39 research outputs found

    Evasive Properties of Sparse Graphs and Some Linear Equations in Primes

    Full text link
    We give an unconditional version of a conditional, on the Extended Riemann Hypothesis, result of L. Babai, A. Banerjee, R. Kulkarni and V. Naik (2010) on the evasiveness of sparse graphs.Comment: This version corrects a mistake made in the previous version, which was pointed out to the author by Laszlo Baba

    Rate Amplification and Query-Efficient Distance Amplification for Linear LCC and LDC

    Get PDF
    The main contribution of this work is a rate amplification procedure for LCC. Our procedure converts any q-query linear LCC, having rate ? and, say, constant distance to an asymptotically good LCC with q^poly(1/?) queries. Our second contribution is a distance amplification procedure for LDC that converts any linear LDC with distance ? and, say, constant rate to an asymptotically good LDC. The query complexity only suffers a multiplicative overhead that is roughly equal to the query complexity of a length 1/? asymptotically good LDC. This improves upon the poly(1/?) overhead obtained by the AEL distance amplification procedure [Alon and Luby, 1996; Alon et al., 1995]. Our work establishes that the construction of asymptotically good LDC and LCC is reduced, with a minor overhead in query complexity, to the problem of constructing a vanishing rate linear LCC and a (rapidly) vanishing distance linear LDC, respectively

    Counting Problems on Quantum Graphs: Parameterized and Exact Complexity Classifications

    Get PDF
    Quantum graphs, as defined by Lovász in the late 60s, are formal linear combinations of simple graphs with finite support. They allow for the complexity analysis of the problem of computing finite linear combinations of homomorphism counts, the latter of which constitute the foundation of the structural hardness theory for parameterized counting problems: The framework of parameterized counting complexity was introduced by Flum and Grohe, and McCartin in 2002 and forms a hybrid between the classical field of computational counting as founded by Valiant in the late 70s and the paradigm of parameterized complexity theory due to Downey and Fellows which originated in the early 90s. The problem of computing homomorphism numbers of quantum graphs subsumes general motif counting problems and the complexity theoretic implications have only turned out recently in a breakthrough regarding the parameterized subgraph counting problem by Curticapean, Dell and Marx in 2017. We study the problems of counting partially injective and edge-injective homomorphisms, counting induced subgraphs, as well as counting answers to existential first-order queries. We establish novel combinatorial, algebraic and even topological properties of quantum graphs that allow us to provide exhaustive parameterized and exact complexity classifications, including necessary, sufficient and mostly explicit tractability criteria, for all of the previous problems.Diese Arbeit befasst sich mit der Komplexit atsanalyse von mathematischen Problemen die als Linearkombinationen von Graphhomomorphismenzahlen darstellbar sind. Dazu wird sich sogenannter Quantengraphen bedient, bei denen es sich um formale Linearkombinationen von Graphen handelt und welche von Lov asz Ende der 60er eingef uhrt wurden. Die Bestimmung der Komplexit at solcher Probleme erfolgt unter dem von Flum, Grohe und McCartin im Jahre 2002 vorgestellten Paradigma der parametrisierten Z ahlkomplexit atstheorie, die als Hybrid der von Valiant Ende der 70er begr undeten klassischen Z ahlkomplexit atstheorie und der von Downey und Fellows Anfang der 90er eingef uhrten parametrisierten Analyse zu verstehen ist. Die Berechnung von Homomorphismenzahlen zwischen Quantengraphen und Graphen subsumiert im weitesten Sinne all jene Probleme, die das Z ahlen von kleinen Mustern in gro en Strukturen erfordern. Aufbauend auf dem daraus resultierenden Durchbruch von Curticapean, Dell und Marx, das Subgraphz ahlproblem betre end, behandelt diese Arbeit die Analyse der Probleme des Z ahlens von partiell- und kanteninjektiven Homomorphismen, induzierten Subgraphen, und Tre ern von relationalen Datenbankabfragen die sich als existentielle Formeln ausdr ucken lassen. Insbesondere werden dabei neue kombinatorische, algebraische und topologische Eigenschaften von Quantengraphen etabliert, die hinreichende, notwendige und meist explizite Kriterien f ur die Existenz e zienter Algorithmen liefern

    Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits

    Get PDF
    Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4 reduction (Agrawal & Vinay, FOCS\u2708) has made PIT for depth-4 circuits, an enticing pursuit. The largely open special-cases of sum-product-of-sum-of-univariates (?^[k] ? ? ?) and sum-product-of-constant-degree-polynomials (?^[k] ? ? ?^[?]), for constants k, ?, have been a source of many great ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC\u2705; Kayal & Saxena, CCC\u2706; Saxena & Seshadhri, FOCS\u2710, STOC\u2711); depth-4 ideas (Beecken, Mittmann & Saxena, ICALP\u2711; Saha,Saxena & Saptharishi, Comput.Compl.\u2713; Forbes, FOCS\u2715; Kumar & Saraf, CCC\u2716); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS\u2709; Shpilka, STOC\u2719; Peleg & Shpilka, CCC\u2720, STOC\u2721). We solve two of the basic underlying open problems in this work. We give the first polynomial-time PIT for ?^[k] ? ? ?. Further, we give the first quasipolynomial time blackbox PIT for both ?^[k] ? ? ? and ?^[k] ? ? ?^[?]. No subexponential time algorithm was known prior to this work (even if k = ? = 3). A key technical ingredient in all the three algorithms is how the logarithmic derivative, and its power-series, modify the top ?-gate to ?

    Testability of linear-invariant properties

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 75-80).Property Testing is the study of super-efficient algorithms that solve "approximate decision problems" with high probability. More precisely, given a property P, a testing algorithm for P is a randomized algorithm that makes a small number of queries into its input and distinguishes between whether the input satisfies P or whether the input is "far" from satisfying P, where "farness" of an object from P is measured by the minimum fraction of places in its representation that needs to be modified in order for it to satisfy P. Property testing and ideas arising from it have had significant impact on complexity theory, pseudorandomness, coding theory, computational learning theory, and extremal combinatorics. In the history of the area, a particularly important role has been played by linearinvariant properties, i.e., properties of Boolean functions on the hypercube which are closed under linear transformations of the domain. Examples of such properties include linearity, homogeneousness, Reed-Muller codes, and Fourier sparsity. In this thesis, we describe a framework that can lead to a unified analysis of the testability of all linear-invariant properties, drawing on techniques from additive combinatorics and from graph theory. We also show the first nontrivial lowerbound for the query complexity of a natural testable linear-invariant property.by Arnab Bhattacharyya.Ph.D

    Random surfaces with large systoles

    Full text link
    We present two constructions, both inspired by ideas from graph theory, of sequences random surfaces of growing area, whose systoles grow logarithmically as a function of their area. This also allows us to prove a new lower bound on the maximal systole of a closed orientable hyperbolic surface of a given genus.Comment: 32 pages, 3 figures. A new result regarding the lower bound on the maximal systole of a closed hyperbolic surface of a given genus has been adde

    Complexity of algorithms

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore