602,077 research outputs found

    Space-Efficient Routing Tables for Almost All Networks and the Incompressibility Method

    Get PDF
    We use the incompressibility method based on Kolmogorov complexity to determine the total number of bits of routing information for almost all network topologies. In most models for routing, for almost all labeled graphs Θ(n2)\Theta (n^2) bits are necessary and sufficient for shortest path routing. By `almost all graphs' we mean the Kolmogorov random graphs which constitute a fraction of 11/nc1-1/n^c of all graphs on nn nodes, where c>0c > 0 is an arbitrary fixed constant. There is a model for which the average case lower bound rises to Ω(n2logn)\Omega(n^2 \log n) and another model where the average case upper bound drops to O(nlog2n)O(n \log^2 n). This clearly exposes the sensitivity of such bounds to the model under consideration. If paths have to be short, but need not be shortest (if the stretch factor may be larger than 1), then much less space is needed on average, even in the more demanding models. Full-information routing requires Θ(n3)\Theta (n^3) bits on average. For worst-case static networks we prove a Ω(n2logn)\Omega(n^2 \log n) lower bound for shortest path routing and all stretch factors <2<2 in some networks where free relabeling is not allowed.Comment: 19 pages, Latex, 1 table, 1 figure; SIAM J. Comput., To appea

    Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs

    Get PDF
    The VertexCover problem is proven to be computationally hard in different ways: It is NP-complete to find an optimal solution and even NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run time to solve VertexCover is way smaller than even the best known FPT-approaches can explain. Similarly, greedy algorithms deliver very good approximations to the optimal solution in practice. We link these observations to two properties that are observed in many real-world networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling real-world networks. In fact, we are able to show that the VertexCover problem on hyperbolic random graphs can be solved in polynomial time, with high probability. The proof relies on interesting structural properties of hyperbolic random graphs. Since these predictions of the model are interesting in their own right, we conducted experiments on real-world networks showing that these properties are also observed in practice. When utilizing the same structural properties in an adaptive greedy algorithm, further experiments suggest that, on real instances, this leads to better approximations than the standard greedy approach within reasonable time

    Graph Pricing Problem on Bounded Treewidth, Bounded Genus and k-partite graphs

    Full text link
    Consider the following problem. A seller has infinite copies of nn products represented by nodes in a graph. There are mm consumers, each has a budget and wants to buy two products. Consumers are represented by weighted edges. Given the prices of products, each consumer will buy both products she wants, at the given price, if she can afford to. Our objective is to help the seller price the products to maximize her profit. This problem is called {\em graph vertex pricing} ({\sf GVP}) problem and has resisted several recent attempts despite its current simple solution. This motivates the study of this problem on special classes of graphs. In this paper, we study this problem on a large class of graphs such as graphs with bounded treewidth, bounded genus and kk-partite graphs. We show that there exists an {\sf FPTAS} for {\sf GVP} on graphs with bounded treewidth. This result is also extended to an {\sf FPTAS} for the more general {\em single-minded pricing} problem. On bounded genus graphs we present a {\sf PTAS} and show that {\sf GVP} is {\sf NP}-hard even on planar graphs. We study the Sherali-Adams hierarchy applied to a natural Integer Program formulation that (1+ϵ)(1+\epsilon)-approximates the optimal solution of {\sf GVP}. Sherali-Adams hierarchy has gained much interest recently as a possible approach to develop new approximation algorithms. We show that, when the input graph has bounded treewidth or bounded genus, applying a constant number of rounds of Sherali-Adams hierarchy makes the integrality gap of this natural {\sf LP} arbitrarily small, thus giving a (1+ϵ)(1+\epsilon)-approximate solution to the original {\sf GVP} instance. On kk-partite graphs, we present a constant-factor approximation algorithm. We further improve the approximation factors for paths, cycles and graphs with degree at most three.Comment: Preprint of the paper to appear in Chicago Journal of Theoretical Computer Scienc
    corecore