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Abstract—Address–event representation (AER) is an emergent
hardware technology which shows a high potential for providing
in the near future a solid technological substrate for emulating
brain-like processing structures. When used for vision, AER sen-
sors and processors are not restricted to capturing and processing
still image frames, as in commercial frame-based video tech-
nology, but sense and process visual information in a pixel-level
event-based frameless manner. As a result, vision processing is
practically simultaneous to vision sensing, since there is no need
to wait for sensing full frames. Also, only meaningful information
is sensed, communicated, and processed. Of special interest for
brain-like vision processing are some already reported AER
convolutional chips, which have revealed a very high computa-
tional throughput as well as the possibility of assembling large
convolutional neural networks in a modular fashion. It is expected
that in a near future we may witness the appearance of large
scale convolutional neural networks with hundreds or thousands
of individual modules. In the meantime, some research is needed
to investigate how to assemble and configure such large scale
convolutional networks for specific applications. In this paper, we
analyze AER spiking convolutional neural networks for texture
recognition hardware applications. Based on the performance
figures of already available individual AER convolution chips, we
emulate large scale networks using a custom made event-based
behavioral simulator. We have developed a new event-based
processing architecture that emulates with AER hardware Man-
junath’s frame-based feature recognition software algorithm,
and have analyzed its performance using our behavioral simu-
lator. Recognition rate performance is not degraded. However,
regarding speed, we show that recognition can be achieved before
an equivalent frame is fully sensed and transmitted.

Index Terms—Address–event representation (AER), AER chips,
convolutional neural networks, event coding and processing, real-
time vision hardware processing, spike signal processing, texture
retrieval, vision chips.
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I. INTRODUCTION

A RTIFICIAL man-made machine vision systems operate
in a quite different way from biological brains. Machine

vision systems usually capture and process sequences of frames.
For example, a video camera captures images at about 25–30
frames per second, which are then processed frame by frame,
pixel by pixel, usually with convolution operations, to extract,
enhance, and combine features, and perform operations in fea-
ture spaces, until a desired recognition is achieved. This frame
convolution processing is slow, especially if many convolutions
need to be computed in sequence for each input image or frame.

Biological brains seem to not operate on a frame by frame
basis. In the retina, each pixel sends spikes (also called events)
to the cortex when its activity level reaches a threshold. Pixels
are not read by an external scanner. Pixels decide when to send
an event. All these spikes are transmitted as they are being pro-
duced, and do not wait for an artificial “frame time” before
sending them to the next processing layer.1 Besides this frame-
less nature, brains are structured hierarchically in cortical layers
[1]. Neurons (pixels) in one layer connect to a projection field of
neurons (pixels) in the next layer. This processing based on pro-
jection fields is similar to convolution-based processing [2], at
least for the earlier cortical layers. For example, it is widely ac-
cepted that the first layer of visual cortex V1 performs an opera-
tion similar to a bank of 2-D Gabor-like filters at different scales
and orientations [3] whose actual parameters have been mea-
sured [4]–[6]. This fact has been exploited by many researchers
to propose powerful convolution-based image processing algo-
rithms [3], [7]–[12]. However, convolutions are computation-
ally expensive. It seems unlikely that the high number of con-
volutions that might be performed by the brain could be emu-
lated fast enough by software programs running on the fastest of
today’s computers. Many researchers believe that a new hard-
ware technology is required for approaching the processing ca-
pability of biological brains.

Address–event representation (AER) is a promising emer-
gent hardware technology that shows potential for providing
the computing requirements of large frameless projection-field-
based multilayer systems. AER was first proposed in 1991 in
one of the California Institute of Technology (Caltech) research

1Strictly speaking, this argument is still under debate as some researchers
suggest there exists a saccadic induced refresh. In any case, it is widely accepted
that retina pixels are not scanned sequentially.
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labs [13], and has been used since then by a wide commu-
nity of neuromorphic hardware engineers. AER has been used
fundamentally in image sensors, for simple light intensity to
frequency transformations [15], time-to-first-spike coding [16],
[17], foveated sensors [18], contrast [19], [20], more elaborate
transient detectors [21], and motion sensing and computation
systems [22]. But AER has also been used for auditory sys-
tems [14], [23], competition and winner-takes-all networks [24],
[25], and even for systems distributed over wireless networks
[26]. However, the high potential of AER has become even
more apparent since the availability of AER convolution chips
[27], [28]. These chips, which can perform large arbitrary kernel
convolutions (32 32 in [27]) at speeds of about 3 10 con-
nections/s/chip, can be used as building blocks for larger cor-
tical-like multilayer hierarchical structures, because of the mod-
ular and scalable nature of AER-based systems. Currently, only
a small number of such chips have been used simultaneously2

[29], but it is expected that hundreds of such modular AER con-
volution units could be integrated in a compact volume, such as
a miniature printed circuit board (PCB) or into chips of the type
known as networks-on-chip (NoC) [30]. This would eventually
allow the assembly of large cortical-like convolutional neural
networks and event-based frameless vision processing systems
operating at very high speeds.

II. FRAME-BASED VERSUS EVENT-BASED

SENSING AND PROCESSING

Fig. 1 illustrates the conceptual difference between a frame-
and an event-based sensing and processing system. Each use a
camera sensor to capture reality. In the top row, a frame-based
camera captures a sequence of frames, each of which is trans-
mitted to the computing system. Each frame is processed
by sophisticated image processing algorithms for achieving
some recognition. The computing system needs to have all pixel
values of a frame before starting any computation. In the bottom
row, an event-based vision sensor operates without frames.
Each pixel sends an event (usually its own coordinate)
when it senses something (change in intensity [21], contrast
with respect to neighboring pixels [20], etc.). Events are sent
out to the computing system as they are produced, without
waiting for a frame time. The computing system updates its
state after each event. Fig. 2 illustrates the inherent difference
in timings between both concepts. In the top (frame-based),
reality is binned into compartments of duration . During
the first frame , an event happens (such as a flashing shape),
but the information produced by this event does not reach the
computing system until the full frame is captured (at ) and
transmitted (with an additional delay ). Then, the computing
system has to process the full frame, handling large amount of
data and requiring a long frame computation time before
the “recognition” information is available. In the bottom of
Fig. 2, pixels “see” directly the event in reality and send out
their own events with a delay to the computing system.
Events are processed as they flow with an event computation
delay (some nanoseconds [27]). For performing recognition

2This is because currently only noncommercial experimental prototyping
chips are available, which are provided in reduced number of samples by
microchip foundries.

Fig. 1. Conceptual illustration of frame-based (top) versus event-based
(bottom) vision sensing and processing system.

Fig. 2. Comparison of timing issues between (top) a frame- and (bottom) an
event-based sensing and processing system.

not all events are necessary. Actually, more relevant events
usually come out first or with higher frequency. Consequently,
recognition time can be smaller than the total time of the
events produced. Note that recognition is possible before frame
time , resulting in a negative when compared to the
recognition delay of a frame-based system.

Fig. 3 provides an illustration of a typical operation of
an AER-based hardware [31]. In this case, the hardware is
composed of one temporal contrast (motion) sensing retina of
128 128 pixels [21] that is sending its output events to a 2-D
convolution chip programmed with a 7 7 pixel vertical Gabor
filter. A pixel in the retina sends out an event (which usually
consists of its coordinate) every time its incident light
intensity changes a relative amount of at least 2.5%. Fig. 3(a)
shows the 1500 events generated by the retina during about
80 ms when observing two persons walking. The receiver
convolution chip processes each event as it comes in with a
delay of about 90 ns [27]. Pixels in the 2-D array of
integrators of the convolution chip will generate their own
output events. Fig. 3(b) shows the 300 output events produced
by the convolution chip during the same 80 ms. This 7 7
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Fig. 3. Illustration about the hardware implementation of the method. (a) Two
persons walking captured with a 128� 128 temporal contrast (motion) retina
[21]. Pixels sensing a positive time derivative in light intensity send a positive
event (white), while those sensing a negative time derivative send a negative
event (black). Gray pixels are silent. The figure shows the events captured during
an interval of about 80 ms with a total of about 1500 events. (b) As these pixel
events are generated asynchronously by the motion retina, they are received and
processed one by one by a receiver convolution chip programmed with a 7� 7
vertical Gabor 2-D spatial filter. The computation delay in the convolution chip
is 90 ns per event [27]. The figures shows about 300 output events produced
during the same 80 ms by the convolution chip.

kernel typically requires between 5 and 20 spatio–temporal
correlated input events to produce an output event. As soon as
these events are fed to the convolution chip, the corresponding
output event appears with a delay of 90 ns. Consequently, in
practice, input and output event flows are simultaneous.

Interestingly, AER hardware sensing or processing modules
can be assembled into large hierarchical structures, as if one as-
sembles bricks [29]. This is because of the robustness and asyn-
chrony of the AER communication links between the modules,
and the availability of “glue” modules such as AER splitters,
mergers, and mappers [29], [32].

While the AER hardware technology takes its time to mature
for allowing the availability of such large scale modular sys-
tems, the AER research community also needs to provide a more
theoretical substrate for knowing how to assemble, configure,
program, and train such systems. What is the optimum hierar-
chical structure for a desired application? What kernels are best?
Can they be learned through a training process? What other pa-
rameters should be set? In this paper, our goal is to perform a
step towards this more theoretical direction. We will concen-
trate on one potential application for AER convolution-based
visual processing: texture recognition. Based on performance
results of individual AER convolution chips already tested, our
goal is to emulate through behavioral simulations, a relatively
large multimodule AER convolutional neural network for tex-
ture recognition, and estimate its eventual performance, espe-
cially in terms of speed response. We will use an AER behav-
ioral simulator developed in Visual C++ [33], which allows to
behaviorally describe any AER module (including timing and
nonideal characteristics), and assemble large netlists of many
different modules. This allows obtaining a realistic estimate of
the processing delays of the simulated systems. As we will see,
recognition retrieval performance is similar to state-of-the-art
frame-based algorithms, while recognition time delays are such
that the results are available before the equivalent frame sensing
and transmission time.

Fig. 4. Concept of point-to-point interchip AER communication.

III. AER FOR CONVOLUTION PROCESSING

Fig. 4 illustrates event communication in a point-to-point
AER link [36], where pixel intensity is coded directly as pixel
event frequency.3 The continuous-time states of pixels in
an emitter chip are transformed into sequences of fast digital
pulses (spikes or events) of minimal width (in the order of
nanoseconds) but with much longer inter-spike intervals (typi-
cally in the order of milliseconds). Each time a pixel generates
a spike, its address is written on the interchip digital
bus, after proper arbitration [13]. This is called an “address
event.” The receiver chip reads and decodes the addresses of
the incoming events and sends spikes to the corresponding
receiving pixels for reconstruction or further processing. This
point-to-point communication in Fig. 4 can be extended to a
multireceiver scheme [14]. Also, multiple emitters can merge
their outputs into a smaller set of receiver chips [29]. Moreover,
AER visual information can easily be translated or rotated by
remapping the addresses during interchip transmission [37],
[38]. Complex processing such as convolutions has also been
demonstrated [27]–[29].

To illustrate how AER convolution is performed event by
event (without frames) consider the example in Fig. 5. Fig. 5(a)
corresponds to a conventional frame-based convolution, where
a 5 5 input image is convolved with a 3 3 kernel

, producing a 5 5 output image . Mathemati-
cally, this corresponds to sweeping kernel over the full pixel
array

(1)

In an AER system, shown in Fig. 5(b), an intensity retina sensing
the same visual stimulus would produce events for some pixels
only (those sensing a nonzero light intensity). Every time an
event from the retina chip is received by the convolution chip,
the kernel is added to the array of pixels (which operate as adders
and accumulators) around the pixel having the same event co-
ordinate. Note that this is actually a projection-field operation.
This way, after the four retina events have been received and pro-
cessed, the result accumulated in the array of pixels in Fig. 5(b)
is equal to that in Fig. 5(a). In a more realistic situation, the retina
pixel values are higher and more events are sent per pixel. How-
ever, note that more intense pixels have higher frequencies, and
consequently, their events will start to come out earlier, and will

3This is known as rate coding and is used in AER luminance retinas [15]
and spatial contrast retinas [20]. Coding the time derivative results in temporal
contrast (motion) retinas [21]. Other coding schemes have also been proposed
[16], [17], [34].
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Fig. 5. Comparison between (a) classical frame-based and (b) AER event-based convolution processing.

be processed first. The first “wave front” of events is therefore
more relevant for object recognition. AER visual sensors be-
come significantly more efficient if they include on-chip some
extra preprocessing, such as temporal [21] or spatial [20] con-
trast. In this case, only pixels with a minimum contrast level
generate events. These pixels are the most meaningful for ob-
ject/texture recognition. Using such sensors also increases dra-
matically the efficiency of the posterior cortical processing, as
the number of events is reduced at least one order of magni-
tude while keeping the meaningful information content. In AER
systems, since events are processed by a multilayer cortical-
like structure as they are produced by the sensor, it is possible
to achieve successful recognition after a fraction of the total
number of events are processed [39].

IV. TEXTURE-BASED AER RETRIEVAL

We have developed an AER system for computing Manju-
nath’s Gabor wavelet features for texture analysis [35]. By per-
forming texture analysis using Gabor filters (2-D convolutions)
at different scales and orientations, these patterns can be ef-
ficiently described in the frequency domain and localized in
the spatial domain. Texture is analyzed by applying a bank of
scale and orientation Gabor filters to an image. Next we sum-
marize the sequence of computations performed in Manjunath’s
method [35], and indicate how we have adapted them for an
AER hardware system.

A. Manjunath’s Frame-Based Method

A 2-D Gabor function can be written as

(2)

where , , and are its geometric parameters. Let
be the mother wavelet. A Gabor filter bank can be obtained by
appropriate dilations and rotations of through the gener-
ating function

(3)
where represents orientation and the scale. The filter bank
parameters are computed by Manjunath’s
method [35]. Given an image , its Gabor wavelet trans-
form is then defined as

(4)

The mean and the standard deviation of the magnitude
of the transform coefficients

(5)
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Fig. 6. Scheme of the AER-based system implemented for texture-based retrieval of images.

are used to represent the region for classification and retrieval
purposes. In our AER implementation, we will not compute

as given in (5), but as

(6)

without any degradation in performance. A feature vector is now
constructed using and as feature components. In the
experiments, we use four scales and six orientations, resulting
in a 48 component feature vector

(7)

Consider two image patterns and , and let
and represent the corresponding feature vec-
tors. The distance between the two patterns in feature space is
then defined as

(8)

where and are the standard deviations of the
respective features over the entire database, and are used to
normalize the individual feature components. For database tex-
ture retrieval, the feature vector of a new input image is
compared with a precomputed database of feature vectors .
Computation of is fast. However, computing the feature
vector is a slow process in conventional computers.

B. Adaptation of Manjunath’s Method to AER
Convolutional Event-Based Hardware

Our AER system implements a slightly modified version of
the algorithm originally proposed by Manjunath for texture re-

trieval. The AER system is shown in Fig. 6. It has three layers.
The first one is composed of a splitter module and 24 AER
convolution modules in parallel. It implements a Gabor filter
bank with four scales and six orientations. In [40], this config-
uration of filters was demonstrated to provide the best results.
An input texture image is coded by events at intervals of 50 ns.
These events are fed to a splitter module that replicates them on
the 24 output channels. Each output channel is connected to a
convolution module that uses as kernel the real part of a
Gabor wavelet with scale and orientation . In the system of
Fig. 6, each convolution module in the first layer is configured
to change the sign bit of negative output events to positive (this
is a full-wave rectification). This way, the output at each convo-
lution module is . Note that adding more modules
to layer “1” increases the number of scales and orientations in
the bank of Gabor filters. This improves classification perfor-
mance. However, note that adding more modules to a layer will
not increase the processing delay of the hardware.

Layer “2” consists of 24 feature extraction modules (FEM
in Fig. 6). A FEM module is shown in Fig. 7. The first block
is a splitter with three output channels. The top channel (la-
beled “2” in Fig. 7) goes directly to layer 3, thus providing
an AER representation for . The bottom channel
(labeled “5”) goes to an internal merger module with a hard-
wired positive sign. The central channel (labeled “3”) goes to
an internal mapper. This mapper ignores the address of the
incoming event, and generates a new address by sequentially
sweeping all addresses. Consequently, at the mapper output, a
uniform AER image is represented with the same number of
events as . Thus, this represents the mean of
(5). This mean is fed to the internal merger with a hardwired
negative sign. Consequently, at the merger output, we have all

events with a positive sign and all events with
a negative sign. After convolving them with a unitary kernel C
and changing the negative output event signs to positive, the
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Fig. 7. Scheme of a generic FEM used in Fig. 6.

output will represent

(9)

Finally, for each of its input channels and
, layer 3 will count the total number of events (re-

gardless of their addresses) per unit time. We will use these
numbers to create our feature vector described as

(10)

Numbers and will be a representation of and
and are the extracted characteristic feature vector for the

input texture. Although slightly different from Manjunath’s
vector in (7), retrieval performance will not degrade, as shown
in Section V and in the Appendix.

V. RESULTS

In this section, we provide a performance evaluation of an
eventual hardware implementation. For this we use a behavioral
simulator developed in Visual C++ [29], [33] which allows to
test large modular AER systems. The performance characteris-
tics of the AER modules employed (convolution chips, mergers,
splitters, and mappers) are obtained from already manufactured,
tested, and reported AER modules [27], [29], [32], [39]. Unfor-
tunately, those AER chips are presently experimental prototypes
and only a small number of them are available. At this moment,
it is therefore not possible to assemble large AER systems like
the ones discussed in this paper. However, using the module
performance characteristics together with the AER behavioral
simulator, we can obtain a good estimate of the overall system
performance.

We have used the Brodatz database [41], which consists of
112 images and each image has been divided into 16 90 90
nonoverlapping subimages, thus creating a database of 1792
texture images. These images have been rate-coded into events
separated by 50 ns, creating stimulus bursts of 30 ms on av-
erage.4 We used our C++ behavioral simulation tool to estimate
the performance of an eventual hardware implementation. The
48 channel outputs of layer 2 (see Fig. 6) obtained for each of
the images in the database were collected during the 30 ms (du-
ration of the input burst) to create the feature vector database.

4This burst time is conceptually comparable to the frame time in a frame-
based system.

In what follows, a query pattern is any one of the 1792 patterns
in the database. This pattern is then processed to compute the
feature vector as in (10). The distances , where is the
query pattern index and is the index of a pattern from the data-
base (with ), are computed and sorted in increasing order.
Only the closest set of patterns are retrieved. Ideally, all top 15
retrievals are from the same large image. The performance is
measured in terms of the average retrieval rate which is defined
as the average percent number of patterns belonging to the same
image as the query pattern in the top 15 matches. Table I summa-
rizes the results. It shows the retrieval accuracy of the different
texture features for each of the 112 texture classes in the data-
base when we compare our AER-based method with the original
Manjunath results. As can be seen, the retrieval accuracies are
approximately equal.

To estimate the minimum time for correct texture retrieval,
we proceeded as follows. Input stimuli lasted for about 30 ms.
Layer 3 counts events coming from the 48 layer 2 output chan-
nels during a time . This time was increased in steps of
15 s from 0 to 30 ms. We found that for approximately
equal to 10 ms the results shown in Table I were similar. Con-
sequently, an AER hardware implementation would be able to
achieve correct texture retrieval in about 10 ms. As an
illustration, Fig. 8 shows the retrieval accuracy as a function of

for six of the texture images in [41]. As can be seen, after
10 ms, the retrieval accuracy has stabilized; this is 20 ms before
the input stimulus is finished.

In the Appendix, retrieval performance is compared against
other state-of-the-art texture retrieval algorithms. The conclu-
sion is that retrieval rate is not degraded in an AER implementa-
tion, but speed response is dramatically improved since recogni-
tion is achieved before the equivalent frame becomes fully avail-
able (see Table III in Appendix).

VI. DISCUSSION

AER is an emerging hardware technology with great po-
tential for providing complex cortical-like sensory-processing
systems. Of special interest is its potential for providing very
fast spike-processing convolutional neural networks with com-
plex hierarchical structures, similar to those found in biological
cortex. Recent work on individual AER convolutional chips
reveals the outstanding capabilities of such components as
“bricks” for larger highly sophisticated and hierarchically
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TABLE I
RETRIEVAL PERFORMANCE FOR EACH OF THE 112 BRODATZ IMAGES.

COMPARISON BETWEEN MANJUNATH’S FRAME-BASED METHOD

AND THE PROPOSED AER EVENT-BASED METHOD

structured cortical-like sensory processing systems. To date,
the largest AER multimodule system reported uses only four
processing stages, one of which is a convolution [29]. We
believe that we are not far from seeing systems made out of
several hundreds (or thousands) of AER convolutional modules
in the near future. NoC technology could host around 100
individual convolutional modules on a single chip, and about
100 such chips could be put on one single PCB. Consequently,
a small physical volume like a desktop computer could easily
hold 20–40 such PCBs, providing a total of almost half million
convolution modules.

However, currently, it is not obvious what architectural
structures should be used to assemble these AER convolutional
“bricks” and how to set their parameters for a desired (recog-
nition) application. In this paper, we have concentrated on one
such possible application, texture recognition, emulated it with

Fig. 8. Texture retrieval accuracy obtained for images D1-D2-D3-D8-D9-D10
as function of � (in milliseconds).

TABLE II
COMPARISON OF ARR USING THE BRODATZ DATABASE

a behavioral AER simulator, and used it as an exercise to see
how to set up such a system, its parameters, and estimate the
performance of multilayer AER convolutional systems. There
are starting to appear some software computational works in the
literature that use massive convolutions for vision processing.
For example, in texture recognition, experiments in the last
years have demonstrated that filter-based schemes provide ex-
cellent results [42], [61]–[63]. However, massive convolutions
on conventional computers result in excessive computational
times, making such approaches nonpractical for real-world
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TABLE III
COMPUTATION TIMES USING THE BRODATZ DATABASE

applications. In general, vision processing researchers tend
to avoid the use of convolutional processing because of its
excessive computational load. For example, quoting Serre
et al. [3] who use a first stage with 64 Gabor filters (for an
input image of 128 128 pixels), the main limitation of their
powerful recognition system is the delay of this first stage,
which requires several tens of seconds. An AER-based spiking
hardware could perform this processing with delays of a few
milliseconds, or fractions of milliseconds, while the visual
input is being sensed.

In all reported approaches for texture recognition, there is a re-
lationshipbetweenthe lengthof thefeaturevectorand thecompu-
tational time. The longer the feature vector, the longer the feature
extraction time. In AER convolutional hardware, this is not the
case, because all the elements of the feature vector are computed
in parallel. Consequently, it is possible to increase the feature
vector length or elements [54] to improve retrieval rate, without
increasing feature extraction time, although at the cost of using
more hardware “bricks.” Actually, novel approaches for texture
retrieval are based on the use of filters that take into account more
frequencies or scales [64], [67] and produce less redundant fea-
tures as compared to other wavelets (Gabor wavelet in our case).

This property is not specific for the texture retrieval applica-
tion, but is generic for AER convolutional hardware: increasing
the number of convolutional filters in a layer does not degrade
speed response of the overall system. This is because the fil-
ters receive the same input events simultaneously and process
them in parallel. There will be some delay the hardware will
add to distribute the events to a larger number of receivers, but

this extra delay will be in the order of nanoseconds, and conse-
quently not perceived by the overall system. We have observed
that the main potential for introducing delays in a multimod-
ules AER system comes from the finite bandwidth of individual
AER links. For present day reported AER links, a typical band-
width is in the order of 10–30 Meps (mega events per second).
Retina sensors output event rate is usually below 1 Meps. How-
ever, when merging several AER module outputs into one single
AER channel, especially if we are thinking of several hundreds
for the near future, it is realistic to expect that the limited AER
link bandwidth could easily end up being the main delay bot-
tleneck for such systems. Solutions for this problem could be to
do a hierarchical merging of outputs combined with replicating
the number of AER links to increase bandwidth. Also, we have
observed that event traffic is higher for the first stages and is
gradually reduced as convolutional processing compresses and
extracts relevant information.

Perhaps the most interesting observation is that in AER sen-
sory processing hardware, processing is performed as events are
communicated between modules. As a retina is sending out its
events they are sent directly to the processing structure and are
processed as they flow in. In the same way, each “brick” pro-
cesses its input events as they flow in and generates new ones.
This way the whole system operates as if a wave of (visual) in-
formation (in the form of flow of events) travels through the
convolutional structure while it is processed. Since processing
is on a per event basis, stages do not wait for transmitting full
“images” before processing them, thus reducing drastically the
latency between input and output information flow.
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What we have found with the specific example we have ana-
lyzed in this paper is that when mapping a know convolutional
processing (frame-based) algorithm to AER hardware: 1) the
recognition performance remains similar and also comparable
to state-of-the-art computational methods not based on convo-
lutions (or filters), and 2) if some day we are able to build physi-
cally this hardware, it will be capable of providing output recog-
nition while the input stimulus is being produced by the sensors.

VII. CONCLUSION AND FUTURE WORK

This paper shows performance results for a relatively large
multimodule multilayer convolutional neural network frameless
AER processing system, estimated through behavioral simula-
tions but using performance figures of real individual AER hard-
ware modules already available. A texture classification system
based on Manjunath’s method has been analyzed. This scheme
uses 48 AER convolutional modules plus a similar number of
interfacing modules, such as splitters mergers and mappers. We
have shown that the recognition performance of the AER system
is equivalent to its original frame-based reference. However,
if built with realistic AER hardware, recognition is achieved
while the sensory stimulus is being generated. This would be
equivalent to stating that an AER system has a negative pro-
cessing delay when compared to a frame-based system, where
each frame has to be fully available before starting any recogni-
tion computation.

Thus, AER systems reveal some interesting properties. First,
they are not constrained to frames and the output is often avail-
able even before the input stimulus has finished. Processing
delay is given mainly by the number of layers and the number
of events needed to represent the input stimulus. The processing
capability of such systems is increased by adding more modules
per layer, but without increasing the number of layers. Conse-
quently, processing capability can be increased without penal-
izing delays, although at the cost of adding hardware.

Currently, the available AER hardware modules are quite
preliminary, although their performance figures provide very
promising system level performance estimations. Future work
is focused mainly on miniaturizing present AER modules so
that a large number of them (several hundred) could fit on a
single PCB or in a large NoC chip. Also, such multimodule
elements should allow a large degree of reconfigurability and
reprogrammability, so that many different applications can
easily be set up. In parallel with the hardware developments,
future work also has to focus on analyzing other system level
applications, while developing new theoretical frameworks
more specific to event-based frameless processing and learning
techniques.

APPENDIX

COMPARISON TO STATE-OF-THE-ART TEXTURE RETRIEVAL

The commonly used methods for texture characterization
can be divided into three categories: statistical, model-based,
and filtering approaches [42]. Statistical methods such as cooc-
currence features [43], [44] describe the tonal distribution in
textures. Model-based methods such as Markov random field

(MRF) [45] and simultaneous autoregressive (SAR) models
[46] provide a description of texture in terms of spatial in-
teraction. Most of the statistical and model-based approaches
for texture classification consider spatial interactions over
relatively small neighborhoods. Therefore, these approaches
are more apt only for microtextures [47], [48]. Filtering ap-
proaches including wavelet [49], [50], Gabor filters [47], [51],
steerable pyramid [52], and directional filter bank (DFB) [53],
[54] characterize textures in the frequency domain. Among
the three categories, MPEG-7 has adopted Gabor-like filtering
for texture description [55]. The rationale behind is that visual
cortex is sensitive to localized frequency components [56]. It
has been shown that the direction together with scale infor-
mation is important for texture perception. In the last decade,
researchers have been combining different methods in order to
provide a better classification and retrieval of images. Fusion
of different types of texture features can be found in the liter-
ature [57]–[60]. A comprehensive performance evaluation on
filtering (i.e., spectral-based) methods for texture classification
is presented in [42], which suggests that no single set of fea-
tures derived from filtering approaches has consistent superior
performances on all textures. Other comparative studies about
all these methods can be found in [61]–[63].

In [64], two fast algorithms for multiscale directional filter
banks (MDFB) are proposed. These two algorithms are com-
pared with the previous algorithm for MDFB proposed in [68]
and with the contourlet transform [71], [72] in terms of time
of feature extraction (FE) and total computational time. In
[65], a texture representation suitable for recognizing images
of textured surfaces under a wide range of transformations,
including viewpoint changes and nonrigid deformations is
presented. At the feature extraction stage, a sparse set of affine
Harris and Laplacian regions is found in the image. Each
of these regions can be thought as a texture element having
an elliptic-shape characteristic and a distinctive appearance
pattern. The approach achieves a maximum average retrieval
rate of 76.26% when combined Harris and Laplacian descriptor
channels are used. In [66], a linear family of filters is intro-
duced, which provides certain scale invariance, resulting in a
texture description invariant to local changes in orientation,
contrast and scale, and robust to local skew. Then, a texture
discrimination method based on the similarity measure is
applied to the histograms derived from the filter responses. This
approach achieves a maximum average retrieval rate of 78.5%.
In [67], the authors propose an approach for rotation-invariant
texture image retrieval by using a set of dual-tree rotated
complex wavelet filter (DT-RCWF) and DT complex wavelet
transform (DT-CWT) jointly. They make a comparison of
average retrieval accuracy using standard real DWT, DT-CWT
and a combination of DT-CWT and DT-RCWF. In [54], ro-
tation-invariant and scale-invariant Gabor representations are
proposed, where each representation only requires few summa-
tions on the conventional Gabor filter impulse responses. The
results show that the new implementations behave better than
the conventional Gabor-based scheme when rotated or scaled
images are considered. However, a conventional Gabor-based
scheme provides better results when no rotation or scaling is
considered.
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In [68], an MDFB is first proposed and it is compared with
the Gabor filters in polar form [73] and steerable pyramid [74] in
terms of retrieval accuracy. In [69], fractal-code signatures are
proposed for texture-based retrieval of images. Fractal image
coding is a block-based scheme that exploits the self-similarity
hiding within an image. By combining fractal parameters and
collage error, a set of statistical fractal signatures is proposed.
In [70], image signatures constructed from the bit planes of
wavelet sub-bands are presented [bit plane signature (BP)
and three-pass layer probability (TPLP) signature]. As can be
observed, the method that provides the highest ARR is filter
based and is the combination of DT-CWT and DT-RCWF
implemented by Kokare et al. [67].

In Table II, we compare our AER event-based method with
those reported in [54] and [64]–[68] and with Manjunath ap-
proach [35] in terms of average retrieval rate (ARR) using the
entire Brodatz database. In Table III, we compare our method
with those published in [64], [67], [69], and [70] and also with
Manjunath’s method [35], in terms of computation times. We
distinguish between a FE time [time required to obtain a fea-
ture vector of the type in (7)] and a searching and sorting time
(additional time to classify texture: computation of terms ,
sorting them, and selecting the best match). The sum of both is
the total computation time. Note that, because of the concep-
tual difference between a frame- and an event-based approach,
total computation time for a frame-based system is (as de-
fined in Fig. 2), while for an event-based system it is (as
defined in Fig. 2). Consequently, comparing the computational
delay of the two approaches by simply comparing times and

is not a fair comparison. It is more realistic to either com-
pare against , or the time between a frame is
fully available ( in Fig. 2) and the computing system pro-
vides a recognition result: for a frame-based system against

(see Fig. 2) for an event-based system.
Note that the latter ends up being negative.
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