73 research outputs found

    MSIR@FIRE: A Comprehensive Report from 2013 to 2016

    Full text link
    [EN] India is a nation of geographical and cultural diversity where over 1600 dialects are spoken by the people. With the technological advancement, penetration of the internet and cheaper access to mobile data, India has recently seen a sudden growth of internet users. These Indian internet users generate contents either in English or in other vernacular Indian languages. To develop technological solutions for the contents generated by the Indian users using the Indian languages, the Forum for Information Retrieval Evaluation (FIRE) was established and held for the first time in 2008. Although Indian languages are written using indigenous scripts, often websites and user-generated content (such as tweets and blogs) in these Indian languages are written using Roman script due to various socio-cultural and technological reasons. A challenge that search engines face while processing transliterated queries and documents is that of extensive spelling variation. MSIR track was first introduced in 2013 at FIRE and the aim of MSIR was to systematically formalize several research problems that one must solve to tackle the code mixing in Web search for users of many languages around the world, develop related data sets, test benches and most importantly, build a research community focusing on this important problem that has received very little attention. This document is a comprehensive report on the 4 years of MSIR track evaluated at FIRE between 2013 and 2016.Somnath Banerjee and Sudip Kumar Naskar are supported by Media Lab Asia, MeitY, Government of India, under the Visvesvaraya PhD Scheme for Electronics & IT. The work of Paolo Rosso was partially supported by the MISMIS research project PGC2018-096212-B-C31 funded by the Spanish MICINN.Banerjee, S.; Choudhury, M.; Chakma, K.; Kumar Naskar, S.; Das, A.; Bandyopadhyay, S.; Rosso, P. (2020). MSIR@FIRE: A Comprehensive Report from 2013 to 2016. SN Computer Science. 1(55):1-15. https://doi.org/10.1007/s42979-019-0058-0S115155Ahmed UZ, Bali K, Choudhury M, Sowmya VB. Challenges in designing input method editors for Indian languages: the role of word-origin and context. In: Advances in text input methods (WTIM 2011). 2011. pp. 1–9Banerjee S, Chakma K, Naskar SK, Das A, Rosso P, Bandyopadhyay S, Choudhury M. Overview of the mixed script information retrieval (MSIR) at fire-2016. In: Forum for information retrieval evaluation. Springer; 2016. pp. 39–49.Banerjee S, Kuila A, Roy A, Naskar SK, Rosso P, Bandyopadhyay S. A hybrid approach for transliterated word-level language identification: CRF with post-processing heuristics. In: Proceedings of the forum for information retrieval evaluation, ACM, 2014. pp. 54–59.Banerjee S, Naskar S, Rosso P, Bandyopadhyay S. Code mixed cross script factoid question classification—a deep learning approach. J Intell Fuzzy Syst. 2018;34(5):2959–69.Banerjee S, Naskar SK, Rosso P, Bandyopadhyay S. The first cross-script code-mixed question answering corpus. In: Proceedings of the workshop on modeling, learning and mining for cross/multilinguality (MultiLingMine 2016), co-located with the 38th European Conference on Information Retrieval (ECIR). 2016.Banerjee S, Naskar SK, Rosso P, Bandyopadhyay S. Named entity recognition on code-mixed cross-script social media content. Comput Sistemas. 2017;21(4):681–92.Barman U, Das A, Wagner J, Foster J. Code mixing: a challenge for language identification in the language of social media. In: Proceedings of the first workshop on computational approaches to code switching. 2014. pp. 13–23.Bhardwaj P, Pakray P, Bajpeyee V, Taneja A. Information retrieval on code-mixed Hindi–English tweets. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. 2016.Bhargava R, Khandelwal S, Bhatia A, Sharmai Y. Modeling classifier for code mixed cross script questions. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016.Bhattacharjee D, Bhattacharya, P. Ensemble classifier based approach for code-mixed cross-script question classification. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016.Chakma K, Das A. CMIR: a corpus for evaluation of code mixed information retrieval of Hindi–English tweets. In: The 17th international conference on intelligent text processing and computational linguistics (CICLING). 2016.Choudhury M, Chittaranjan G, Gupta P, Das A. Overview of fire 2014 track on transliterated search. Proceedings of FIRE. 2014. pp. 68–89.Ganguly D, Pal S, Jones GJ. Dcu@fire-2014: fuzzy queries with rule-based normalization for mixed script information retrieval. In: Proceedings of the forum for information retrieval evaluation, ACM, 2014. pp. 80–85.Gella S, Sharma J, Bali K. Query word labeling and back transliteration for Indian languages: shared task system description. FIRE Working Notes. 2013;3.Gupta DK, Kumar S, Ekbal A. Machine learning approach for language identification and transliteration. In: Proceedings of the forum for information retrieval evaluation, ACM, 2014. pp. 60–64.Gupta P, Bali K, Banchs RE, Choudhury M, Rosso P. Query expansion for mixed-script information retrieval. In: Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval, ACM, 2014. pp. 677–686.Gupta P, Rosso P, Banchs RE. Encoding transliteration variation through dimensionality reduction: fire shared task on transliterated search. In: Fifth forum for information retrieval evaluation. 2013.HB Barathi Ganesh, M Anand Kumar, KP Soman. Distributional semantic representation for information retrieval. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. 2016.HB Barathi Ganesh, M Anand Kumar, KP Soman. Distributional semantic representation for text classification. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016.Järvelin K, Kekäläinen J. Cumulated gain-based evaluation of IR techniques. ACM Trans Inf Syst. 2002;20:422–46. https://doi.org/10.1145/582415.582418.Joshi H, Bhatt A, Patel H. Transliterated search using syllabification approach. In: Forum for information retrieval evaluation. 2013.King B, Abney S. Labeling the languages of words in mixed-language documents using weakly supervised methods. In: Proceedings of NAACL-HLT, 2013. pp. 1110–1119.Londhe N, Srihari RK. Exploiting named entity mentions towards code mixed IR: working notes for the UB system submission for MSIR@FIRE’16. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. 2016.Anand Kumar M, Soman KP. Amrita-CEN@MSIR-FIRE2016: Code-mixed question classification using BoWs and RNN embeddings. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016.Majumder G, Pakray P. NLP-NITMZ@MSIR 2016 system for code-mixed cross-script question classification. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016.Mandal S, Banerjee S, Naskar SK, Rosso P, Bandyopadhyay S. Adaptive voting in multiple classifier systems for word level language identification. In: FIRE workshops, 2015. pp. 47–50.Mukherjee A, Ravi A , Datta K. Mixed-script query labelling using supervised learning and ad hoc retrieval using sub word indexing. In: Proceedings of the Forum for Information Retrieval Evaluation, Bangalore, India, 2014.Pakray P, Bhaskar P. Transliterated search system for Indian languages. In: Pre-proceedings of the 5th FIRE-2013 workshop, forum for information retrieval evaluation (FIRE). 2013.Patel S, Desai V. Liga and syllabification approach for language identification and back transliteration: a shared task report by da-iict. In: Proceedings of the forum for information retrieval evaluation, ACM, 2014. pp. 43–47.Prabhakar DK, Pal S. Ism@fire-2013 shared task on transliterated search. In: Post-Proceedings of the 4th and 5th workshops of the forum for information retrieval evaluation, ACM, 2013. p. 17.Prabhakar DK, Pal S. Ism@ fire-2015: mixed script information retrieval. In: FIRE workshops. 2015. pp. 55–58.Prakash A, Saha SK. A relevance feedback based approach for mixed script transliterated text search: shared task report by bit Mesra. In: Proceedings of the Forum for Information Retrieval Evaluation, Bangalore, India, 2014.Raj A, Karfa S. A list-searching based approach for language identification in bilingual text: shared task report by asterisk. In: Working notes of the shared task on transliterated search at forum for information retrieval evaluation FIRE’14. 2014.Roy RS, Choudhury M, Majumder P, Agarwal K. Overview of the fire 2013 track on transliterated search. In: Post-proceedings of the 4th and 5th workshops of the forum for information retrieval evaluation, ACM, 2013. p. 4.Saini A. Code mixed cross script question classification. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. CEUR-WS.org. 2016.Salton G, McGill MJ. Introduction to modern information retrieval. New York: McGraw-Hill, Inc.; 1986.Sequiera R, Choudhury M, Gupta P, Rosso P, Kumar S, Banerjee S, Naskar SK, Bandyopadhyay S, Chittaranjan G, Das A, et al. Overview of fire-2015 shared task on mixed script information retrieval. FIRE Workshops. 2015;1587:19–25.Singh S, M Anand Kumar, KP Soman. CEN@Amrita: information retrieval on code mixed Hindi–English tweets using vector space models. In: Working notes of FIRE 2016—forum for information retrieval evaluation, Kolkata, India, December 7–10, 2016, CEUR workshop proceedings. 2016.Sinha N, Srinivasa G. Hindi–English language identification, named entity recognition and back transliteration: shared task system description. In: Working notes os shared task on transliterated search at forum for information retrieval evaluation FIRE’14. 2014.Voorhees EM, Tice DM. The TREC-8 question answering track evaluation. In: TREC-8, 1999. pp. 83–105.Vyas Y, Gella S, Sharma J, Bali K, Choudhury M. Pos tagging of English–Hindi code-mixed social media content. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014. pp. 974–979

    IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages

    Full text link
    India has a rich linguistic landscape with languages from 4 major language families spoken by over a billion people. 22 of these languages are listed in the Constitution of India (referred to as scheduled languages) are the focus of this work. Given the linguistic diversity, high-quality and accessible Machine Translation (MT) systems are essential in a country like India. Prior to this work, there was (i) no parallel training data spanning all the 22 languages, (ii) no robust benchmarks covering all these languages and containing content relevant to India, and (iii) no existing translation models which support all the 22 scheduled languages of India. In this work, we aim to address this gap by focusing on the missing pieces required for enabling wide, easy, and open access to good machine translation systems for all 22 scheduled Indian languages. We identify four key areas of improvement: curating and creating larger training datasets, creating diverse and high-quality benchmarks, training multilingual models, and releasing models with open access. Our first contribution is the release of the Bharat Parallel Corpus Collection (BPCC), the largest publicly available parallel corpora for Indic languages. BPCC contains a total of 230M bitext pairs, of which a total of 126M were newly added, including 644K manually translated sentence pairs created as part of this work. Our second contribution is the release of the first n-way parallel benchmark covering all 22 Indian languages, featuring diverse domains, Indian-origin content, and source-original test sets. Next, we present IndicTrans2, the first model to support all 22 languages, surpassing existing models on multiple existing and new benchmarks created as a part of this work. Lastly, to promote accessibility and collaboration, we release our models and associated data with permissive licenses at https://github.com/ai4bharat/IndicTrans2

    Entity centric neural models for natural language processing

    Get PDF
    This thesis explores how to enhance natural language understanding by incorporating entity information into neural network models. It tackles three key questions:1. Leveraging entities for understanding tasks: This work introduces Entity-GCN, a model that performs multi-step reasoning on a graph where nodes represent entity mentions and edges represent relationships. This method achieved state-of-the-art results on a multi-document question-answering dataset.2. Identifying and disambiguating entities using large language models: This research proposes a novel system that retrieves entities by generating their names token-by-token, overcoming limitations of traditional methods and significantly reducing memory footprint. This approach is also extended to a multilingual setting and further optimized for efficiency.3. Interpreting and controlling entity knowledge within models: This thesis presents a post-hoc interpretation technique to analyze how decisions are made across layers in neural models, allowing for visualization and analysis of knowledge representation. Additionally, a method for editing factual knowledge about entities is proposed, enabling correction of model predictions without costly retraining

    Exploiting Social Semantics for Multilingual Information Retrieval

    Get PDF
    In this thesis we consider how user-generated content that is assembled by different popular Web portals can be exploited for Multilingual Information Retrieval. We define the knowledge that can be derived from such portals as Social Semantics. We present to approaches, Cross-lingual Explicit Semantic Analysis and Discriminative Retrieval Models, that are able to support multilingual retrieval models by integrating Social Semantics derived from Wikipedia and Yahoo! Answers

    Entity centric neural models for natural language processing

    Get PDF
    This thesis explores how to enhance natural language understanding by incorporating entity information into neural network models. It tackles three key questions:1. Leveraging entities for understanding tasks: This work introduces Entity-GCN, a model that performs multi-step reasoning on a graph where nodes represent entity mentions and edges represent relationships. This method achieved state-of-the-art results on a multi-document question-answering dataset.2. Identifying and disambiguating entities using large language models: This research proposes a novel system that retrieves entities by generating their names token-by-token, overcoming limitations of traditional methods and significantly reducing memory footprint. This approach is also extended to a multilingual setting and further optimized for efficiency.3. Interpreting and controlling entity knowledge within models: This thesis presents a post-hoc interpretation technique to analyze how decisions are made across layers in neural models, allowing for visualization and analysis of knowledge representation. Additionally, a method for editing factual knowledge about entities is proposed, enabling correction of model predictions without costly retraining
    • …
    corecore