447 research outputs found

    Direct and inverse polynomial perturbations of hermitian linear functionals

    Get PDF
    AbstractThis paper is devoted to the study of direct and inverse (Laurent) polynomial modifications of moment functionals on the unit circle, i.e., associated with hermitian Toeplitz matrices. We present a new approach which allows us to study polynomial modifications of arbitrary degree.The main objective is the characterization of the quasi-definiteness of the functionals involved in the problem in terms of a difference equation relating the corresponding Schur parameters. The results are presented in the general framework of (non-necessarily quasi-definite) hermitian functionals, so that the maximum number of orthogonal polynomials is characterized by the number of consistent steps of an algorithm based on the referred recurrence for the Schur parameters.The non-uniqueness of the inverse problem makes it more interesting than the direct one. Due to this reason, special attention is paid to the inverse modification, showing that different approaches are possible depending on the data about the polynomial modification at hand. These different approaches are translated as different kinds of initial conditions for the related inverse algorithm.Some concrete applications to the study of orthogonal polynomials on the unit circle show the effectiveness of this new approach: an exhaustive and instructive analysis of the functionals coming from a general inverse polynomial perturbation of degree one for the Lebesgue measure; the classification of those pairs of orthogonal polynomials connected by a certain type of linear relation with constant polynomial coefficients; and the determination of those orthogonal polynomials whose associated ones are related to a degree one polynomial modification of the original orthogonality functional

    Poncelet's Theorem, Paraorthogonal Polynomials and the Numerical Range of Compressed Multiplication Operators

    Get PDF
    There has been considerable recent literature connecting Poncelet's theorem to ellipses, Blaschke products and numerical ranges, summarized, for example, in the recent book [11]. We show how those results can be understood using ideas from the theory of orthogonal polynomials on the unit circle (OPUC) and, in turn, can provide new insights to the theory of OPUC.Comment: 46 pages, 4 figures; minor revisions from v1; accepted for publication in Adv. Mat

    Multipoint Schur algorithm and orthogonal rational functions: convergence properties, I

    Full text link
    Classical Schur analysis is intimately connected to the theory of orthogonal polynomials on the circle [Simon, 2005]. We investigate here the connection between multipoint Schur analysis and orthogonal rational functions. Specifically, we study the convergence of the Wall rational functions via the development of a rational analogue to the Szeg\H o theory, in the case where the interpolation points may accumulate on the unit circle. This leads us to generalize results from [Khrushchev,2001], [Bultheel et al., 1999], and yields asymptotics of a novel type.Comment: a preliminary version, 39 pages; some changes in the Introduction, Section 5 (Szeg\H o type asymptotics) is extende

    Polynomials in Control Theory Parametrized by Their Roots

    Get PDF
    The aim of this paper is to introduce the space of roots to study the topological properties of the spaces of polynomials. Instead of identifying a monic complex polynomial with the vector of its coefficients, we identify it with the set of its roots. Viète's map gives a homeomorphism between the space of roots and the space of coefficients and it gives an explicit formula to relate both spaces. Using this viewpoint we establish that the space of monic (Schur or Hurwitz) aperiodic polynomials is contractible. Additionally we obtain a Boundary Theorem

    Orbitopes

    Full text link
    An orbitope is the convex hull of an orbit of a compact group acting linearly on a vector space. These highly symmetric convex bodies lie at the crossroads of several fields, in particular convex geometry, optimization, and algebraic geometry. We present a self-contained theory of orbitopes, with particular emphasis on instances arising from the groups SO(n) and O(n). These include Schur-Horn orbitopes, tautological orbitopes, Caratheodory orbitopes, Veronese orbitopes and Grassmann orbitopes. We study their face lattices, their algebraic boundary hypersurfaces, and representations as spectrahedra or projected spectrahedra.Comment: 37 pages. minor revisions of origina

    Polynomials in Control Theory Parametrized by Their Roots

    Get PDF
    The aim of this paper is to introduce the space of roots to study the topological properties of the spaces of polynomials. Instead of identifying a monic complex polynomial with the vector of its coefficients, we identify it with the set of its roots. Viète's map gives a homeomorphism between the space of roots and the space of coefficients and it gives an explicit formula to relate both spaces. Using this viewpoint we establish that the space of monic (Schur or Hurwitz) aperiodic polynomials is contractible. Additionally we obtain a Boundary Theorem

    Matrix models and stochastic growth in Donaldson-Thomas theory

    Full text link
    We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.Comment: 31 pages; v2: comments and references added; v3: presentation improved, comments added; final version to appear in Journal of Mathematical Physic
    corecore