, J. Arthur, R. Alvarez-
Icaza, B. L. Jackson, D. S. Modha, Real-time sensory information
processing using the truenorth neurosynaptic system, in: 2016 IEEE
International Symposium on Circuits and Systems (ISCAS), 2016, pp.
2911–2911.

[17] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza, J. Kusnitz,
M. Debole, S. Esser, T. Delbruck, M. Flickner, D. Modha, A low
power, fully event-based gesture recognition system, in: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[18] A. Yousefzadeh, M. Jaboski, T. Iakymchuk, A. Linares-Barranco,
A. Rosado, L. A. Plana, S. Temple, T. Serrano-Gotarredona, S. B.
Furber, B. Linares-Barranco, On multiple aer handshaking channels
over high-speed bit-serial bidirectional lvds links with flow-control
and clock-correction on commercial fpgas for scalable neuromorphic
systems, IEEE Transactions on Biomedical Circuits and Systems
11 (5) (2017) 1133–1147. doi:10.1109/TBCAS.2017.2717341.

[19] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltz-
mann machines, in: J. Frnkranz, T. Joachims (Eds.), Proceedings of
the 27th International Conference on Machine Learning (ICML-10),
Omnipress, 2010, pp. 807–814.
URL http://www.icml2010.org/papers/432.pdf

[20] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin,
E. Painkras, S. B. Furber, Spinnaker: Mapping neural net-

works onto a massively-parallel chip multiprocessor (2008) 2849–
2856doi:10.1109/IJCNN.2008.4634199.

[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-
scale machine learning on heterogeneous systems, software available
from tensorflow.org (2015).

[22] A. Yousefzadeh, Real time demo, spiking MNIST recognition using
DVS with proposed hybrid neural network in FPGA,
https://youtu.be/FRqH7kRaBW8 (2016).

[23] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-
Barranco, R. Paz-Vicente, F. Gomez-Rodriguez, L. Camunas-Mesa,
R. Berner, M. Rivas-Perez, T. Delbruck, S. C. Liu, R. Dou-
glas, P. Hafliger, G. Jimenez-Moreno, A. C. Ballcels, T. Serrano-
Gotarredona, A. J. Acosta-Jimenez, B. Linares-Barranco, Caviar:
A 45k neuron, 5m synapse, 12g connects/s aer hardware sensory-
processing-learning-actuating system for high-speed visual object
recognition and tracking, IEEE Transactions on Neural Networks
20 (9) (2009) 1417–1438. doi:10.1109/TNN.2009.2023653.

[24] T. Iakymchuk, A. Rosado, T. Serrano-Gotarredona, B. Linares-
Barranco, A. Jimnez-Fernndez, A. Linares-Barranco, G. Jimnez-
Moreno, An aer handshake-less modular infrastructure pcb with x8
2.5gbps lvds serial links, in: 2014 IEEE International Symposium on
Circuits and Systems (ISCAS), 2014, pp. 1556–1559.

[25] FLASH-MNIST-DVS dataset, http://www2.imse-cnm.csic.
es/caviar/MNISTDVS.html.

[26] A. Yousefzadeh, T. Masquelier, T. Serrano-Gotarredona, B. Linares-
Barranco, Hardware implementation of convolutional stdp for on-line
visual feature learning, in: 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), 2017, pp. 1–4.

[27] A. Yousefzadeh, Real time demo, spiking neural network in FPGA for
handwritten digit recognition,,
https://youtu.be/U-mrRcaQkpI (2016).

[28] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, D. S. Modha,
Backpropagation for energy-efficient neuromorphic computing, in:
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett
(Eds.), Advances in Neural Information Processing Systems 28, Curran
Associates, Inc., 2015, pp. 1117–1125.

[29] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S. C. Liu, S. Furber,
Scalable energy-efficient, low-latency implementations of trained
spiking deep belief networks on spinnaker, in: 2015 International
Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–8.
doi:10.1109/IJCNN.2015.7280625.

View publication statsView publication stats

https://www.researchgate.net/publication/323113739

