874 research outputs found

    Noise and chaos contributions in fast random bit sequence generated from broadband optoelectronic entropy sources

    No full text
    International audienceDuring the last 4 years, chaotic waveforms for random number generation found a deep interest within the community of analogue broadband chaotic optical systems. Earlier investigations on chaos-based RNG were proposed in the 90s and early 2000, however mainly based on piecewise linear (PL) 1D map, with bit rate determined by analog electronic processing capabilities to provide the PL nonlinear function of concern. Optical chaos came with promises for much higher bit rate, and entropy sources based on high complexity (high dimensional) continuous time (differential) dynamics. More specifically in 2009, Reidler et al. published a paper entitled "An optical ultrafast random bit generator", in which they presented a physical system for a random number generator based on a chaotic semiconductor laser. This generator is claimed to reach potentially the extremely high rate of 300 Gb/s. We report on analysis and experiments of their method, which leads to the discussion about the actual origin of the obtained randomness. Through standard signal theory arguments, we show that the actual binary randomness quality obtained from this method, can be interpreted as a complex mixing operated on the initial analogue entropy source. Our analysis suggests an explaination about the already reported issue that this method does not necessarily require any specific deterministic property (i.e. chaos) from the physical signal used as the physical source of entropy. The bit stream randomness quality is found to result from "aliasing" phenomena performed by the post-processing method, both for the sampling and the quantization operations. As an illustration, such random bit sequences extracted from different entropy sources are investigated. Optoelectronic noise is used as a non deterministic entropy source. Electro-optic phase chaotic signal, as well as simulations of its deterministic model, are used as deterministic entropy sources. In all cases, the extracted bit sequence reveals excellent randomness

    Diffusivity and Weak Clustering in a Quasi 2D Granular Gas

    Full text link
    We present results from a detailed simulation of a quasi-2D dissipative granular gas, kept in a non-condensed steady state via vertical shaking over a rough substrate. This gas shows a weak power-law decay in the tails of its Pair Distribution Functions (PDF's), indicating fractality and therefore a tendency to form clusters over several size scales. This clustering depends monotonically on the dissipation coefficient, and disappears when the sphere-sphere collisions are conservative. Clustering is also sensitive to the packing fraction. This gas also displays the standard nonequilibrium characteristics of similar systems, including non-Maxwellian velocity distributions. The diffusion coefficients are calculated over all the conditions of the simulations, and it is found that diluted gases are more diffusive for smaller restitution coefficients.Comment: 14 pages, 11 figure

    Waveform Approach for Assessing Conformity of CISPR 16-1-1 Measuring Receivers

    Get PDF
    An alternative approach for assessing the conformity of electromagnetic interference measuring receivers with respect to the baseline CISPR 16-1-1 requirements is proposed. The method’s core is based on the generation of digitally synthesized complex waveforms comprising multisine excitation signals and modulated pulses. The superposition of multiple narrowband reference signals populating the standard frequency bands allows for a single-stage evaluation of the receiver’s voltage accuracy and frequency selectivity. Moreover, characterizing the response of the weighting detectors using modulated pulses is more repeatable and less restrictive than the conventional approach. This methodology significantly reduces the amount of time required to complete the verification of the receiver’s baseline magnitudes, because time-domain measurements enable a broadband assessment while the typical calibration methodology follows the time-consuming narrow band frequency sweep scheme. Since the reference signals are generated using arbitrary waveform generators, they can be easily reproduced from a standard numerical vector. For different test receivers, the results of such assessment are presented in the 9 kHz–1 GHz frequency range. Finally, a discussion on the measurement uncertainty of this methodology for assessing measuring receivers is given.Postprint (author's final draft

    Simulations of Implementation of Advanced Communication Technologies

    Get PDF
    Wireless communication systems have seen significant advancements with the introduction of 3G, 4G, and 5G mobile standards. Since the simulation of entire systems is complex and may not allow evaluation of the impact of individual techniques, this thesis presents techniques and results for simulating the performance of advanced signaling techniques used in 3G, 4G, and 5G systems, including Code division multiple access (CDMA), Multiple Input Multiple Output (MIMO) systems, and Low-Density Parity Check (LDPC) codes. One implementation issue that is explored is the use of quantized Analog to Digital Converter (ADC) outputs and their impact on system performance. Code division multiple access (CDMA) is a popular wireless technique, but its effectiveness is limited by factors such as multiple access interference (MAI) and the near far effect (NFE). The joint effect of sampling and quantization on the analog-digital converter (ADC) at the receiver\u27s front end has also been evaluated for different quantization bits. It has been demonstrated that 4 bits is the minimum ADC resolution sensitivity required for a reliable connection for a quantized signal with 3- and 6-dB power levels in noisy and interference-prone environments. The demand for high data rate, reliable transmission, low bit error rate, and maximum transmission with low power has increased in wireless systems. Multiple Input Multiple Output (MIMO) systems with multiple antennas at both the transmitter and receiver side can meet these requirements by exploiting diversity and multipath propagation. The focus of MIMO systems is on improving reliability and maximizing throughput. Performance analysis of single input single output (SISO), single input multiple output (SIMO), multiple input single output (MISO), and MIMO systems is conducted using Alamouti space time block code (STBC) and Maximum Ratio Combining (MRC) technique used for transmit and receive diversity for Rayleigh fading channel under AWGN environment for BPSK and QPSK modulation schemes. Spatial Multiplexing (SM) is used to enhance spectral efficiency without additional bandwidth and power requirements. Minimum mean square error (MMSE) method is used for signal detection at the receiver end due to its low complexity and better performance. The performance of MIMO SM technique is compared for different antenna configurations and modulation schemes, and the MMSE detector is employed at the receiving end. Advanced error correction techniques for channel coding are necessary to meet the demand for Mobile Internet in 5G wireless communications, particularly for the Internet of Things. Low Density Parity Check (LDPC) codes are used for error correction in 5G, offering high coding gain, high throughput, low latency, low power dissipation, low complexity, and rate compatibility. LDPC codes use base matrices of 5G New Radio (NR) for LDPC encoding, and a soft decision decoding algorithm is used for efficient Frame Error Rate (FER) performance. The performance of LDPC codes is assessed using a soft decision decoding layered message passing algorithm, with BPSK modulation and AWGN channel. Furthermore, the effects of quantization on LDPC codes are analyzed for both small and large numbers of quantization bits

    Development and application of spread-spectrum ultrasonic evaluation technique

    Get PDF
    A new approach to ultrasonic NDE called spread-spectrum ultrasonic evaluation (SSUE) is investigated. It regards the ultrasonic nondestructive evaluation as an acoustic-impulse-response estimation and characterization problem. This problem has been compared with the analogous problems of radio-detection-and-ranging from communications field and the seismic exploration problem of geophysics. Out of the various options for the impulse response estimation, the continuous pseudorandom signal correlation method has been shown to be the optimum for peak-power limited systems such as the ultrasonic NDE systems. The problem of self-noise and its consequences in pseudorandom correlation systems is investigated, followed by the development of various optimum and sub-optimum approaches to self-noise elimination. After verifying the theoretical results through computer simulations, a lab-grade SSUE instrument was developed and analyzed. Also, a new, efficient method for the implementation of DSP-based correlator is developed. The application of SSUE technique to various practical NDE situations like, flaw detection, velocity/thickness measurements, attenuation measurement, global integrity assessment, etc., was investigated through various laboratory experiments. It is concluded that the SSUE technique holds great promise for all ultrasonic NDE applications where high signal attenuation results into the loss of signal-to-noise ratios beyond workable limits;SSUE employs a non-traditional approach to ultrasonic NDE that makes it more robust and powerful. One significant feature of the SSUE technique is that it overcomes the maximum average power limitation of the existing techniques. Conventional pulsed ultrasonic NDE systems are peak power limited by the transducer breakdown voltage and the average power is limited by the narrow pulse duration which is important to maintain good resolution. In certain NDE applications there are factors other than the transducer peak power limitation, which limit the amplitude of the transmitted signal. In case of medical ultrasound devices, for example, the peak power limit arises from the risk of causing tissue damage. For such kind of applications, SSUE has a direct solution to increasing the average power while maintaining the resolution. Ultrasonic NDE instrument in a field or industrial environment is subject to all kinds of acoustic and electromagnetic interferences. This results into a degradation of instrument sensitivity and reliability. SSUE technique, by virtue of its robust operating principal, is capable of interference rejection to a much larger extent

    Compressed Shaping: Concept and FPGA Demonstration

    Full text link
    Probabilistic shaping (PS) has been widely studied and applied to optical fiber communications. The encoder of PS expends the number of bit slots and controls the probability distribution of channel input symbols. Not only studies focused on PS but also most works on optical fiber communications have assumed source uniformity (i.e. equal probability of marks and spaces) so far. On the other hand, the source information is in general nonuniform, unless bit-scrambling or other source coding techniques to balance the bit probability is performed. Interestingly, one can exploit the source nonuniformity to reduce the entropy of the channel input symbols with the PS encoder, which leads to smaller required signal-to-noise ratio at a given input logic rate. This benefit is equivalent to a combination of data compression and PS, and thus we call this technique compressed shaping. In this work, we explain its theoretical background in detail, and verify the concept by both numerical simulation and a field programmable gate array (FPGA) implementation of such a system. In particular, we find that compressed shaping can reduce power consumption in forward error correction decoding by up to 90% in nonuniform source cases. The additional hardware resources required for compressed shaping are not significant compared with forward error correction coding, and an error insertion test is successfully demonstrated with the FPGA.Comment: 10 pages, 12 figure

    HRTFs Measurement Based on Periodic Sequences Robust towards Nonlinearities in Automotive Audio

    Get PDF
    The head related transfer functions (HRTFs) represent the acoustic path transfer functions between sound sources in 3D space and the listener’s ear. They are used to create immersive audio scenarios or to subjectively evaluate sound systems according to a human-centric point of view. Cars are nowadays the most popular audio listening environment and the use of HRTFs in automotive audio has recently attracted the attention of researchers. In this context, the paper proposes a measurement method for HRTFs based on perfect or orthogonal periodic sequences. The proposed measurement method ensures robustness towards the nonlinearities that may affect the measurement system. The experimental results considering both an emulated scenario and real measurements in a controlled environment illustrate the effectiveness of the approach and compare the proposed method with other popular approaches
    • 

    corecore