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Chapter 1

Introduction

Entities1 are at the center of how we represent and aggregate knowledge. For
instance, encyclopedias such as Wikipedia2 are organized by entities (e.g., one
per Wikipedia article). Written encyclopedias have existed for around two
thousand years (e.g., the Naturalis Historia dates back to 77 AD) and have
evolved substantially during such time in form, language, style, and many other
aspects. The Encyclopédie, ou dictionnaire raisonné des sciences, des arts et
des métiers (published in France between 1751 and 1772; Diderot & d’Alembert,
1751) and the Encyclopædia Britannica (published in Scotland between 1768 and
1771; Smellie, 1768) are generally considered the first printed Encyclopedias in
modern history and defined a radical change in the spread of information in the
world. While the content and language may differ, the fundamental organization
of information through entities, categories, and cross-references has remained
virtually unchanged for centuries. Organizing world knowledge in a such way
feels natural and convenient for humans but what about machines? Do machine
learning algorithms take advantage of our categorization? Can we build computer
algorithms able to connect different pieces of knowledge or to distinguish between
ambiguous concepts? Although there are no clear answers to these complex
questions yet, in this thesis, we will argue that providing extra information about
the nature of entities to Natural Language Processing (NLP) algorithms improves
their performance in many useful applications.

Let’s start our journey by looking at an example of making use of entities for
multi-document question answering. In such a setting, a user asks a question to
an information system that needs to search through a library of documents for
1 entity (noun): something that exists apart from other things, having its own independent
existence (https://dictionary.cambridge.org/dictionary/english/entity)

2 https://www.wikipedia.org

1

https://dictionary.cambridge.org/dictionary/english/entity
https://www.wikipedia.org
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Stockholm is the capital of Sweden
and the most populous city in [..]�

In what country is Thorildsplan
park located?

Thorildsplan is a small park in Kristineberg in 
Stockholm, named in 1925 after the writer [..]

Knowledge 
Base

Document #1

Document #2

Figure 1.1: Make use of entities for multi-document question answering. A user
asks the question “In what country is Thorildsplan park located? ” (left). The
mention of the park is then tagged first and then linked to a specific entity in the
Knowledge Base (top). Then, a retrieval system gets one document when another
mention of the park is present (right) as it is relevant to answer the question. In
such a document, another mention of an entity is present (“Stockholm”) which
leads to retrieving another document with the final answer (i.e., “Sweden”). The
whole process can be split into different tasks and trained for specific parts of the
pipeline such as mention detection, entity disambiguation, document retrieval,
and reading comprehension.

an answer. In addition, let’s assume that there is the need to analyze and reason
across multiple documents because no simple answer can be found in a single
document. We show a machine-aided process to get an answer in such a setting
in figure 1.1. As we can see from there, the process that a machine undertakes
aims to mimic what humans would do, and it seems a reasonable strategy. We
hypothesize that breaking down such a complex task into learnable sub-steps leads
to an overall system improvement and human interpretability of such. We can
use objective metrics to see if that is the case on such a task.

Entities for Natural Language Understanding To investigate the afore-
mentioned problems, in chapter 3, we investigate how can we exploit entities to
tackle Natural Language Understanding (NLU). We introduce a neural model
that “reasons”3 relying on information spread within and across multiple docu-

3 Here we do not mean we integrate any formal reasoning technique. By “reasoning” here we
mean we design the input of the model and its components in such a way as to promote the
learning of a multi-step process to generate the output.
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ments. Our hypothesis is that making the model output a prediction using loosely
“reasoning” (learned) steps through references of entities will allow it to learn a
sensible and more generalizable strategy to deal with complex questions. Mentions
of entities present in the text are annotated which makes testing our hypothesis
much easier. Then, we frame the task as an inference problem on a graph. These
mentions are nodes of a graph, while edges encode relations between different
mentions (e.g., within- and cross-document co-reference). Graph convolutional
networks (GCNs) are applied to these graphs and trained to perform multi-step
reasoning. We show that using extra entity information results in a scalable and
compact method achieving state-of-the-art results at the time of development (i.e.,
2018) on WikiHop, a multi-document question-answering dataset popular back
then.

The findings of chapter 3 open the door to more interesting problems since one
limiting factor of our contributions is that all mentions of entities are given as inputs
to the model. The ability to retrieve mentions of entities in texts is fundamental
for knowledge-intensive tasks such as open-domain question answering, and dialog.
Thus a natural question arises: how can we exploit language models to identify
and disambiguate entities in the text?

Finding Entities in Text with Language Models Entity Linking (EL;
Bunescu & Paşca, 2006; Cucerzan, 2007; Dredze et al., 2010; Hoffart et al.,
2011; Le & Titov, 2018) is a fundamental task in NLP employed as a building
block for text understanding (Févry et al., 2020b; Verga et al., 2020). It consists
of grounding entity mentions in unstructured texts to Knowledge Base (KB)
identifiers (e.g., Wikipedia articles). Entity linking has plenty of applications
in multiple domains, spanning open-domain question answering (De Cao et al.,
2019b; Nie et al., 2019; Asai et al., 2020), dialogue (Bordes et al., 2017; Wen et al.,
2017; Williams et al., 2017; Chen et al., 2017b; Curry et al., 2018; Sevegnani
et al., 2021), biomedical systems (Leaman & Gonzalez, 2008; Zheng et al., 2015),
information extraction (Sarawagi, 2008; Martinez-Rodriguez et al., 2020), to name
just a few. In figure 1.2 we show an example of linking mentions to their relevant
entities in a Knowledge Base.

Although there has been extensive previous work on entity retrieval (e.g.,
Hoffart et al., 2011; Piccinno & Ferragina, 2014; Huang et al., 2015; Le & Titov,
2018; Logeswaran et al., 2019; Broscheit, 2019; Wu et al., 2020, to name just
a few) there is a common design choice to most current solutions: entities are
associated with a unique atomic label and the retrieval problem can be interpreted
as multi-class classification across these labels. The match between input and
label is calculated through a bi-encoder (Wu et al., 2020; Karpukhin et al., 2020):
a dot product between dense vector encodings of the input and the encoding of
an entity’s information (such as title and description). Critically, this formulation
enables sub-linear search using modern maximum-inner-product-search libraries
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Knowledge
Base

Last Friday, president Obama announced [...] On his visit in London, Mr Obama stoped by [...]

ID: Q76
Name: Barack Obama
URL: https://en.wikipedia.org/wiki/Barack_Obama
Description: president of the United States from 2009 to 2017

Entity with metadata

Document #1 Document #2

men
tio

n mention

Figure 1.2: An example of two different mentions referring to the same entity.
The entity is defined within a Knowledge Base and it has some metadata attached
to it such as a name, an URL, and a description.

(Johnson et al., 2019) and hence supports retrieving from large entity databases.
In chapter 4, we then propose a novel approach: the first system that retrieves
entities by generating their unique names, left to right, token-by-token in an
autoregressive fashion. Our model mitigates the limitations of well-established
contemporary models4 that potentially miss fine-grained interactions between
text and entities in a Knowledge Base. Additionally, we significantly reduced the
memory footprint of current systems (up to 15 times) because the parameters of
our encoder-decoder architecture scale with vocabulary size, not with the entity
count. We also extend our approach to a large multilingual setting with more
than 100 languages (chapter 5). In this setting, we match against entity names
of as many languages as possible, which allows exploiting language connections
between source input and target name. Finally, we also propose a very efficient
approach that parallelizes autoregressive linking across all potential mentions in
a text fragment. Such a system relies on a shallow and efficient decoder which
allows a >70 faster model with no performance drop (chapter 6).

Interpretability and Controllability of Language Model The findings of
chapters 4, 5, and 6 open the door to many interesting applications in many
sub-domains. One compelling aspect of our study is that it suggests that most
of the system gains come from the ability of the model to recall its memories
about entity names both obtained during language modeling pre-training and our
task-specific fine-tuning. Unfortunately, such ability comes at a price. This is
because most (if not all) deep learning-based language models come as black-box
functions. Thus, we cannot fully understand their prediction or tell if they reason

4 Bi-encoders that produce scores via a dot-product (explained in details in section 4.2.2).
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or memorize. When they memorize, we also cannot usually control where and
how to add, remove, or modify such memories with ease. These reflections lead to
our next research question: How can we interpret and control a model’s internal
knowledge about entities?

To that end, in chapter 7, we introduce a novel post-hoc interpretation tech-
nique for inspecting how decisions emerge across layers in neural models. Our
system learns to mask out subsets of vectors while maintaining differentiability.
This lets us not only plot attribution heatmaps but also analyze how decisions are
formed across network layers. We use this system to study BERT models (Devlin
et al., 2019a) on sentiment classification and question answering additionally
showing that this technique can be applied to the graph-based model presented
in chapter 3. Finally, we also propose a method that can be used to edit factual
knowledge about entities and, thus, to fix ‘bugs’ or unexpected predictions without
the need for expensive re-training or fine-tuning (chapter 8).

1.1 Contributions
The primary contributions of this thesis can be summarised as follows:

1. We introduce a neural model that integrates reasons relying on information
spread within and across multiple documents. We frame it as an inference
problem on a graph. Mentions of entities are nodes of this graph, while
edges encode relations between different mentions.

2. We propose a system that identifies entities from text and links them
to an external knowledge base by generating their unique names in an
autoregressive fashion in more than 100 languages. We employ constrained
generation to use such a generative autoregressive model as a classifier.

3. We present a novel post-hoc interpretation technique for inspecting how
decisions emerge across layers in neural models.

4. We develop a method that edits factual knowledge about entities inside
language models and, thus, fixes ‘bugs’ or unexpected predictions without
the need for expensive re-training or fine-tuning.

Most if not all the findings suggest a central role of entities in Natural Language
Processing and we encourage research towards incorporating entity information
across more tasks.





Chapter 2

Background

In the following sections, we introduce the background material necessary to
understand the work presented in the subsequent chapters. In section 2.1 we
introduce a notion of what an entity is while in section 2.2 we define what
Knowledge Bases (KB) and Knowledge Graphs (KG) are.

All models used in this thesis are (deep and artificial) Neural Networks (NNs;
Hopfield, 1982) primarily dealing with graph or text data. While we do not
present an extensive discussion about deep learning and neural network models,
we point the reader to Goodfellow et al. (2016) for a thorough introduction to
these concepts. In section 2.3 we discuss graph modeling and give an introduction
to a class of neural models designed to encode and process graph-structured data
known as Graph Neural Networks (GNNs). Then, in section 2.4 we discuss text
modeling and the neural network models typically used to process such textual
data (i.e., Recurrent Neural Networks (RNNs) and Transformer Networks). Unless
stated otherwise, throughout this thesis, we follow the notation and definitions of
tables 2.1 and 2.2 for all mathematical equations.

2.1 Entities

The term entity has several different connotations within the computer science
or machine learning community and thus, it has no unique formal definition.
Usually, ontologies serve to create a formal representation of the entities within an
information system which are based on a taxonomy defined by domain experts. An
ontology formally describes categories, properties, and relations between entities.
The Web Ontology Language (OWL; Bechhofer et al., 2004; Antoniou & Harmelen,
2004; McGuinness, Van Harmelen, et al., 2004) is an example of a widely adopted

7
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Description Notation

Function, number or element in a set x
Vector x
Element of a vector xi
Matrix X
Row of a matrix Xi

Column of a matrix X:j

Element of a matrix Xij

Tensor X
Element of a tensor Xi,...,jk

Set X
Element of a set xi
Element of a set for vectors, matrices and tensors x(i),X(i),X(i)

Standard set of numbers R,N,Z
Set of indices i.e., {x ∈ N>0 : x ≤ n} [[1, n]]

Random variable x
Random vector x
Random matrix X
Expected value under distribution p Ep[. . . ]
Probability mass function of x conditioned on y and
parameterized by θ

p(x|y; θ)

Table 2.1: Notation. Note that vectors and matrices are row-indexed (i.e., Xi is
the i-th row, Xij is the j-th element of the i-th row, ab> is the inner product,
and xA is a vector matrix product).

technology used to define ontologies, that is supported by the World Wide Web
Consortium1.

In this thesis, we focus specifically on entities within a general real-world
knowledge base (see next session for more discussion) that describes a particular
state of affairs of the world. An example of a knowledge base is Wikidata2 which
represents any kind of topic, concept, or object. Entities there are real-world
“things” or real-world objects distinguishable from one another. Whether or not a
thing should be included in Wikidata depends on a notability criteria3 which
implicitly states what an entity is within Wikidata.

For example, a car 4 is an entity representing an abstract class of vehicles. An
entity can have attributes and have relations with one another which gives us

1 https://www.w3.org
2 https://www.wikidata.org
3 https://www.wikidata.org/wiki/Wikidata:Notability
4 Wikidata entity ID Q1420

https://www.w3.org
https://www.wikidata.org
https://www.wikidata.org/wiki/Wikidata:Notability
https://www.wikidata.org/wiki/Q1420
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Name Definition

Sigmoid function σ : R→ (0, 1) and σ(x) = (1 + exp(−x))−1

Softmax function softmax : Rd → ∆d−1 and softmax(x)i = exp(xi)∑d
j=1 exp(xj)

Hadamard product � : Rd×k × Rd×k → Rd×k and (A�B)ij = Aij ·Bij

Outer product ⊗ : Rd × Rk → Rd×k and (a⊗ b)ij = ai · bj

Indicator function 1A : B → {0, 1} and 1A(x) =

{
1 if x ∈ A
0 if x 6∈ A

Kullback–Leibler
divergence

DKL[p‖q] =
∫
X p(dx) log p(dx)

q(dx)

Jensen–Shannon
divergence

DJS[p‖q] = (DKL[p‖m] +DKL[q‖m]) /2
where m(x) = (p(x) + q(x))/2

Table 2.2: Definitions. Note that vectors and matrices are row-indexed (i.e., Xi

is the i-th row, Xij is the j-th element of the i-th row, ab> is the inner product,
and xA is a vector matrix product).

information about some of their characteristic. For example, a particular car
model like a Tesla Model S 5 (an electric sedan produced and sold by Tesla Motors)
is also an entity which relates to the car entity with the relation being an instance
of 6. Entities can also be people, organizations, events or locations such as Mother’s
day and the United Kingdom. Numerical proprieties are usually not entities. For
example, the capital of the United Kingdom is London which is another entity
but its population is around 67 million (as of 20217) which is typically denoted as
an attribute.

2.2 Knowledge Bases and Knowledge Graphs

A knowledge base is a term that denotes a centralized repository of structured or
unstructured data within a computer system. KBs can contain data of multiple
modalities, e.g., text, table, graphs, images, audio/video, and others. One of
the original uses of the term knowledge base was to describe a system that
stores facts about the world which is separate from a reasoning engine that
uses those facts to make deductions and produce complex outputs (Hayes-Roth,
1983). The term was originally made up to distinguish between databases (Date,

5 Wikidata entity ID Q1463050
6 Wikidata property ID P31
7 https://data.worldbank.org/indicator/SP.POP.TOTL

https://www.wikidata.org/wiki/Q1463050
https://www.wikidata.org/wiki/Property:P31
https://data.worldbank.org/indicator/SP.POP.TOTL
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1975), which decades ago were just flat, tabular data, and a new way of storing
information in a hierarchical and relational form. Nowadays, databases support
multi-modal data, semantic meta-data, and hierarchical and relational information
thus the terminology is practically equivalent. Knowledge bases are machine-
readable resources optimized for information collection, organization, and retrieval.
Examples of large and open-source knowledge bases with a mixture of structured
and unstructured data are Wikipedia8, Wikidata and the Wikimedia family9.

Although some practitioners use the terms knowledge base and knowledge
graph interchangeably there is a clear distinction between the two. Knowledge
graphs are a subset of knowledge bases, i.e., all knowledge graphs are knowledge
bases, while not every knowledge base is a knowledge graph. The key difference
between the two is that within a knowledge graph, information is represented as
a graph characterized by relationships between entities. Knowledge graphs do
indeed represent graph-structured data or information topologically equivalent
to a graph. They often store interconnected descriptions of entities or general
abstract concepts. Examples of large and open-source knowledge graphs are
DBpedia10 and Wikidata. Knowledge graphs have also been largely employed
by the industry as well (Noy et al., 2019). Search engines such as Google11,
Bing12 employ algorithms that operated on knowledge graphs. Question-answering
services such as WolframAlpha13, Apple’s Siri (Ilyas et al., 2022), and Amazon
Alexa14 extensively rely on this technology as well.

Although we explain their differences, throughout this thesis the terms knowl-
edge base and knowledge graph are essentially interchangeable as we do not rely
upon any propriety that is not present in both.

2.3 Neural Models for Graphs

Graph Neural Networks (GNNs) are a class of neural network models developed
for the processing of graph-structured data (Gori et al., 2005; Scarselli et al., 2009).
Generally, each layer of a GNN takes as input a graph G = 〈V , E ,R〉 (i.e., a triple
consisting of a set of vertices, a set of edges, and a set of relations) alongside with
a set of initial vertex features Xv ∈ V × Rdv , edge features Xe ∈ E × Rde , and
global features xg ∈ Rdg (for some dimensionalities dv, de, dg ∈ N>0). Then, a layer
computes new node, edge, and global embeddings as new hidden states according
to a function that takes into account the graph structure (e.g., the neighborhood

8 https://www.wikipedia.org
9 https://www.wikimedia.org
10https://www.dbpedia.org
11https://developers.google.com/knowledge-graph
12https://www.microsoft.com/en-us/bing/apis/bing-entity-search-api
13https://www.wolfram.com/knowledgebase
14https://aws.amazon.com/alexaforbusiness/knowledge-skills

https://www.wikipedia.org
https://www.wikimedia.org
https://www.dbpedia.org
https://developers.google.com/knowledge-graph
https://www.microsoft.com/en-us/bing/apis/bing-entity-search-api
https://www.wolfram.com/knowledgebase
https://aws.amazon.com/alexaforbusiness/knowledge-skills
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(a) Edge update. (b) Node update. (c) Global update.

Figure 2.1: Updates in a GNN block. vi, vj, and v′i, v′j are two vertices features
before and after an update respectively. ek and e′k are edge features before and
after an update. u and u′ are global graph features before and after an update. Red
indicates the element that is being updated, and black indicates other elements
which are involved in the update (note that the pre-update value of the red element
is also used in the update). Figure and caption adapted and inspired from figure
3 in Battaglia et al. (2018).

surrounding each vertex and the relations which connect nodes). GNNs layers can
be stacked to create a fully differentiable neural model learnable with standard
stochastic gradient descent. They are useful for providing topology-aware node,
edge, and graph features for downstream prediction tasks such as classification or
regression at node-, edge- and graph-level. The way GNNs aggregate neighborhood
information depends on many architectural choices that currently count hundreds
of variations. In addition, some variations of GNNs were specifically developed for
dealing with simple graphs, multigraphs, directed and undirected graphs, temporal
graphs, and hypergraphs (Schlichtkrull et al., 2018; Feng et al., 2019; Yu et al.,
2019; Rossi et al., 2020).

The only GNN model used in this thesis is a modification of Relational Graph
Convolutional Network (R-GCN; Schlichtkrull et al., 2018) that belongs to a
particular class called graph neural message passing (Gilmer et al., 2017). In a
nutshell, each message passing GNN layers acts in 3 stages (see figure 2.1 for a
visual overview of these steps):

1. edge update: for each edge, it computes its new attributes taking into
account its previous set of features, the global state, and all the node features
of the nodes which are connected to the edge (as shown in figure 2.1a);

2. node update: for each node, its new attributes taking into account its
previous set of features, the global state, and all the edge features of the
edges which are connected to the node (as shown in figure 2.1b);

3. global update: it aggregates all edge and node attributes globally and
then it computes an updated global attribute (as shown in figure 2.1c).
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Such formulation is quite general, and each step of the way can be implemented
differently depending on the application requirements. Finally, we point the reader
to a survey by Battaglia et al. (2018) for a further discussion of GNNs and message
passing.

2.4 Neural Models for Text
Neural networks for text modeling are a class of neural network models developed
for processing natural language (Winograd, 1971; Goldberg, 2016). Generally,
they take some text in form or an ordered set (sequence) of discrete tokens X ∈ Vn
of size n as inputs. Note that the number of input tokens does not need to be
fixed, e.g., a network can operate on sequences of different lengths. Each element
in the input sequence belongs to a pre-defined vocabulary V (e.g., the set of ASCII
characters, all Unicode symbols, or a subset of all English words). Although the
way a neural model for text operates differs by a wide range, nowadays, they
typically follow this general outline:

1. encode step: they encode the discrete input sequence X into a sequence
of continuous embedded tokens H(0) ∈ X × Rde (i.e., the 0-th layer hidden
state for some de-dimensional embeddings) using an input embedding matrix
E i ∈ R|V|×de which allows the following neural layers to operate in the real
coordinate space;

2. hidden steps: they process the embedded sequence either via a Recurrent
Neural Network, Convolutional Neural Network, or a Transformer model
(i.e., ad hoc architectures built for processing sequences—see the next few
sections for more details);

3. output step: they produce a sequence of do-dimensional hidden represen-
tation Y ∈ X × Rdo , one for each input token;

4. post-processing step: eventually, they either output i) the sequence of
hidden states Y, or i) a single vector for the whole sequence (e.g., via
an average or max pooling of Y), or iii) token probabilities derived by
a projection of Y (typically used in generative tasks like translation or
summarization).

When a model is required to output token probabilities, it also has an output
embedding matrix Eo ∈ Rdo×|V| (often Eo = E i), which is used to project
do-dimensional hidden representation predicted by the network to logits15 of a
categorical probability distribution over the token vocabulary V .
15Logits parameters (also know as scores) of categorical probability distribution. The distribution
over n categories is derived from logits θ ∈ Rn and temperature τ ∈ R>0 typically set to τ = 1

as: p(xi; θ, τ) = softmax(θ/τ)i =
exp(θi/τ)∑n

j=1 exp(θj/τ)
.
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2.4.1 Recurrent Neural Networks

A standard approach for text modeling using neural networks is to use Recurrent
Neural Networks (RNNs; Jordan, 1986; Rumelhart & McClelland, 1987; Elman,
1990). RNNs apply a form of feedforward neural network recursively for each
element in a sequence of inputs while keeping an internal state (memory). For
a sequence of n elements, they require to be applied n times. At the end of n
calls, the RNN will have an internal representation of the whole sequence. RNN
layers can also be stacked to create powerful and fully differentiable neural models
learnable with standard stochastic gradient descent when provided with some
supervision from which once can derive a loss or objective function. They are
useful for processing variable-length sequences of text or audio signals. Long
Short Term Memory networks (LSTM; Hochreiter & Schmidhuber, 1997) are a
well-established improvement of RNNs designed to prevent their vanishing gradient
issues. In recent years, LSTMs have been augmented with attention (see next
section) and eventually overtaken for most of the tasks by another class of models
called transformers neural networks (Vaswani et al., 2017).

2.4.2 Attention

The attention mechanisms in neural networks is considered to be an effort to
mimic human brain actions in a simplified manner that took inspiration from
cognitive attention (James et al., 1890). The core idea behind attention is using
a learned weighted average to summarize sequences of inputs (typically vectors,
but it can be used with arbitrary multi-dimensional tensors). The application of
attention increases the importance of some parts of the input while decreasing
others. Typically attention is used as a layer inside a deep neural network trained
by gradient descent. Thus, learning which part of the input is more important
than another depends entirely on the data, the rest of the architecture, and the
loss function. Modern use of attention for natural language processing is credited
to Bahdanau et al. (2015) and Luong et al. (2015) who originally proposed to use
attention to summarize sequences for neural machine translation. They used it as
a component of RNN models allowing the decoder to attend (i.e., give attention)
to elements in the input sequence differently for each time-step. A simple attention
mechanism from m elements over a matrix of n dv-dimensional vectors V ∈ Rn×dv
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can be summarized by the following equation:

oi =
n∑
j=1

AijVj ∀i ∈ [[1,m]] , (2.1)

where each output vector oi ∈ Rdv is a weighted sum of the values v1,...,n according
to the attention weights Aij ∈ [0, 1]m×n such that

Aij = softmax(Si)j =
exp(Sij)∑n
k=1 exp(Sik)

∀i ∈ [[1,m]], ∀j × [[1, n]] . (2.2)

Note that the scores (i.e., logits) Sij ∈ Rm×n can be computed in an arbitrary way
that depends on the implementation and intended use. However, it is important
that the attention weights Aij for j ∈ [[1, n]] sum to 1 (i.e.,

∑n
j=1Aij = 1) since

the attention mechanism is a convex rather than a linear combination of vectors
(Rockafellar, 1970).

Scaled Dot-Product Attention More recently, Vaswani et al. (2017) pre-
sented a more complex type of attention known as scaled dot-product attention.
The authors used this formulation to introduce the transformer architecture with
the aim of replacing the RNN for sequence modeling entirely (see next section for
an introduction to transformers). Concretely, the attention function used for the
transformer architecture consists of

1. a keys matrix K ∈ Rn×dk which contains a set of n key vectors of size dk
used to identify the particular elements in the input set;

2. a values matrix V ∈ Rn×dv which contains a set of n value vectors of size dv
used to store information for each element in the input set;

3. a queries matrix Q ∈ Rm×dk which contains a set of m query vectors of size
dk used to attend the elements in the input set.

Then, each score Sij is computed via a scaled dot-product QiK
>
j /
√
dk where

√
dk

is a normalization factor.16 In matrix form, scaled dot-product attention can be
written as

Attention(Q,K,V ) = softmax

(
QK>√
dk

)
︸ ︷︷ ︸
=A (attention matrix)

V , (2.3)

where the softmax operation is computed in the last matrix dimension. This
function gives us an output matrix O ∈ Rm×dv .
16The dot product

∑d
i=1 aibi of two independent random d-dimensional vectors with mean 0

and variance 1 has has mean 0 and variance d. Thus, normalizing corresponds to dividing by
the vectors’ standard deviation at initialization, assuming normal distributions.
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Multi-head Attention Vaswani et al. (2017) further extended the limited
single attention function with dmodel-dimensional keys, values, and queries (i.e.,
the hidden dimensionality used a model) concatenating different applications of
the attention function. Multi-head attention linearly projects the queries, keys,
and values h times with different, learned linear projections to dk, dk, and dv
dimensions, respectively. All of these projected versions of attention perform in
parallel. The concatenated output vector still has dv values. The main intuition
behind what is the value of multi-head attention is that it allows a model to
jointly attend to the information in the input through different learned attention
mixtures and projections. In matrix form, multi-head (with h heads) attention
can be written as

MultiHeadAtt(Q,K,V ) = Concat(H(1), · · · ,H(h))WO ,

H(i) = Attention(QW (Q,i),KW (K,i),VW (V,i)) ,
(2.4)

where the projections are parameter matrices

W (K,i) ∈ Rdmodel×dk W (Q,i) ∈ Rdmodel×dk

W (V,i) ∈ Rdmodel×dv WO ∈ Rh·dv×dmodel
∀i ∈ [[1, h]] .

Multi-head attention is fully differentiable and all weights are typically learned
with stochastic gradient descent via the optimization of a loss function.

2.4.3 Transformer Neural Networks

The transformer architecture originally proposed by Vaswani et al. (2017) is a
rather successful attempt to replace RNNs for dealing with sequential data. The
two fundamental differences from RNNs are that 1) the input sequence is processed
all at once as opposed to RNNs that build a hidden representation incrementally
through time, and 2) the model uses the attention mechanisms to attend the input
sequence at each layer incrementally constructing a representation of a sequence
through its layers. A simple transformer is essentially a stack of l layers, each
implementing the following equation

H(`+1) = LayerNorm(H(`) + Sublayer(H(`))) ∀` ∈ [[1, l]] , (2.5)

where H(`) denotes the hidden state tensor at layer `, and each Sublayer is either a
feedforward layer or an attention layer. LayerNorm denotes a Layer Normalization
layer (Ba et al., 2016). An attention layer implements equation 2.4 where keys,
queries, and values are computed as linear projections of the current hidden state,
and a feedforward layer is implemented as

FFNN(x) = φ(xW (1) + b(1))W (2) + b(2) , (2.6)

where W (1) ∈ Rdmodel×dffnn and W (2) ∈ Rdffnn×dmodel are weight matrices, b(1) ∈
Rdffnn and b(2) ∈ Rdmodel are biases terms, and φ can be any non-linear func-
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tion. Vaswani et al. (2017) used Rectified Linear Units (ReLU) activations (i.e.,
ReLU(x) = max(0, x)).

Encoder and Decoder models Transformers can be used as encoders to
encode (i.e., process) and input sequence as well as decoders to decode (i.e.,
generate) an output sequence. When used as encoders, the transformer’s attention
is called self-attention as the model takes the input sequence to model the attention
to itself. When used as decoders, the transformer’s attention may be applied
twice: one to attend the input sequence (if it was encoded by an encoder model)
and another to attend the output sequence generated up to a current time step.
The mechanism of attending another set is called cross-attention. Transformer
decoders only attend past values, i.e., previous steps during generation to generate
their outputs. However, during training time, the model can learn from all steps
altogether via masked attention that prevents the model from attending subsequent
positions. Masked attention essentially masks subsequent values in the sequence
preventing the model from accessing those (concretely, it makes the attention
matrix triangular). Masked attention during training allows training Transformers
with a single forward pass as opposed to RNNs which need to process every step
in a sequence in an iterative fashion.

2.4.4 Pre-trained Language Models

Word embeddings Using pre-trained models for natural languages processing
became popular in the past decade starting with the success of pre-trained word
vectors (e.g., word2vec and GloVe; Mikolov et al., 2013; Pennington et al., 2014a).
Their success is mainly due to transfer learning (Pan & Yang, 2010; Goodfellow
et al., 2016): the concept of transferring the previously learned information from
other tasks. The objective of transfer learning is to potentially improve the efficacy
and sample efficiency while learning new tasks. Pre-trained word embeddings
are trained in an self-supervised manner (i.e., they do not require any annotated
data but the they are trained with indirect supervision that can be derived from
the text corpora itself). Word vectors are typically trained with a language
model objective (i.e., a word embedding has to predict its context, or the context
embedding has to predict a word). After pre-training, these vectors are used
within neural-based sequence models to encode textual inputs providing an initial
representation usually called embedding layer. Word vectors have been extensively
shown to contain semantic information words that are useful for essentially any
NLP application.

Bidirectional LSTMs Although extremely useful and very efficient to train
and use, word embeddings have a major drawback: they store information about
single tokens without any context. Indeed, the learning of using the context to
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make any prediction is delegated to a sequence model that takes these word vectors
as inputs and produces a task-dependent output. However, any sequence model
must learn basic sentences’ syntax and semantics to accomplish a task. Indeed,
this inefficiency led to the development of modern pre-trained language models.
Embedding vectors from Language Models (ELMo; Peters et al., 2018) was the first
successful work approach that used pre-train word vectors and bidirectional-LSTMs
together to produce deep contextualized word representations for downstream
application. The key difference from before is that input representations from
this model are contextualized, i.e., they already contain information about the
sentence and surrounding text. ELMo is a bidirectional language model which
optimizes the forward sequence probability of n tokens T = {ti}ni=1:

p(T ) =
n∏
i=1

p(ti|t<i; θ−−−−→LSTM
, θw, θs) , (2.7)

as well as the backward sequence probability

p(T ) =
n∏
i=1

p(ti|t>i; θ←−−−−LSTM
, θw, θs) , (2.8)

where θ−−−−→
LSTM

, θ←−−−−
LSTM

are the parameters of the forward and backward LSTMs
respectively, θw are shared learned word vector representation and θs a shared
softmax layer (i.e., a linear projection from a hidden state to the output vocabulary
dimension for predicting tokens’ probabilities). The authors showed consistent
improvement in various tasks when using these representations.

Generative Transformers Another step forward in this directions was pre-
training generative transformers (Transformer-XL, GPT, GPT-2, and GPT-3
models; Dai et al., 2019; Radford et al., 2018a; Radford et al., 2019; Brown et al.,
2020). Those models optimize only a forward language objective while relying
entirely on the transformer architecture:

p(T ) =
n∏
i=1

p(ti|t<i; θtransformer, θw) , (2.9)

where θtransformer are the parameter of the transformers and θw the learned word
vector representation shared with the softmax layer. The main advantages of
transformers over bi-LSTM models were 1) an advantageous inductive bias due to
the architecture (see discussion in section 2.4.3), 2) much faster training which
allowed training on more data, and 3) the ability to efficiently stack more layers
which allows the models to learn more complex information from the data.
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Bidirectional Transformers Generative transformers can be considered
decoder-only models since they are only trained to predict the next word in a
sentence. However, there are also pre-training bidirectional transformers (BERT,
RoBERTa; Devlin et al., 2019b; Liu et al., 2019) which are denoted as encoder-only
models. These encoders should be preferred when one does not need to generate
text because unidirectional attention is less expressive than its bidirectional
counterpart. Encoder models are typically trained as denoising autoencoders
(Vincent et al., 2010; Goodfellow et al., 2016): their training objective is to
reconstruct part or all input after it has been corrupted. In particular, these
classes of models are trained randomly masking (i.e., removing) part of the input
and replacing it with a placeholder or a random token from the vocabulary. The
masked language model objective is then

p(Tmasked|Tunmasked) =
∏

t∈Tmasked

p(t|Tunmasked; θtransformer, θw) , (2.10)

where Tmasked is the set of masked tokens and Tunmasked is the set of tokens that it
has not been masked (Tmasked ∪ Tunmasked = T and Tmasked ∩ Tunmasked = ∅). Note
that there is no autoregressive decomposition of the likelihood nor modeling of the
whole text probability. The probability of masking a token is a hyperparameter.
Very different strategies of masking and variation of training have been proposed.
We refer the reader to a survey by Rogers et al. (2020) for an in-depth discussion
of these.

Encoder-Decoder Transformers Another important class of transformers
models combines encoder and decoder models. These models use a bidirectional
transformer model to encode the input sequence and then a unidirectional (autore-
gressive) decoder model to generate text. As explained in section 2.4.3 these models
use a combination of self-attention and cross-attention. Text-To-Text Transfer
Transformer and Denoising Sequence-to-Sequence Pre-training (T5, BART; Raffel
et al., 2020; Lewis et al., 2020a) are two popular models that implement the
encoder-decoder architecture. These models are typically trained as denoising
autoencoders where the input is corrupted (with different strategies), encoded by
the encoder model, and trained for an autoregressive generation:

p(T |Tcorrupted) =
n∏
i=0

p(ti|t<i, enc(Tcorrupted; θenc); θdec, θw) , (2.11)

where Tcorrupted is the set of corrupted tokens, enc is the encode function while θenc
and θdec are the encoder and decoder parameters respectively (typically a disjoint
set). Tcorrupted comes as a combination of shuffling and masking and differs by
hyperparameter setting and implementation.
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Ongoing Research The use of transformers models allowed scaling up to orders
of magnitude more data while also pre-training with orders of magnitude more
parameters. Fine-tuning massively pre-trained consistently brought improvements
over training from scratch non-contextualized models (Chowdhery et al., 2022).
The huge impact of these models created a new paradigm in NLP that consists of
training a few foundation models17 and then fine-tuning them on specific tasks—see
Bommasani et al. (2021) for a thorough discussion. Contemporary transformers
include thousands of variations, both architectural and in the way they are pre-
trained, and we revert the reader to a survey by Rogers et al. (2020) for more
discussion. Two significant directions relevant to this thesis are:

1. retrieval augmented language models pre-training (like REALM and RAG;
Guu et al., 2020; Lewis et al., 2020b) that employ a latent knowledge
retriever, which allows the model to retrieve and attend over documents
from a large corpus such as Wikipedia;

2. Enhanced Language Representation with Informative Entities pre-training
(ERNIE, ERNIE 2.0, and ERNIE 3.0; Zhang et al., 2019b; Sun et al., 2020a;
Sun et al., 2021b) which incorporate and attend entity information from
a knowledge base to augment the capabilities of the model—other models
that also do that are Févry et al. (2020b) and Verga et al. (2020).

Recently, many variants improved computational and memory efficiency upon the
original architecture. We point the reader to Tay et al. (2022a) for a comprehensive
overview of existing work and models across multiple domains from the efficiency
perspective. Transformer efficiency also enabled the development of extremely
large models from a hundred billion to up to half a trillion parameters (Rae et al.,
2021; Zhang et al., 2022a; Chowdhery et al., 2022; Smith et al., 2022).

17A foundation model is a model extensively trained (both in terms of steps and quantity of data)
which results in one that can be adapted to a wide range of downstream tasks (Bommasani
et al., 2021).





Chapter 3

Question Answering by Reasoning
Across Documents with Entity
Graph Convolutional Networks

Chapter Highlights

Most research in reading comprehension has focused on answering questions based
on individual documents or even single paragraphs. In this chapter, we introduce
a neural model which integrates and reasons relying on information spread within
documents and across multiple documents. We frame it as an inference problem on
a graph. Mentions of entities are nodes of this graph while edges encode relations
between different mentions (e.g., within- and cross-document coreference). A
graph convolutional network (GCN; Kipf & Welling, 2017) is applied to these
graphs and trained to perform multi-step reasoning. Our Entity-GCN method is
scalable and compact, and it achieved state-of-the-art results on a multi-document
question answering dataset, WikiHop (Welbl et al., 2018) at the time of writing
(2018). Our contributions can be summarized as follows:

• we present a novel approach for multi-hop QA that relies on a (pre-trained)
document encoder and information propagation across multiple documents
using graph neural networks;

• we provide an efficient training technique which relies on a slower offline
and a faster online computation avoiding expensive document processing;

• we empirically show that our algorithm is effective, presenting an improve-
ment over previous results at the time writing (i.e., 2018).

Entities and their mentions are central to the development of Entity-GCN. In
this chapter, we focus on using them rather than predicting them (i.e., we do not
tackle entity recognition and disambiguation).

21



22 Chapter 3. Question Answering with Entity Graph Convolutional Networks

3.1 Introduction

The long-standing goal of natural language understanding is the development
of systems which can acquire knowledge from text collections. Fresh interest in
reading comprehension tasks was sparked by the availability of large-scale datasets,
such as SQuAD (Rajpurkar et al., 2016a), CNN/Daily Mail (Hermann et al., 2015)
and Natural Questions (Kwiatkowski et al., 2019), enabling end-to-end training of
neural models (Seo et al., 2017; Xiong et al., 2017; Shen et al., 2017; Karpukhin
et al., 2020; Lewis et al., 2020b; Izacard et al., 2020; Asai et al., 2020; Lewis et al.,
2021). These systems, given a text and a question, need to answer the query
relying on the given document. However, it has been observed that most questions
in these datasets do not require reasoning across the document, but they can be
answered relying on information contained in a single sentence (Weissenborn et al.,
2017). The last generation of large-scale reading comprehension datasets, such
as a NarrativeQA (Kočiský et al., 2018), TriviaQA (Joshi et al., 2017), RACE
(Lai et al., 2017) and ELI5 (Fan et al., 2019), have been created in such a way
as to address this shortcoming and to ensure that systems relying only on local
information cannot achieve competitive performance.

Even though these new datasets are challenging and require reasoning within
documents, many question answering and search applications require aggregation
of information across multiple documents. To fill that research gap, the WikiHop
dataset (Welbl et al., 2018) was explicitly created to facilitate the development
of systems dealing with these scenarios. Each example in WikiHop consists of a
collection of documents, a query and a set of candidate answers (see figure 3.1).
Though there is no guarantee that a question cannot be answered by relying just
on a single sentence, the authors ensure that it is answerable using a chain of
reasoning crossing document boundaries. After we produced the work presented
in this chapter, another important multi-hop question answering dataset was
published (HotpotQA; Yang et al., 2018b). We do not present experiments or
in-depth discussion on that dataset throughout this chapter, but we discuss it in
section 3.6 as part of subsequent work (i.e., published after ours).

Though an important practical problem, the multi-hop setting was not receiving
much attention in 2018. Indeed, the methods reported by Welbl et al. (2018)
approach the task by merely concatenating all documents into a single long text
and training a standard RNN-based reading comprehension model, namely, BiDAF
(Seo et al., 2017) and FastQA (Weissenborn et al., 2017). Document concatenation
in this setting was also used in Weaver (Raison et al., 2018) and MHPGM (Bauer
et al., 2018). The only published work which went beyond concatenation was due
to Dhingra et al. (2018), where they augment RNNs with jump-links corresponding
to co-reference edges. Though these edges provide a structural bias, the RNN
states are still tasked with passing the information across the document and
performing multi-hop reasoning.

Instead, we frame question answering as an inference problem on a graph
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query: country Thorildsplan 
candidates: {Denmark, Finland, Sweden, Italy, ...} 
answer: Sweden 

Thorildsplan is a small park in Kristineberg in  
Stockholm, named in 1925 after the writer [..]

Stockholm is the capital of Sweden  
and the most populous city in [..]

Figure 3.1: A sample from WikiHop where multi-step reasoning and information
combination from different documents is necessary to infer the correct answer.

representing the document collection. Nodes in this graph correspond to named
entities in a document whereas edges encode relations between them (e.g., cross-
and within-document coreference links or simply co-occurrence in a document).
We assume that reasoning chains can be captured by propagating local contextual
information along edges in this graph using a graph convolutional network (GCN;
Kipf & Welling, 2017). We also assume that named entities are already tagged
(i.e., we do not rely on any named entity recognition model) and linked to a
correct entity (i.e., we do not rely on any entity disambiguation model). This was
possible because the dataset we work with (WikiHop) already has this annotation
and therefore it was not a required step. Note that in general this annotation is
obviously not available and some additional modelling would be required. On that
account, in chapters 4, 5, and 6 we explore entity recognition, disambiguation,
and linking models filling this gap.

The multi-document setting imposes scalability challenges. In realistic sce-
narios, a system needs to learn to answer a query for a given collection (e.g.,
Wikipedia or a domain-specific set of documents). In such scenarios, one can-
not afford to run expensive document encoders (e.g., RNN or transformer-like
self-attention; Peters et al., 2018; Vaswani et al., 2017), unless the computation
can be pre-processed both at train and test time. Even if (similarly to WikiHop
creators) one considers a coarse-to-fine approach, where a set of potentially rel-
evant documents is provided, re-encoding them in a query-specific way remains
the bottleneck. In contrast to other proposed methods (e.g., Dhingra et al.,
2018; Raison et al., 2018; Seo et al., 2017), we avoid training expensive document
encoders.

In our approach, only a small query encoder, the GCN layers and a simple
feed-forward answer selection component are learned. Instead of training RNN
encoders, we use contextualized embeddings (ELMo1; Peters et al., 2018) to obtain

1 The use of ELMo is an implementation choice, and, in principle, any other contextual pre-
trained model could be used (e.g., Radford et al., 2018b; Devlin et al., 2019a). At the time of
writing, ELMo was the only available option for contextualized embeddings.
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initial (local) representations of entity nodes. This implies that only a lightweight
computation has to be performed online, both at train and test time, whereas the
rest is pre-processed. Even in the somewhat contrived WikiHop setting, where
fairly small sets of candidates are provided, the model is at least 5 times faster
to train than BiDAF.2 Interestingly, when we substitute ELMo with simple pre-
trained word embeddings, Entity-GCN still performs on par with many techniques
that use expensive question-aware recurrent document encoders.

Despite not using recurrent document encoders, the full Entity-GCN model
achieves over 2% improvement over the best previously-published results. As our
model is efficient, we also reported results of an ensemble which brings further
3.6% of improvement and only 3% below the human performance reported by
Welbl et al. (2018).

3.2 Background

We first review the dataset we focus on, WikiHop by Welbl et al. (2018), as well
as the task abstraction before presenting related work.

3.2.1 Data and Task Definitions

Data The WikiHop dataset comprises of tuples 〈q,Sq, Cq, a?〉 where: q is a
query/question, Sq is a set of supporting documents, Cq is a set of candidate
answers (all of which are entities mentioned in Sq), and a? ∈ Cq is the entity that
correctly answers the question. WikiHop is assembled assuming that there exists a
corpus and a knowledge Base (KB) related to each other. The KB contains triples
〈s, r, o〉 where s is a subject entity, o an object entity, and r a unidirectional relation
between them. Welbl et al. (2018) used Wikipedia as corpus and Wikidata
(Vrandečić, 2012) as KB. The KB is only used for constructing WikiHop: Welbl
et al. (2018) retrieved the supporting documents Sq from the corpus looking at
mentions of subject and object entities in the text. Note that the set Sq (not
the KB) is provided to the QA system, and not all of the supporting documents
are relevant for the query but some of them act as distractors. Queries, on the
other hand, are not expressed in natural language, but instead consist of tuples
〈s, r, ?〉 where the object entity is unknown and it has to be inferred by reading
the support documents. Therefore, answering a query corresponds to finding the
entity a? that is the object of a tuple in the KB with subject s and relation r
among the provided set of candidate answers Cq.

2 When compared to the ‘small’ and hence fast BiDAF model reported in Welbl et al. (2018),
which is 25% less accurate than our Entity-GCN. Larger RNN models are problematic also
because of GPU memory constraints.
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Task The goal is to learn a model that can identify the correct answer a? from the
set of supporting documents Sq. To that end, we exploit the available supervision
to train a neural network that computes scores for candidates in Cq. We estimate
the parameters of the architecture by maximizing the likelihood of observations.
For prediction, we then output the candidate that achieves the highest probability.

3.2.2 Related Work

Multi-hop question answering Many previous systems (from the time of
writing), namely BiDAF (Seo et al., 2017), FastQA (Weissenborn et al., 2017),
Coref-GRU (Dhingra et al., 2018), MHPGM (Bauer et al., 2018), and Weaver
/ Jenga (Raison et al., 2018) have been applied to multi-document question
answering. The first two mainly focus on single document QA and Welbl et al.
(2018) adapted both of them to work with WikiHop. They process each instance
of the dataset by concatenating all d ∈ Sq in a random order adding document
separator tokens. They trained using the first answer mention in the concatenated
document and evaluating exact match at test time. Coref-GRU, similarly to us,
encodes relations between entity mentions in the document. Instead of using graph
neural network layers, as we do, they augment RNNs with jump links corresponding
to pairs of corefereed mentions. MHPGM uses a multi-attention mechanism in
combination with external commonsense relations to perform multiple hops of
reasoning. Weaver is a deep co-encoding model that uses several alternating
bi-LSTMs to process the concatenated documents and the query. Subsequent
work to ours tackle the multi-hop question answering under different angles using
both different version of graph neural networks or more modern architectures like
transformers (Vaswani et al., 2017). We discuss some of them in section 3.6.

Graph neural networks Graph neural networks have been shown successful
on a number of NLP tasks (Marcheggiani & Titov, 2017; Bastings et al., 2017;
Zhang et al., 2018a), including those involving document level modeling (Peng
et al., 2017). They have also been applied in the context of asking questions about
knowledge contained in a knowledge base (Zhang et al., 2018b). In Schlichtkrull
et al. (2018), GCNs are used to capture reasoning chains in a knowledge base.
Our work and unpublished concurrent work by Song et al. (2018) are the first
to study graph neural networks in the context of multi-document QA. Besides
differences in the architecture, Song et al. (2018) propose to train a combination
of a graph recurrent network and an RNN encoder. We do not train any RNN
document encoders for the work on this chapter.
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3.3 Method
In this section we explain our method presenting the building blocks that make up
our Entity-GCN model, namely, an entity graph used to relate mentions to entities
within and across documents, a document encoder used to obtain representations of
mentions in context, and a relational graph convolutional network that propagates
information through the entity graph.

3.3.1 Reasoning on an Entity Graph

Entity graph In an offline step, we organize the content of each training instance
in a graph connecting mentions of candidate answers within and across supporting
documents. For a given query q = 〈s, r, ?〉, we identify mentions in Sq of the
entities in Cq ∪ {s} and create one node per mention. This process is based on the
following heuristic:

i) we consider mentions spans in Sq exactly matching an element of Cq ∪ {s}.
Admittedly, this is a rather simple strategy which may suffer from low recall.
See chapters 4, 5, and 6 for an in depth exploration of entity recognition,
disambiguation, and linking models filling this gap.

ii) we use predictions from a coreference resolution system to add mentions of
elements in Cq ∪ {s} beyond exact matching (including both noun phrases
and anaphoric pronouns). In particular, we use the end-to-end coreference
resolution by Lee et al. (2017).

iii) we discard mentions which are ambiguously resolved to multiple coreference
chains; this may sacrifice recall, but avoids propagating ambiguity.

To each node vi, we associate a continuous annotation x(i) ∈ Rd which repre-
sents an entity in the context where it was mentioned (details in section 3.3.2).
We then proceed to connect these mentions

i) if they co-occur within the same document (DOC-BASED edges);

ii) if the pair of named entity mentions is identical (MATCH edges—these may
connect nodes across and within documents);

iii) if they are in the same coreference chain, as predicted by the external
coreference system (COREF edges).

Note that MATCH edges when connecting mentions in the same document are
mostly included in the set of edges predicted by the coreference system. Having
the two types of edges lets us distinguish between less reliable edges provided
by the coreference system and more reliable (but also more sparse) edges given
by the exact-match heuristic. We treat these three types of connections as three
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Figure 3.2: Supporting documents (dashed ellipses) organized as a graph where
nodes are mentions of either candidate entities or query entities. Nodes with the
same color indicates they refer to the same entity (exact match, coreference or
both). Nodes are connected by three simple relations: one indicating co-occurrence
in the same document (solid edges), another connecting mentions that exactly
match (dashed edges), and a third one indicating a coreference (bold-red line).

different types of relations. See figure 3.2 for an illustration. In addition to that,
and to prevent having disconnected graphs, we add a fourth type of relation
(COMPLEMENT edge) between any two nodes that are not connected with any of the
other relations. We can think of these edges as those in the complement set of the
entity graph with respect to a fully connected graph.

Multi-step reasoning Our model then approaches multi-step reasoning by
transforming node representations (section 3.3.2 for details) with a differentiable
message passing algorithm that propagates information through the entity graph.
The algorithm is parameterized by a graph convolutional network (GCN) (Kipf
& Welling, 2017), in particular, we employ relational-GCNs (Schlichtkrull et al.,
2018), an extended version that accommodates edges of different types. In section
3.3.3 we describe the propagation rule.

Each step of the algorithm (also referred to as a hop) updates all node repre-
sentations in parallel. In particular, a node is updated as a function of messages
from its direct neighbours, and a message is possibly specific to a certain relation.
At the end of the first step, every node is aware of every other node it connects
directly to. Besides, the neighbourhood of a node may include mentions of the
same entity as well as others (e.g., same-document relation), and these mentions
may have occurred in different documents. Taking this idea recursively, each
further step of the algorithm allows a node to indirectly interact with nodes
already known to their neighbours. After l layers of R-GCN, information has been
propagated through paths connecting up to l + 1 nodes.

We start with node representations {h(0,i)}ni=1 (at the 0-th layer, i.e., input),
and transform them by applying l layers of R-GCN obtaining {h(l,i)}ni=1. Together
with a representation q ∈ Rk of the query, we define a distribution over candidate
answers and we train maximizing the likelihood of observations. The probability



28 Chapter 3. Question Answering with Entity Graph Convolutional Networks

of selecting a candidate c ∈ Cq as an answer is then

p(c|q, Cq,Sq) ∝ exp

(
max
i∈Mc

fo([q,h
(l,i)])

)
, (3.1)

where fo is a parameterized affine transformation, and Mc is the set of node
indices such that i ∈ Mc only if node vi is a mention of c. The max operator
in equation 3.1 is a design choice but necessary3 to select the node with highest
predicted probability since a candidate answer is realized in multiple locations via
different nodes.

3.3.2 Node Annotations

Keeping in mind we want an efficient model, we encode words in supporting
documents and in the query using only a pre-trained model for contextualized
word representations rather than training our own encoder. Specifically, we use
ELMo4 (Peters et al., 2018), a pre-trained bi-directional language model that
relies on character-based input representation. ELMo representations, differently
from other pre-trained word-based models (e.g., word2vec or GloVe; Mikolov et al.,
2013; Pennington et al., 2014b), are contextualized since each token representation
depends on the entire text excerpt (i.e., the whole sentence).

We choose not to fine tune nor propagate gradients through the ELMo archi-
tecture, as it would have defied the goal of not having specialized RNN encoders.
In the experiments, we will also ablate the use of ELMo showing how our model
behaves using non-contextualized word representations (we use GloVe).

Documents pre-processing ELMo encodings are used to produce a set of
representations {x(i)}ni=1, where x(i) ∈ Rd denotes the i-th candidate mention in
context. Note that these representations do not depend on the query yet and no
trainable model was used to process the documents so far, that is, we use ELMo
as a fixed pre-trained encoder. Therefore, we can pre-compute representation of
mentions once and store them for later use.

Query-dependent mention encodings ELMo encodings are used to produce
a query representation q ∈ Rk as well. Here, q is a concatenation of the final
outputs from a bidirectional RNN layer trained to re-encode ELMo representations
of words in the query. The vector q is used to compute a query-dependent
representation of mentions {x̂(i)}ni=1 as well as to compute a probability distribution
3 During early experimentation we used different formulation and we discovered the max operator
to work better.

4 The use of ELMo is an implementation choice, and, in principle, any other contextual pre-
trained model could be used (e.g., Radford et al., 2018b; Devlin et al., 2019a). At the time of
writing, ELMo was the only available model for contextualized embedding model.
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over candidates (as in equation 3.1). Query-dependent mention encodings x̂(i) =

fx(q,x
(i)) are generated by a trainable function fx which is parameterized by a

feed-forward neural network.

3.3.3 Entity Relational Graph Convolutional Network

Our model uses a gated version of the original R-GCN propagation rule. At the
first layer, all hidden node representation are initialized with the query-aware
encodings h(0,i) = x̂(i). Then, at each layer 0 ≤ ` ≤ l, the update message u(`,i) to
the i-th node is a sum of a transformation fs of the current node representation
h(`,i) and transformations of its neighbours:

u(`,i) = fs(h
(`,i)) +

1

|Ni|
∑
j∈Ni

∑
r∈Rij

fr(h
(`,j)) , (3.2)

where Ni is the set of indices of nodes neighbouring the i-th node, Rij is the set
of edge annotations between i and j, and fr is a parametrized function specific
to an edge type r ∈ R. Recall the available relations from section 3.3.1, namely,
R = {DOC-BASED, MATCH, COREF, COMPLEMENT}.

A gating mechanism regulates how much of the update message propagates to
the next step. This provides the model a way to prevent completely overwriting
past information. Indeed, if all necessary information to answer a question is
present at a layer which is not the last, then the model should learn to stop using
neighbouring information for the next steps. Gate levels are computed as

a(`,i) = σ
(
fa
(
[u(`,i),h(`,i)]

))
, (3.3)

where σ is the sigmoid function (i.e., σ : x 7→ (1 + exp(−x))−1) and fa a
parametrized transformation. Ultimately, the updated representation is a gated
combination of the previous representation and a non-linear transformation of the
update message:

h(`+1,i) = φ(u(`,i))� a(`,i) + h
(`,i)
i � (1− a(`,i)) , (3.4)

where φ(·) is any nonlinear function (for our experiments we fixed to be the
hyperbolic tangent function tanh) and � stands for element-wise multiplication.
All transformations f∗ are affine and they are not layer-dependent (since we would
like to use as few parameters as possible to decrease model complexity promoting
efficiency and scalability).

3.4 Experimental Setting
WikiHop We use WikiHop (Welbl et al., 2018) for training, validation/develop-
ment and test. The test set is not publicly available and therefore we measure
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performance on the validation set in almost all experiments. WikiHop has 43, 738/
5, 129/ 2, 451 query-documents samples in the training, validation and test sets
respectively for a total of 51,318 samples. Authors constructed the dataset as
described in section 3.2.1 selecting samples with a graph traversal up to a maxi-
mum chain length of 3 documents (see table 3.2 for additional dataset statistics).
WikiHop comes in two versions, a standard (unmasked) one and a masked one.
The masked version was created by the authors to test whether methods are able to
learn lexical abstraction. In this version, all candidates and all mentions of them in
the support documents are replaced by random but consistent placeholder tokens.
Thus, in the masked version, mentions are always referred to via unambiguous
surface forms. We do not use coreference systems in the masked version as they
rely crucially on lexical realization of mentions and cannot operate on masked
tokens.

Architecture See table 3.1 for an outline of Entity-GCN architectural detail.
Here the computational steps:

i) ELMo embeddings are a concatenation of three 1024-dimensional vectors
resulting in 3072-dimensional input vectors {x(i)}ni=1.

ii) For the query representation q, we apply 2 bi-LSTM layers of 256 and 128
hidden units to its ELMo vectors. The concatenation of the forward and
backward states results in a 256-dimensional question representation.

iii) ELMo embeddings of candidates are projected to 256-dimensional vectors,
concatenated to the q, and further transformed with a 2 layers MLP of 1024
and 512 hidden units in 512-dimensional query aware entity representations
x̂(i) ∈ R512.

iv) All transformations f∗ in R-GCN-layers are affine and they do maintain
the input and output dimensionality of node representations the same (512-
dimensional).

v) Eventually, a 2-layers MLP with [256, 128] hidden units takes the concatena-
tion between {h(l,i)}ni=1 and q to predict the probability that a candidate
node vi may be the answer to the query q (see equation 3.1).

During preliminary trials, we experimented with different numbers of R-GCN-
layers (in the range 1-7). We observed that with WikiHop, for l ≥ 3 models reach
essentially the same performance, but more layers increase the time required to
train them. Besides, we observed that the gating mechanism learns to keep more
and more information from the past at each layer making unnecessary to have
more layers than required.
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Input: query q and vertices {vi}ni=1

query ELMo 3072-dim candidates ELMo 3072-dim

2 bi-LSTM layers [256, 128]-dim 1 FF layer 256-dim

concatenation 512-dim

2 FF layer [1024, 512]-dim: {x̂(i)}ni=1

3 R-GCN layers 512-dim each (shared parameters)

concatenation with q 768-dim

3 FF layers [256, 128, 1]-dim

Output: probabilities over Cq

Table 3.1: EntityGCN model architecture.

Minimum Maximum Average Median

# candidates 2 79 19.8 14
# documents 3 63 13.7 11
# tokens per document 4 2,046 100.4 91

Table 3.2: WikiHop dataset statistics from Welbl et al. (2018): number of candi-
dates and documents per sample and document length.

Training Details We train our models with a batch size of 32 for at most 20
epochs using the Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999
and a learning rate of 1e-4. To help against overfitting, we employ dropout
(Srivastava et al., 2014b) testing rates ∈ 0, 0.1, 0.15, 0.2, 0.25 and early-stopping
on validation accuracy. We report the best results of each experiment based on
accuracy on validation set.

3.5 Results
In this section, we compare our method against recent work as well as preforming
an ablation study using the WikiHop dataset (Welbl et al., 2018).

3.5.1 Comparison

In this experiment, we compare our Enitity-GCN against all the prior work on the
same task available at the time of writing—we also report results from subsequent
work to ours for completeness but we do not do an in-depth comparison with those
in this section. We present test and development results (when present) for both



32 Chapter 3. Question Answering with Entity Graph Convolutional Networks

versions of the dataset in table 3.3. From Welbl et al. (2018), we list an oracle based
on human performance as well as two standard reading comprehension models,
namely BiDAF (Seo et al., 2017) and FastQA (Weissenborn et al., 2017). We also
compare against Coref-GRU (Dhingra et al., 2018), MHPGM (Bauer et al., 2018),
and Weaver (Raison et al., 2018). Additionally, we include results of MHQA-GRN
(Song et al., 2018), from a recent arXiv preprint describing concurrent work. They
jointly train graph neural networks and recurrent encoders. We report single
runs of our two best single models and an ensemble one on the unmasked test
set (recall that the test set is not publicly available and the task organizers only
report unmasked results) as well as both versions of the validation set.

Entity-GCN (best single model without coreference edges) outperforms all
previous work by over 2% points. We additionally re-ran BiDAF baseline to
compare training time: when using a single Titan X GPU, BiDAF and Entity-
GCN process 12.5 and 57.8 document sets per second, respectively. Note that
Welbl et al. (2018) had to use BiDAF with very small state dimensionalities (20),
and smaller batch size due to the scalability issues (both memory and computation
costs). We compare applying the same reductions.5 Eventually, we also report
an ensemble of 5 independently trained models. All models are trained on the
same dataset splits with different weight initializations. The ensemble prediction
combining each model (m = 5) is obtained as

arg max
c∈Cq

m∏
i=1

p(c|q, Cq,Sq; θi) , (3.5)

where θi are the parameters of the i-th model in the ensemble.

3.5.2 Ablation Study

To help determine the sources of improvements, we perform an ablation study
using the publicly available validation set (see table 3.4). We perform two groups
of ablation, one on the embedding layer, to study the effect of ELMo, and one on
the edges, to study how different relations affect the overall model performance.

Embedding ablation We argue that ELMo is crucial, since we do not rely
on any other context encoder. However, it is interesting to explore how our
R-GCN performs without it. Therefore, in this experiment, we replace the
deep contextualized embeddings of both the query and the nodes with GloVe
(Pennington et al., 2014b) vectors (insensitive to context). Since we do not have
any component in our model that processes the documents, we expect a drop in
performance. In other words, in this ablation our model tries to answer questions

5 Besides, we could not run any other method we compare with combined with ELMo without
reducing the dimensionality further or having to implement a distributed version.
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Model Unmasked Masked
Test Dev Test Dev

Human (Welbl et al., 2018) 74.1 – – –
FastQA (Welbl et al., 2018) 25.7 – 35.8 –
BiDAF (Welbl et al., 2018) 42.9 – 54.5 –
Coref-GRU (Dhingra et al., 2018) 59.3 56.0 – –
MHPGM (Bauer et al., 2018) – 58.2 – –
Weaver / Jenga (Raison et al., 2018) 65.3 64.1 – –
MHQA-GRN (Song et al., 2018) 65.4 62.8 – –

Entity-GCN without coreference (single model) 67.6 64.8 – 70.5
Entity-GCN with coreference (single model) 66.4 65.3 – –
Entity-GCN* (ensemble 5 models) 71.2 68.5 – 71.6

Subsequent work

BAG (Cao et al., 2019) 69.0 66.5 68.9 70.9
HDE (Tu et al., 2019) 70.9 68.1 – –
DynSAN (Zhuang & Wang, 2019) 71.4 70.1 – –
Tang et al. (2020) 72.5 70.8 – –
HDE ensemble (Tu et al., 2019) 74.3 70.9 – –
Chen et al. (2019) 76.5 72.2 – –
Tang et al. (2020) (ensemble) 78.3 74.0 – –
Longformer (Beltagy et al., 2020) 81.9 – – –
BigBird (Zaheer et al., 2020) 82.3 75.9 – –
RealFormer (He et al., 2021) 84.4 79.2 – –

Table 3.3: Accuracy of different models on WikiHop closed test set and public
validation set. Our Entity-GCN outperforms recent prior work without learning
any language model to process the input but relying on a pre-trained one (ELMo
– without fine-tunning it) and applying R-GCN to reason among entities in the
text. * with coreference for unmasked dataset and without coreference for the
masked one.

without reading the context at all. For example, in figure 3.1, our model would
be aware that “Stockholm” and “Sweden” appear in the same document but any
context words, including the ones encoding relations (e.g., “is the capital of”) will
be hidden. Besides, in the masked case all mentions become ‘unknown’ tokens
with GloVe and therefore the predictions are equivalent to a random guess. Once
the strong pre-trained encoder is out of the way, we also ablate the use of our
R-GCN component, thus completely depriving the model from inductive biases
that aim at multi-hop reasoning.

The first important observation is that replacing ELMo by GloVe (GloVe
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Model Unmasked Masked

full (ensemble) 68.5 71.6
full (single) 65.1 ± 0.11 70.4 ± 0.12

GloVe with R-GCN 59.2 11.1
GloVe w/o R-GCN 51.2 11.6

No R-GCN 62.4 63.2
No relation types 62.7 63.9
No DOC-BASED 62.9 65.8
No MATCH 64.3 67.4
No COREF 64.8 –
No COMPLEMENT 64.1 70.3
Induced edges 61.5 56.4

Table 3.4: Ablation study on WikiHop validation set. The full model is our
Entity-GCN with all of its components and other rows indicate models trained
without a component of interest. We also report baselines using GloVe instead of
ELMo with and without R-GCN. For the full model we report mean±1 std over 5
runs.

with R-GCN in table 3.4) still yields a competitive system that ranks far above
baselines from (Welbl et al., 2018) and even above the Coref-GRU of Dhingra et al.
(2018), in terms of accuracy on (unmasked) validation set. The second important
observation is that if we then remove R-GCN (GloVe w/o R-GCN in table 3.4),
we lose 8.0 points. That is, the R-GCN component pushes the model to perform
above Coref-GRU still without accessing context, but rather by updating mention
representations based on their relation to other ones. These results highlight the
impact of our R-GCN component.

Graph edges ablation In this experiment we investigate the effect of the
different relations available in the entity graph and processed by the R-GCN
module. We start off by testing our stronger encoder (i.e., ELMo) in absence of
edges connecting mentions in the supporting documents (i.e., using only self-loops
– No R-GCN in table 3.4). The results suggest that WikipHop genuinely requires
multihop inference, as our best model is 6.1% and 8.4% more accurate than this
local model, in unmasked and masked settings, respectively.6 However, it also
shows that ELMo representations capture predictive context features, without
being explicitly trained for the task. It confirms that our goal of getting away
with training expensive document encoders is a realistic one.

We then inspect our model’s effectiveness in making use of the structure

6 Recall that all models in the ensemble use the same local representations, ELMo.
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encoded in the graph. We start naively by fully-connecting all nodes within and
across documents without distinguishing edges by type (No relation types in table
3.4). We observe only marginal improvements with respect to ELMo alone (No
R-GCN in table 3.4) in both the unmasked and masked setting suggesting that a
GCN operating over a naive entity graph would not add much to this task and a
more informative graph construction and/or a more sophisticated parameterization
is indeed needed.

Next, we ablate each type of relations independently, that is, we either remove
connections of mentions that co-occur in the same document (DOC-BASED), con-
nections between mentions matching exactly (MATCH), or edges predicted by the
coreference system (COREF). The first thing to note is that the model makes better
use of DOC-BASED connections than MATCH or COREF connections. This is mostly
because i) the majority of the connections are indeed between mentions in the
same document, and ii) without connecting mentions within the same document
we remove important information since the model is unaware they appear closely
in the document. Secondly, we notice that coreference links and complement edges
seem to play a more marginal role. Though it may be surprising for coreference
edges, recall that the MATCH heuristic already captures the easiest coreference
cases, and for the rest the out-of-domain coreference system may not be reliable.
Still, modelling all these different relations together gives our Entity-GCN a clear
advantage. This is our best system evaluating on the development. Since Entity-
GCN seems to gain little advantage using the coreference system, we report test
results both with and without using it. Surprisingly, with coreference, we observe
performance degradation on the test set. It is likely that the test documents are
harder for the coreference system.7

We do perform one last ablation, namely, we replace our heuristic for assigning
edges and their labels by a model component that predicts them. The last
row of table 3.4 (Induced edges) shows model performance when edges are not
predetermined but predicted. For this experiment, we use a bilinear function
fe(x̂

(i), x̂(j)) = σ
(
(x̂(i))>We x̂

(j)
)
that predicts the importance of a single edge

connecting two nodes i, j using the query-dependent representation of mentions
(see section 3.3.2). The performance drops below ‘No R-GCN’ suggesting that it
cannot learn these dependencies on its own.

Most results are stronger for the masked settings even though we do not
apply the coreference resolution system in this setting due to masking. It is
not surprising as coreferred mentions are labeled with the same identifier in the
masked version, even if their original surface forms did not match (Welbl et al.
(2018) used Wikipedia links for masking). Indeed, in the masked version, an
entity is always referred to via the same unique surface form (e.g., MASK1) within
and across documents. In the unmasked setting, on the other hand, mentions
to an entity may differ (e.g., “US” vs “United States”) and they might not be

7 Since the test set is hidden from us, we cannot analyze this difference further.
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(a) Candidates set size (x-axis) and accuracy (y-axis). Pearson’s corre-
lation of −0.687 (p <1e-7).
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(b) Nodes set size (x-axis) and accuracy (y-axis). Pearson’s correlation
of −0.385 (p <1e-7).

Figure 3.3: Accuracy (blue) of our best single model with respect to the candidate
set size (on the top) and nodes set size (on the bottom) on the validation set. Data
distributions (orange) per number of candidate (top) and nodes (bottom). Dashed
lines indicate average accuracy.

retrieved by the coreference system we are employing, making the task harder for
all models. Therefore, as we rely mostly on exact matching when constructing our
graph for the masked case, we are more effective in recovering coreference links on
the masked rather than unmasked version.8

8 Though other systems do not explicitly link matching mentions, they similarly benefit from
masking (e.g., masks essentially single out spans that contain candidate answers).
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3.5.3 Error Analysis

In this section we provide an error analysis for our best single model predictions.
First of all, we look at which type of questions our model performs well or poorly.
There are more than 150 query types in the validation set but we filtered the
three with the best and with the worst accuracy that have at least 50 supporting
documents and at least 5 candidates. We show results in table 3.5. We observe
that questions regarding places (birth and death) are considered harder for Entity-
GCN. We then inspect samples where our model fails while assigning highest
likelihood and noticed two principal sources of failure i) a mismatch between what
is written in Wikipedia and what is annotated in Wikidata, and ii) a different
degree of granularity (e.g., born in “London” vs “UK” could be considered both
correct by a human but not when measuring accuracy).

Secondly, we study how the model performance degrades when the input
graph is large. In particular, we observe a negative Pearson’s correlation (−0.687)
between accuracy and the number of candidate answers. However, the performance
does not decrease steeply. The distribution of the number of candidates in the
dataset peaks at 5 and has an average of approximately 20. Therefore, the model
does not see many samples where there are a large number of candidate entities
during training. Differently, we notice that as the number of nodes in the graph
increases, the model performance drops but more gently (negative but closer to
zero Pearson’s correlation). This is important as document sets can be large in
practical applications. In figure 3.3, we show how the model performance goes
when the input graph is large. In particular, how Entity-GCN performs as the
number of candidate answers or the number of nodes increases.

Finally, in table 3.6, we report three samples from WikiHop development set
where out Entity-GCN fails. In particular, we show two instances where our model
presents high confidence on the answer, and one where is not. We commented
these samples explaining why our model might fail in these cases.

3.6 Subsequent Work
Subsequent work to ours tackles the multi-hop question answering in different ways
using different versions of graph neural networks or more modern architectures
like transformers (Vaswani et al., 2017). There has also been progress from a data
perspective. Results on WikiHop from subsequent work are shown in the bottom
part of table 3.3.

Advances in datasets Because WikiHop was automatically generated, the
dataset has some limitations. Namely:

i) questions are not expressed in natural language: this becomes problematic
when want to deploy the model in the real world as queries are unrealistic for
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ID WH_dev_2257

Gold answer 2003 (p(c|q, Cq,Sq) = 0.141)

Query inception (of) Derrty Entertainment

Predicted answer 2000 (p(c|q, Cq,Sq) = 0.158)

Support 1 Derrty Entertainment is a record label founded by
[...]. The first album released under Derrty Entertain-
ment was Nelly ’s Country Grammar.

Support 2 Country Grammar is the debut single by American
rapper Nelly. The song was produced by Jason Epperson.
It was released in 2000, [...]

(a) In this example, the model predicts the answer correctly. However, there is a mismatch
between what is written in Wikipedia and what is annotated in Wikidata. In WikiHop,
answers are generated with Wikidata.

ID WH_dev_2401

Gold answer Adolph Zukor (p(c|q, Cq,Sq) = 7.1e-6)

Query producer (of) Forbidden Paradise

Predicted answer Jesse L. Lask (p(c|q, Cq,Sq) = 0.999)

Support 1 Forbidden Paradise is a [...] drama film produced by
Famous Players-Lasky [...]

Support 2 Famous Players-Lasky Corporation was [...] from
the merger of Adolph Zukor’s Famous Players Film
Company [..] and the Jesse L. Lasky Feature Play
Company.

(b) In this sample, there is ambiguity between two entities since both are correct answers
reading the passages but only one is marked as correct. The model fails assigning very
high probability to only on one of them.
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ID WH_dev_3030

Gold answer Scania (p(c|q, Cq,Sq) =2.9e-4)

Query place_of_birth (of) Erik Penser

Predicted answer Eslöv (p(c|q, Cq,Sq) = 0.973)

Support 1 Nils Wilhelm Erik Penser (born August 22, 1942, in
Eslöv, Skåne) is a Swedish [...]

Support 2 Skåne County, sometimes referred to as “ Scania
County ” in English, is the [...]

(c) In this sample, there is ambiguity between two entities since the city Eslöv is located
in the Scania County (English name of Skåne County). The model assigning high
probability to the city and it cannot select the county.

Table 3.6: Samples from WikiHop set where Entity-GCN fails. p indicates the
predicted likelihood.

humans, and additional work would be needed to convert a natural question
into a structured query.

ii) questions are generated using a KG : as we explain in section 3.2.1 Welbl
et al. (2018) constructed the question and evidence set of WikiHop using the
relations from a KB. Unfortunately, although queries are realistic relations
that humans annotated in the KB, there is no certainty that the relation(s)
will be expressed in the text. Therefore, it might be impossible for both
humans and machines to answer them. This is also evident from table 3.3
were human performance is just below 75%.

To address these issues, Yang et al. (2018b) proposed HotpotQA: an alternative
dataset for multi-hop question answering that has become the standard benchmark
for this task for the past few years. HotpotQA uses both automation and human
annotation to construct the dataset. The authors used hyperlinks from Wikipedia
to automatically select pairs of pages. Then they asked human annotators to
come out with natural language questions that needed to involve information
from both sources. Additionally, they added some extra questions that involved
comparing information between pages. Most of the recent literature on this task
focused on HotpotQA rather than WikiHop. The resulting dataset is considerably
large, containing 90, 564 training, 7, 405 validation, and 14, 810 test examples,
respectively. HotpotQA is freely available, and it has a public leaderboard.9

9 https://hotpotqa.github.io

https://hotpotqa.github.io
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Advances in graph neural networks Some works after ours applied other
versions of graph neural networks to the multi-hop question-answering problem.
Here are some interesting examples:

• Bi-directional attention Entity-GCN (Cao et al., 2019) extends our approach
leveraging relationships between nodes in an entity graph but it additionally
employs a bi-attention layer between the query and the entity graph (Seo
et al., 2017; Xiong et al., 2017). They also use a combination of NER
features, POS features, ELMo, and Glove embeddings to initialize the node
representation as well as R-GCN layers to process them.

• Heterogeneous Document-Entity (Tu et al., 2019) constructs a graph with
different granularity levels of information including candidates, documents,
and entities (similar to ours). They also use a combination of R-GCN,
bi-attention, and self-attention (Vaswani et al., 2017) layers to process and
combine the information from different sources.

• Hierarchical Graph Network (Fang et al., 2020) aggregates the information
from texts across multiple paragraphs, building first a hierarchical graph by
constructing nodes on different levels of granularity (questions, paragraphs,
sentences, entities). Then, for graph propagation, they use Graph Attention
Network (Velickovic et al., 2018). The advantage of a hierarchical formulation
is that it encodes a structural bias into the processing of the graph. Finally,
they initialize the representations of nodes which are initialized with a
pre-trained model.

Path-based methods Some works after ours investigated the reasoning prob-
lem from a path perspective: they sequentially retrieve evidence paragraphs in
a reasoning path by conditioning on the previously retrieved documents. In
particular:

• Chen et al. (2019) uses distant supervision constructing reasoning chains via
heuristics relying on named entity recognition and coreference resolution.
The model learns to extract chains from the raw text; thus, chains at test
time are predicted. As a document encoder, they use BERT (Devlin et al.,
2019b) and then use LSTM-based pointer network (Vinyals et al., 2015) to
process the reasoning chain sequentially.

• Tang et al. (2020) uses a gated R-GCN that is the same GCN layers we
proposed while adding distant supervision with reasoning chains. Similarly
to Cao et al. (2019), they apply bi-directional attention on top of the node
and query representations.

• Asai et al. (2020) introduces a graph-based recurrent retrieval model that
learns to retrieve reasoning paths over the Wikipedia hyperlink graph.
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Their model is also backed by BERT (Devlin et al., 2019b) model that
encodes queries and paragraphs. Then, the authors used beam search for
candidate selection of paths of paragraphs. Finally, paragraphs are retrieved
with a dot-product search, and paths are scored with an RNN.

Transformer architectures As discussed in section 3.1 approaches that con-
catenate all documents into a single long text and training a standard RNN-based
reading comprehension model did not work well for multi-hop question answering
(Welbl et al., 2018). That was mainly due to i) the limitation of a single layer
of bi-attention and ii) the unavailability of large pre-trained language models at
that time. Indeed, transformers-based models (Vaswani et al., 2017) would have
been a solid baseline. However, full self-attention has quadratic time and space
complexity with respect to the input sequence length making it impractical to
use on very long sequences. Zhuang and Wang (2019) were one of the first to
propose using only self-attention to encode the passages (i.e., practically using a
transformer), employing efficient cross-passage attention. However, only recently
have some models been able to approach this task just taking all documents as
inputs at once: Longformer (Beltagy et al., 2020), BigBird (Zaheer et al., 2020),
and RealFormer (He et al., 2021). Although there are many more versions of
sub-quadratic attention layers, an in-depth discussion of such is beyond the scope
of this section (see Tay et al. (2022a) for a survey on efficient transformers). All
three variants mentioned above have linear time and space complexity on the input
size. Thus, these methods made it possible to use all the candidate documents
as inputs achieving “super-human” performance on WikiHop (see table 3.3). In
this case, some models get accuracy scores higher than human raters even though
the it does not mean it was superior to humans. This very high performance was
not achieved only because of the architectural design but is largely due to large
pre-training on big corpora. If human annotators could not answer some questions
based on the evidence of the candidate documents, it is hardly possible that a
model would achieve that. Higher than annotators performance in those chases is
achieved because models memorized factual information during the pre-training
stage and used such to answer correctly even without evidence. Finally, Xiong et al.
(2021) used a version dense passage encoding (Karpukhin et al., 2020) to learn
to retrieve chains of documents within a large text database (i.e., Wikipedia).
That is similar to Asai et al. (2020) but Xiong et al. (2021) learn all the steps
end-to-end where Asai et al. (2020) do not train the document encoder. Indeed,
on HotpotQA they reported improvements over Asai et al. (2020).

3.7 Conclusion

In this chapter, we designed a graph neural network that operates over a compact
graph representation of a set of documents where nodes are mentions to entities
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and edges signal relations such as within and cross-document coreference. The
model learns to answer questions by gathering evidence from different documents
via a differentiable message passing algorithm that updates node representations
based on their neighbourhood. Our model outperforms published results where
ablations show substantial evidence in favour of multi-step reasoning. Moreover,
we make the model fast by using pre-trained (contextual) embeddings.

Entities and their mentions are central to the development of Entity-GCN. One
main limitation of this work is that we restrict the application of our method to
the case where named entity recognition and entity disambiguation are considered
as solved steps (i.e., our model receives as inputs a set of tagged and resolved
mention-entity pairs). Therefore, relying on a solid performance of mention-entity
resolution is crucial for deploying this class of models in the wild. NER and entity
disambiguation are becoming mature technologies, but further improvements can
be done. In the following three chapters, we tackle both of these tasks proposing
methods that improve and extend the capabilities of current algorithms.





Chapter 4

Autoregressive Entity Linking

Chapter Highlights

Entity linking is the task of finding mention of entities in text and linking them
to their corresponding entity identifier in a knowledge base. Current approaches
to entity liking, as know as bi-encoders, can be understood as classifiers among
atomic labels. They use dot-product search for retrieving from a predicted vector
space (index). In this chapter, we propose GENRE, the first system that retrieves
entities by generating their unique names, left to right, token-by-token in an
autoregressive fashion and conditioned on the context. This enables us to mitigate
some technical issues that typical models have and in particular:

i) the autoregressive formulation allows us to directly capture relations between
context and entity name, effectively cross encoding both;

ii) the memory footprint is greatly reduced because the parameters of our
encoder-decoder architecture scale with vocabulary size, not entity count;

iii) the exact cross entropy loss can be efficiently computed without the need to
subsample negative data.

We show the efficacy of the approach, experimenting with more than 20 datasets
on entity disambiguation, end-to-end entity linking and document retrieval tasks,
achieving new state-of-the-art or very competitive results while using a tiny fraction
of the memory footprint of competing systems. Finally, we demonstrate that new
entities can be added by simply specifying their unambiguous name which was
not effective in traditional bi-encoder approaches.1

1 Source code available at https://github.com/facebookresearch/GENRE
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4.1 Introduction

The ability to retrieve the correct entity from large Knowledge Bases (KBs) given
a textual input is a fundamental building block for several applications (Ferrucci,
2012; Slawski, 2015; Yang et al., 2018a). Indeed, in the previous chapter, we
explored how a mention-entity graph extracted from the text can be exploited
by a graph neural network to reason across multiple documents. Nevertheless,
entity retrieval is useful not just for multi-document reading comprehension. For
instance, most commercial recommendation systems include in their pipelines
components to detect and disambiguate entity mentions in open text, in order to
isolate relevant concepts from non-meaningful data (Slawski, 2015; Yang et al.,
2018a). Another example are chat-bots and question answering systems, that
are often equipped with retrieval components to surface specific KB entries (e.g.,
Wikipedia articles) to find knowledge for sustaining a conversation or answering
a question (Ferrucci, 2012; Chen et al., 2017a; Lewis et al., 2020b; Roller et al.,
2021; Sevegnani et al., 2021).

Although there has been extensive previous work on entity retrieval (e.g.,
Hoffart et al., 2011; Piccinno & Ferragina, 2014; Huang et al., 2015; Le & Titov,
2018; Logeswaran et al., 2019; Broscheit, 2019; Wu et al., 2020, to name just
a few) there is a common design choice to most current solutions: entities are
associated with a unique atomic label and the retrieval problem can be interpreted
as multi-class classification across these labels. The match between input and
label is calculated through a bi-encoder (Wu et al., 2020; Karpukhin et al., 2020):
a dot product between dense vector encodings of the input and the entity’s meta
information (such as title and description). Critically, this formulation enables
sub-linear search using modern maximum-inner-product-search libraries (Johnson
et al., 2019) and hence supports retrieving from large entity databases.

Unfortunately, the classifier approach to entity retrieval also has several short-
comings:

i) unless a costly cross-encoder is used for re-ranking (Wu et al., 2020), the
dot-product can miss fine-grained interactions between input and entity
meta information (Humeau et al., 2020);

ii) storing dense vectors for the whole KB requires a large memory footprint,
especially in real-world scenarios (i.e., ≈24GB to store 1024-dimensional
vectors for all of the ≈6M Wikipedia pages), and the size grows linearly
with the addition of new entities;

iii) computing an exact cross entropy loss over all entities is very expensive,
hence current solutions need to subsample negative data (Logeswaran et al.,
2019; Karpukhin et al., 2020) at training time. Tuning an appropriately
hard set of negative instances can be challenging and time-consuming;
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1 Metropolis (comics)

2 Metropolis (1927 film)

3 Metropolis-Hasting algorithm

Superman saved  
[START] Metropolis [END]

(a) Type specification.

1 Owhango railway station

From 1905 to 1985 Owhango had a 
[START] railway station [END]

2 Train station

3      Owhango

(b) Composing from context.

[START] Farnese Palace [END] 
is one of the most important  

palaces in the city of Rome

1 Palazzo Farnese

2 Palazzo dei Normanni

3 Palazzo della Farnesina

(c) Translation.

1 Netherlands

What is the capital of Holland?

2 Capital of the Netherlands

3      Holland

(d) Entity normalization.

Which US nuclear reactor had  
a major accident in 1979?

1 Three Mile Island accident

2 Nuclear reactor

3 Chernobyl disaster

(e) Implicit factual knowledge.

Stripes had Conrad Dunn  
featured in it

1 Conrad Dunn

2 Stripes (film)

3 Kris Kristofferson

(f) Exact copy.

Figure 4.1: Examples of entities correctly retrieved from GENRE (we show only
the top-3 rank). On the top three entity disambiguation instances and on the
bottom three document retrieval instances, two for open-domain question answering
and one for fact checking. All of them are cast as sequence-to-sequence problems
while inference is done using constrained beam search. Gold entities in bold.
Sub-captions indicate the type of interaction between the input context and the
entity names required.

iv) existing systems can suffer from a cold-start problem since they cannot rep-
resent entities about which they have not yet gathered sufficient information,
in the form, for instance, of a textual description or a set of relations with
the existing entities.

The treatment of entity identifiers as atomic labels in a classifier ignores the
fact that we often have unambiguous, highly structured and compositional entity
names. Wikipedia, for instance, associates unique titles to articles,2 that may be
the name of the subject or a description of its topic, as well as potential distinctive

2 We use entity name to refer to the corresponding Wikipedia article title throughout the rest
of the chapter.
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information to disambiguate 3 (see figure 4.1 for some examples). These entity
names often interact with mention contexts in a predictable and regular fashion.
For example, often entity names are identical with the mention strings that refer
to them (e.g., figure 4.1f). When this is not possible, they might be composed of
tokens in the context (e.g., figure 4.1b), include a type specification that can be
inferred (e.g., figure 4.1a), be the translation of the string mention (e.g., figure
4.1c), require ‘normalization’ such as referring to the correct alias of a mention (e.g.,
figure 4.1d), or require factual knowledge that might be stored in the parameters
of a model (e.g., figure 4.1e). These observations suggest that textual inputs could
be translated into unique entity names, word by word, instead of being classified
among a huge set of options.

In this chapter, we propose GENRE (for Generative ENtity REtrieval), the
first entity retriever that exploits a sequence-to-sequence architecture to generate
entity names in an autoregressive fashion conditioned on the context. Concretely,
GENRE uses a transformer-based architecture, pre-trained with a language
modeling objective (i.e., we use BART weights; Lewis et al., 2020a) and fine-tuned
to generate entity names. This architecture has been shown to retain factual
knowledge to some extent (Petroni et al., 2019) and language translation skills
(Radford et al., 2019) among other things, both desirable properties for an entity
retriever. Naturally, the generated output might not always be a valid entity
name. To solve this problem, GENRE employs a constrained decoding strategy
that forces each generated name to be in a predefined candidate set.

The autoregressive formulation allows us to directly capture the aforementioned
relations between context and entity name, effectively cross encoding both. Also,
the memory footprint required is orders of magnitude smaller than current systems,
since the parameters of a sequence-to-sequence model scale linearly with the
vocabulary size, not entity count. Moreover, the exact cross entropy loss can be
computed efficiently for each output token (i.e., all non-gold tokens are considered
negative), thereby eliminating the need for negative data downsampling. Finally,
our model never accesses any explicit meta-information about the entity beyond
their title, hence new entities can be added by simply appending their unambiguous
name to the candidate set (e.g., figure 4.1b refers to an entity added after training).

We empirically evaluate the performance of GENRE on more than 20 datasets,
spanning three families of tasks:

i) entity disambiguation, using popular datasets and settings (both in- and
out-of-domain);

ii) end-to-end entity linking, with the GERBIL benchmarking tool (Röder et al.,
2018), by using a novel dynamically markup-constrained decoding strategy
which transform plain text into structured markup;

3 often in the form of a description in parentheses after the name. Wikipedia naming conventions
are described in https://en.wikipedia.org/wiki/Wikipedia:Article_titles.

https://en.wikipedia.org/wiki/Wikipedia:Article_titles
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iii) document retrieval, with the recently proposed KILT benchmark (Petroni
et al., 2021) which spans 5 different sub-tasks.

Our models achieve state-of-the-art or very competitive results on nearly all
datasets, often with substantial improvement (+13.7 precision points on KILT
for retrieval on average). Further, we show that compared with recent models,
GENRE requires substantially less memory (≈ 20 times smaller footprint on
average). Finally, we demonstrate that our model can be applied in scenarios
where the only entity information available is its name.

4.2 Background
In the following sections, we first provide a formal definition of the entity retrieval
task. Secondly, we present a brief discussion on bi-encoders for retrieval, and
finally, we present related work.

4.2.1 Task Definition

We assume to have a collection of entities E (e.g., Wikipedia articles) where each
entity is an entry in a Knowledge Base (KB). We want to approach the following
retrieval problem: given a textual input source X (i.e., a sequence of tokens, e.g.,
a question), a model has to return the most relevant entities from E with respect
to X . We assume that each e ∈ E is uniquely assigned to a textual representation
(i.e., its name): a sequence of tokens Ye specific to e (e.g., Wikipedia pages are
uniquely identified by their titles).

A particular instance of this problem is Entity Disambiguation (ED) (see figure
4.1 for an example) where an input X is annotated with a mention and a system
has to select either its corresponding entity from E , or to predict that there is no
corresponding entry in the KB. Another instance is page-level Document Retrieval
(DR) where the input X is intended as a query and E as a collection of documents
identified by their unique titles (e.g., Wikipedia articles).

4.2.2 Bi-encoders for Retrieval

Bi-encoders (also know as two-tower models, dual-encoder models or Siamese
networks; Reimers & Gurevych, 2019; Chicco, 2021) consist of two (usually
architecturally identical) encoders (with possibly different parametrizations) which
encode textual inputs into vectors. The objective is to create a vector space such
that relevant pairs of inputs (which in the case of entity linking are a context and
entity meta information but in the case of question answering is a passage and a
question) will have a smaller distance (i.e., higher similarity) than the irrelevant
ones. These encoders may be trained with different losses, but the overall goal
is that they become good ranking functions for retrieval, which is essentially a
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metric learning problem (Kulis, 2013). The distance or similarity function is an
architectural choice. However, due to computational advantages, the inner-product
is often used, which allows search at test time to be an instance of the maximum
inner product search (MIPS) problem (Wu et al., 2020). Training these type of
models require the availability of a set of relevant and irrelevant pairs. Usually,
all the other datapoints except the relevant ones are considered irrelevant, and
in this case, in-batch negatives (Yih et al., 2011; Henderson et al., 2017; Gillick
et al., 2019; Lerer et al., 2019; Humeau et al., 2020) are used. If available, using
hard negatives (i.e., datapoints that are irrelevant but very similar to the relevant
one) helps training (Karpukhin et al., 2020).

In the case of entity linking, we have only one relevant entity (i.e., the correct
one) and all the others are irrelevant. That is why we consider this problem a
classification problem with many labels. However, in most cases, KBs do really
consist of millions of entities. Therefore, any loss we use will never contain all
the irrelevant entities due to computational constraints. The loss will then be an
approximation of the actual loss. After training, bi-encoders produce an index of
vectors that will later be used at test time for nearest neighbors search–although
being a simple operation, doing an inner-product search among millions of vectors
is slow. Fortunately, approximate nearest neighbor (ANN) offers fast alternatives
to full search via product quantization (Jegou et al., 2010), hierarchical navigable
small world graphs (Malkov & Yashunin, 2018), and other techniques. Modern
systems make use of freely available software such as FAISS4 (Johnson et al., 2019)
or Scalable Nearest Neighbors5 (ScaNN; Guo et al., 2020).

4.2.3 Related Work

Structured Tasks as Seq2Seq Casting NLP tasks with a structured input
or output into sequence-to-sequence problems has been explored for different
problems, including semantic parsing (Rongali et al., 2020), semantic role labelling
(Daza & Frank, 2018), discourse representation structure parsing (Liu et al.,
2018), generation of fluent natural language responses from structured semantic
representations (Balakrishnan et al., 2019), generation and parsing of abstract
meaning representation (Konstas et al., 2017). In these works a structured
representation, a tree or a graph for instance, is linearized into a sequence of
symbols compatible with a seq2seq architecture. To the best of our knowledge,
we are the first to cast entity retrieval as a sequence-to-sequence problem while
decoding with an autoregressive formulation during inference.

Constrained Generation Related to our constrained generation mechanism,
(Daza & Frank, 2018; Rongali et al., 2020) use a copying mechanism in order to

4 https://github.com/facebookresearch/faiss
5 https://github.com/google-research/google-research/tree/master/scann

https://github.com/facebookresearch/faiss
https://github.com/google-research/google-research/tree/master/scann
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limit lexical deviations between the input and output strings. In these tasks, as
well as for our problem, it is natural to promote a copying mechanism due to
the input and the output proximity. A different type of constraint, a structural
constraint, is used in (Balakrishnan et al., 2019) to maintain a valid tree structure.
Our constrained beam search encompasses both aspects, a copying mechanism
that restricts the vocabulary and a structural constraint to obtain a well-formed
annotated output. In addition to these tasks with close input and output, the
integration of a mechanism to guide the output of neural networks has been
explored in various settings. Lexically constrained decoding has been used to
force the inclusion of pre-specified words for machine translation (Hokamp & Liu,
2017; Post & Vilar, 2018), and image captioning (Anderson et al., 2017). To the
best of our knowledge, we are the first to exploit constrained generation for entity
disambiguation, end-to-end entity linking, and query-based entity retrieval.

Bi-encoders Bi-encoders are successfully used in many applications, including
entity linking. Building upon the work of Gillick et al. (2019), dense entity retrieval
(BLINK; Wu et al., 2020) is a competitive system that uses both a dual-encoder
approach in combination with approximated nearest neighbors to fast retrieve a
set of candidates and a cross-encoder to re-rank them:

log p(e|X ; θ) ∝ f(X ; θ)>f(e; θ) , (4.1)

where f is a neural network and θ its parameters. BLINK uses a classification
loss with in-batch negatives to approximate the full cross-entropy loss:

log p(e|X ; θ) = f(X ; θ)>f(e; θ)− log
∑
e′∈E

exp f(X ; θ)>f(e′; θ) (4.2)

≈ f(X ; θ)>f(e; θ)− log
∑
e′∈B

exp f(X ; θ)>f(e′; θ) , (4.3)

where B is a mini-batch of examples during training. BLINK encodes inputs using
the last layer of BERT (Devlin et al., 2019b) output at the BOS token. It encodes
the context with a special separator token to delimit the mention to disambiguate.
It uses entities’ meta information, such as titles and descriptions, to encode them.

Dense passage retrieval (DPR; Karpukhin et al., 2020) similarly employs
bi-encoders to tackle the open-domain question-answering task (i.e., the text
collection is large and before applying any reading model it has to retrieve the
top-k documents that may answer the query). DPR also uses inner-product as a
scoring function and a cross-entropy loss. Additionally, DPR uses hard negatives
mined from BM25 (Robertson, Zaragoza, et al., 2009) to learn a better vector
space and thus boost the performance. Other models such as retrieval augmented
language model pre-training (REALM; Guu et al., 2020) and retrieval augmented
generation (RAG; Lewis et al., 2020b) used bi-encoders to augment language
models. They optimize an LM objective while retrieving text to help the generation
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learn end-to-end a model that reads, retrieves, and generates text. Those models
have been successfully fine-tuned for open-domain question answering.

Generative Retrieval Nogueira et al. (2020) propose to use a sequence-to-
sequence model to re-rank documents. Given a query and a document the model is
trained to output the words “true” or “false” depending on whether the document
is relevant or not. Differently from our approach for entity retrieval, it requires a
limited list of candidate documents, obtained with BM25 for instance, in order
to be computationally possible. Massarelli et al. (2019) and Petroni et al. (2020)
explore the idea of using an autoregressive language model as a neural retriever, by
exploiting the implicit knowledge stored in their parameters to generate relevant
sentences given a query. While intriguing, such solutions still lag behind retrievers
with an explicit knowledge access (e.g., an explicit Wikipedia index). The idea
of using a generative model for entity disambiguation was proposed in Petroni
et al. (2021) as they trained both BART and T5 in a seq2seq fashion on all
KILT tasks (including ED). We expanded that intuition generalizing on multiple
tasks (end-to-end EL and page-level retrieval) as well as introducing constrained
decoding for an efficient and effective search.

4.3 Method

We address the retrieval problem with a sequence-to-sequence model that generates
textual entity identifiers (i.e., entity names). Concretely, GENRE ranks each
e ∈ E by computing a score with an autoregressive formulation:

score(e|X ; θ) = p(Ye|X ; θ) =
n∏
i=1

p(yi|y<i,X ; θ) , (4.4)

where X is the input (context, mention and delimiters) sequence, Ye = {yi}ni=1 is
the sequence of n tokens in the identifier of e, and θ the parameters of the model.
We take advantage of fine-tuning the BART (Lewis et al., 2020a) pre-trained
language model. We train GENRE using a standard seq2seq objective, i.e.,
maximizing the log-probability of the output as a function of model parameters
(Sutskever et al., 2011; Sutskever et al., 2014) and regularized with dropout
(Srivastava et al., 2014a) and label smoothing (Szegedy et al., 2016). Concretely,
we use the objective that is typically used for neural machine translation (NMT, Wu
et al., 2016), that is maximizing log p(Y|X ; θ) with respect to model’s parameters
θ which, due to the factorized formulation, can be calculated exactly. The model
is already normalized without the need for any expensive normalization procedure
or negative sampling.



4.3. Method 53

4.3.1 Inference with Constrained Beam Search

Naturally, at test time, we could compute a score for every element in E and
then sort them. Unfortunately, this might be prohibitively expensive when E is
very large (e.g., Wikipedia has ≈6M entities). Hence, we exploit Beam Search
(BS, Sutskever et al., 2014), an established approximate decoding strategies to
efficiently navigate the search space. Instead of explicitly scoring all entities in E ,
we search for the top-k entities in E decoding from our model using BS with k
beams. Note that using BS implies that the time cost of our retriever does not
depend on the size of E , but only on the size of the beams and the average length
of entity representations as we do autoregressive generation. The average length
of entity representations is tractable (e.g., Wikipedia titles have 6 BPE tokens
on average) and we follow standard NMT settings where k is small (e.g., 10).

Since we want to output only entities from E we cannot use traditional BS
while decoding. Indeed, allowing to generate any token from the vocabulary at
every decoding step might lead the model to generate output strings that are not
valid identifiers. Hence, we resort to Constrained BS, forcing to only decode valid
entity identifiers. BS only considers one step ahead during decoding so we can
only constrain the generation of a single next token conditioned on the previous
ones. Thus, we define our constrain in terms of a prefix tree T (known as trie);
Cormen et al., 2009) where nodes are annotated with tokens from the vocabulary.
For each node t ∈ T , its children indicate all the allowed continuations from the
prefix defined traversing the trie from the root to t.

See figure 4.2 for an exampled of a trie. When the number of allowed outputs
is tractable (e.g., generating a Wikipedia title among ≈6M) the trie is relatively
small it can be pre-computed and stored into memory (e.g., constraining on
Wikipedia titles using the BART tokenizer produces a trie with ≈6M leaves,
≈17M internal nodes that occupied ≈600MB of disk space). We employed the
constraints masking the log-probabilities of the invalid tokens and not their logits
(i.e., we do not re-normalize the probability over the vocabulary).6

4.3.2 Autoregressive End-to-End Entity Linking

We additionally extend our autoregressive framework to address end-to-end Entity
Linking (EL) where, given a document, a system has to both detect entity mentions
and link those mentions to their respective KB entities. In this setting, we train
the model to predict the source input again but with annotated spans. We use a
Markup annotation where spans boundaries are flagged with special tokens and
accompanied by their corresponding entity identifiers.

Differently from a setting where the output space is relatively small (e.g., a
pre-defined set E), the space of annotated outputs is exponentially large. Hence, it
is intractable to pre-compute a trie for decoding, and we compute it dynamically
6 We experimented with both versions and we find masking the log-probability more effective.
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BOS

language

English

literature

France

EOS EOS

EOS

Figure 4.2: Example of prefix tree (trie) structure where the allowed entities
identifiers are ‘English language’, ‘English literature’ and ‘France’. Note that at
the root there is the start-of-sequence token SOS and all leaves are end-of-sequence
tokens EOS. Since more that one sequence has the same prefix (i.e., ‘English’),
this end up being an internal node where branches are the possible continuations.

instead. In figure 4.3 we show an example. At each generation step, the decoder
is either generating a mention span, generating a link to a mention, or continuing
from the input source. When outside a mention/entity step the decoder has only
two options: (i) to continue by copying the next token from the input source,
or (ii) to generate the start of mention token (i.e., ‘[’) which makes the decoder
enter the mention generating phase. While generating a mention, the decoder has
either to continue with the next token in the input source or to generate the end
of mention token (i.e., ‘]’) which makes the decoder enter the entity generating
phase. Finally, when generating an entity, the decoder employs the entities trie
such that it can only output a valid entity identifier as in Constrained Beam
Search explained above.

4.4 Experimental Settings

We extensively evaluate GENRE on more than 20 datasets across 3 tasks: En-
tity Disambiguation, end-to-end Entity Linking (EL), and page-level Document
Retrieval. Here we describe the experimental settings and we discuss results in
section 4.5. All experiments are in English.

We implemented, trained, and evaluate our model using the fariseq library
(Ott et al., 2019). We trained GENRE for every task using Adam (Kingma & Ba,
2015) with a learning rate 3e−5 with a linear warm-up for 500 steps and then liner
decay. The objective is sequence-to-sequence categorical cross-entropy loss with
0.1 of label smoothing. We used dropout (Srivastava et al., 2014b) probability of
0.1 and attention dropout of 0.1.
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mention

co
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nu
e

In	1503,	_
Leonardo

[

(a) Outside: we can either continue to generate the input or start
a new mention.

In	1503,	[Leonardo_
began

co
nti
nu
e

entity ]

(b) Inside a mention: we can either continue to generate the input
or end the current mention.

In 1503, [Leonardo](Leonardo_

da Vinci
DiCaprio
(TV series)co

nti
nu

e

close )

(c) Inside an entity link: we can either generate from the entities
prefix trie or close if the generated prefix is a valid entity.

Figure 4.3: Example of dynamically constrained Markup decoding for entity
linking using “In 1503, Leonardo began painting the Mona Lisa.” as input. There
are 3 cases: when we are outside a mention/entity (a), inside a mention generation
step (b), and inside an entity link generation step (c). The model is supposed to
output the input source annotating mentions and pointing them to the respective
entities: “In 1503, [Leonardo](Leonardo da Vinci) began painting the [Mona
Lisa](Mona Lisa)”.

4.4.1 Entity Disambiguation (ED)

Setting We reproduce the setting of Le and Titov (2018) using the same candi-
date sets, in-domain and out-of-domain datasets, and evaluating using the InKB
micro-F1. Given a document d (e.g., a sentence) containing a set of entity mentions
Md = {mi}ni=1, a system f has to assign, to each mention mi, either a KB entity
(i.e., f(mi, d) ∈ E), or to predicts that there is no corresponding entry in the KB
(i.e., f(mi, d) = NIL). Moreover, a restricted candidates set Cmi

⊆ E ∪ {NIL} for
each mention mi is provided (i.e., we can restrict the search to Cmi

instead of
E—typically Cmi

contains between tens to thousands of candidates which is still
order of magnitude less than |E|).
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Training We train GENRE feeding each document where a single mention is
flagged with two special start and end tokens and the target output is the textual
representation of the corresponding entity. As large generative models benefit
from large amount of data, we first pre-train GENRE on the BLINK data (Wu
et al., 2020), i.e., 9M unique triples document-mention-entity from Wikipedia.
We pre-trained for 200k steps and then we do model selection on the validation set.
Afterward, we fine-tuned on AIDA-CoNLL dataset (Hoffart et al., 2011) without
resetting the learning rate nor the optimizer statistics for 10k steps and we do
model selection on the validation set. Following previous works (Yamada et al.,
2016; Ganea & Hofmann, 2017; Le & Titov, 2018), we considered only mentions
that have entities in the KB (i.e., Wikipedia). Training was done on 32 GPUs
(with 32GB of memory) and it completed in ≈24h for a total of ≈32 GPU days.

Inference We evaluate on five test sets: MSNBC, AQUAINT, ACE2004, WNED-
CWEB (CWEB) and WNED-WIKI (WIKI) (Gabrilovich et al., 2013; Guo &
Barbosa, 2018). At test time, we decode using constrained beam search with a
trie obtained using the provided candidate sets (i.e., a subsets of E). We use
Constrained Beam Search with 10 beams, and maximum decoding steps of 15.
We restrict the input sequence to be at most 384 tokens cutting the left, right, or
both parts of the context around a mention. We normalize the log-probabilities
by sequence length.

4.4.2 End-to-End Entity Linking (EL)

Setting For EL, we reproduce the setting of Kolitsas et al. (2018) using the same
in-domain and out-of-domain datasets as well as evaluating the InKB micro-F1 on
the GERBIL benchmark platform (Röder et al., 2018). Given a document d (e.g.,
a sentence) a system f has to return a set of tuples f(d) = {〈mi, ei〉}ni=1 where each
mi is a entity mentions (a span contained in d) and each ei ∈ E is a corresponding
entity in the KB. Following Kolitsas et al. (2018), we considered only mentions
that have entities in the KB (i.e., Wikipedia) and we used their candidate sets
with the additions of the table computed by Hoffart et al. (2011)—i.e., we can
restrict the search to Cmi

instead of E that is the same as for ED.

Training Similarly to the ED setting, we first pre-trained GENRE on all
abstract sections from Wikipedia7 enriched by a string matching heuristic to
solve co-references (i.e., if there is a string that matches exactly with another
hyperlink we also add it to the dataset as a mention/entity pairs) data for 200k
steps. Then we do model selection on the validation set. Afterward, we fine-
tuned on AIDA resetting the learning rate and the optimizer statistics for 10k
steps and we do model selection on the validation set. Again, following previous
7 It is based on the 2019/08/01 Wikipedia dump pre-processed by Petroni et al. (2021).
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works (Kolitsas et al., 2018), we considered only mentions that have entities in
Wikipedia. Training was done on 64 GPUs (with 32GB of memory) and it
completed in ≈30h for a total of ≈80 GPU days.

Inference We evaluate on seven out-of-domain test sets: MSNBC, Derczynski
(Der, Derczynski et al., 2015), KORE 50 (K50, Hoffart et al., 2012), N3-Reuters-
128, N3-RSS-500 (R128 and R500, Röder et al., 2014), and OKE challenge 2015
and 2016 (OKE15 and OKE16, Nuzzolese et al., 2015). At test time, we use
Constrained Beam Search with 6 beams, and a maximum decoding step of 384.
When the input sequence is too long, we split the input into multiple chunks of
equal size. We normalize the log-probabilities by sequence length.

4.4.3 Page-level Document Retrieval (DR)

Setting For this setting, we test GENRE on all the KILT benchmark tasks
(Petroni et al., 2021). Here, whole Wikipedia is used as the candidate set and
we evaluate using averaged R-precision8 (Beitzel et al., 2009). KILT consists
of five tasks that use the same Wikipedia dump as a knowledge source: fact
checking with FEVER (Thorne et al., 2018); open domain question answering using
Natural Questions (Kwiatkowski et al., 2019), HotpotQA (Yang et al., 2018b),
TriviaQA (Joshi et al., 2017), ELI5 (Fan et al., 2019); slot filling with T-REx
(Elsahar et al., 2018), Zero Shot RE (Levy et al., 2017); entity disambiguation on
AIDA CoNLL-YAGO, WNED-WIKI and WNED-CWEB; dialogue with Wizard
of Wikipedia (Dinan et al., 2019). Given a query q (e.g., a question) and a
collection of documents D (in KILT are Wikipedia pages), a system has to rank
documents in D based on their relevance to q.

Training We train GENRE on BLINK (Wu et al., 2020) and all KILT data
simultaneously with a single model.9 We train for 200k steps and we do model
selection on the validation set averaging the score across tasks. Training was done
on 128 GPUs (with 32GB of memory) and it completed in ≈33h for a total of
≈176 GPU days.

Inference At test time, we use Constrained Beam Search with 10 beams. For
the ED sub-task, we restrict the input sequence to be at most 384 tokens cutting
the left, right, or both parts of the context around a mention. We normalize
the log-probabilities by sequence length. As we are only interested in measuring
8 R-Precision is the precision after R items have been retrieved, where R is the number of relevant
items for the given input, i.e., |{retrieved items}∩{relevant items}|/|{retrieved items}| where
|{retrieved items}| is not the same for every input in the dataset.

9 Note that not all dataset available in KILT have a training set. Concretely, we train on FEVER,
Natural Questions, HotpotQA, TriviaQA, T-REx, Zero Shot RE, AIDA CoNLL-YAGO, and
Wizard of Wikipedia.
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retrieval, for all of those task and datasets we do not perform and evaluate
the downstream performance of our system but only the provenance that is the
Wikipedia page needed as supporting evidence for the answer.

4.5 Results

Overall, GENRE achieves very competitive results in all of the three settings
being the best performing system on average across all of them. See appendix A.1
for examples of inputs, ground truth and model predictions for all of the three
tasks. In the following, we discuss how GENRE compares to state of the art
systems as well as showing some quantitative analysis on its memory footprint,
how it exploits the structured of the entity name space, and how it behaves on a
cold-start scenario where new unseen entities are added to the KB (descriptions of
those entities are unobserved).

4.5.1 Comparisons

Comparing GENRE to state of the art systems In ED the difference in
average F1 score between GENRE and the second best performing system is
small (i.e., +0.8) however, ED is an established task with more than a decade
of research that benchmarked on those datasets. Indeed all systems reported in
table 4.1 achieved high and similar results even if they were taken from three
years back.

The improvements on EL are instead more evident. GENRE is the best
in-domain system for AIDA while performing remarkably well also on the out-
of-domain setting (e.g., +13 F1 points on Derczynski, and +4.7 on KORE50).
Noticeably, in two datasets (OKE15 and OKE16) our model performs poorly.
However, these datasets are annotated with coreference (pronouns and common
nouns are linked to entities) while our model was not specifically trained for that.
Conversely, most of the other systems, have a mention detection component in their
pipelines that can be trained or biased to also solve these cases. We considered
out of the aim of this study to additional train and evaluate on coreference and
we leave it for future work.

On page-level DR, the superiority of GENRE is remarkable. Our model is
the best performing system across all 5 KILT tasks and all datasets except on
Natural Questions where it is the second best. We achieve +13.7 R-precision
points on average with respect to the best performing baseline. In table 4.2
we compare GENRE against all methods reported in the public leaderboard:10

DPR (Karpukhin et al., 2020), DPR+BERT (Devlin et al., 2019a), DPR+BART,

10https://evalai.cloudcv.org/web/challenges/challenge-page/689 accessed on 16-09-2020.
We additionally report subsequent published works that have public score we accessed on
11-07-2022.

https://evalai.cloudcv.org/web/challenges/challenge-page/689
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TF-IDF (Leskovec et al., 2014), RAG (Lewis et al., 2020b), and BLINK+flair
(Wu et al., 2020; Akbik et al., 2019). No model except ours was trained on the
entire KILT dataset at the same time. A RAG model was trained for every single
task as well as for DPR+BERT. Note that this gives and advantage to RAG and
DPR+BERT to specialize on single tasks where we have only a single model to
solve all of them which still performs better. We speculate that multi-task training
could have helped since the all tasks share a common objective to retrieve entities.
Both DPR and BLINK+flair were not trained specifically on KILT. However,
DPR was trained using several QA datasets which include Natural Question and
TriviaQA.

Memory Footprint GENRE is not only performing better than other state of
the art models on DR but it has a significant reduction of memory footprint (disk
space). In figure 4.4 we compare the number of model/index parameter against
DPR, RAG, and BLINK. GENRE uses an order of magnitude less parameters
(millions instead of billions) to store the entity index because it just has to use
a prefix tree of the entity names as opposed to a dense vector for each entity.
Concretely, GENRE occupied 14 times less memory than BLINK and 34 times
less memory than DPR.

4.5.2 Ablations

Ablation study on ED In table 4.1, GENRE only AIDA or BLINK data
indicates the ablation for which we only train on one of the two datasets (i.e.,
only fine-tuning). GENRE (full) is also used with constrained decoding (see
section 4.3) and in combination with a candidate set (as provided by Le &
Titov, 2018). GENRE without candidate set denotes ablating the provided
(and small) candidate set and therefore using all the entities in the KB (in our
case Wikipedia) as candidates. GENRE without constraints indicates ablating
constrained decoding which implies no use of the provided candidates set but also
unconstrained generation (i.e., the model may generate entity names that are not
in the KB). Eventually, using constrained generation and exploiting the candidate
sets proved useful. Training only on AIDA data is insufficient to get high F1 (but
AIDA is quite small compared to the 9M datapoints of BLINK data).

Ablation study on DR Table 4.2 also extends a comparison with baselines
with ablation results (i.e., training GENRE on the numerical identifiers). The
purpose of the experiment is to see whether GENRE benefits from the entity
names to be meaningful as well as compositional. Numerical IDs do not have
that property. In both cases, the model uses its memorizing capabilities but when
using IDs the performance is significantly low. Indeed, with IDs the model has no
way to generalize nor to use implicit knowledge acquired during the unsupervised
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Model Memory Parameters Index

DPR (Karpukhin et al., 2020) 70.9GB 220M 15B
RAG (Lewis et al., 2020b) 40.4GB 626M 15B
BLINK (Wu et al., 2020) 30.1GB 680M 6B

GENRE 2.1GB 406M 17M

Table 4.4: Comparison between retrieval models on memory (disk space) footprint
and number of model/index parameters.

pre-training. We also ablate the training data. DPR data corresponds to training
only on Natural Questions (NQ) and TriviaQA (TQA) as DPR was trained only
for QA tasks on those datasets and two extra ones. Note that training on BLINK
data corresponds to only training for entity disambiguation. However, every other
task share similarities with entity disambiguation and thus the model is also
capable to address the other tasks with non-zero performance. For the ablations,
underlined cells indicate what are the results on the respective task on which a
model was trained for (i.e., GENRE only BLINK data was trained only for ED
where GENRE only DPR data was trained only for QA). The ablation on data
suggests that it is beneficial to train on all tasks simultaneously. GENRE without
constraints indicates ablating constrained decoding which implies unconstrained
generation (i.e., the model may generate entity names that are not in the KB).

4.5.3 Analysis

Exploiting the Structured Name Space We investigated some properties
of GENRE, comparing two variants of our model to BLINK on the ED task
(using WNED-KILT validation set): one trained to generate entity names and
another to generate numerical identifiers (IDs). All models are trained on the same
data and we report results in table 4.5. When there is an exact match between
a mention and its entity name, both BLINK and GENRE almost always make
an accurate prediction. Different is the case of partial and no match: GENRE
performance is much higher suggesting that our model uses the context more
effectively, as the autoregressive formulation allows to cross-encode mention context
and entity candidates directly capturing fine-grained interactions between the two.
Moreover, when we switch to predicting IDs, the performance drops drastically
(-20.3 points on average) indicating that it is important that entity names are
meaningful, structured and compositional (as they are in Wikipedia) conversely
to atomic IDs. Surprisingly, when there is no overlap between a mention-entity
pair, performance are still relatively high by using IDs. This suggests that the
model is good at memorizing and recalling identifiers even if numeric.
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Type (support) BLINK GENRE IDs*

Exact match (1543) 97.8 96.6 76.0
Partial match (1531) 70.7 86.9 63.8
No match (322) 49.4 59.9 55.0

Total (3396) 81.0 88.8 68.5

Table 4.5: Different types of matches between mentions and their entity names on
the WNED-KILT. *indicates GENRE trained on numerical identifiers.

Entity frequency The performance of a model naturally depends on how many
times entities appear in the training data. We show the data distribution of the
mention-entity frequency in figure 4.4. Most of the pairs appears in Wikipedia
(10931 / 13354) where 2423 do not (first bin). The average accuracy is 82.5%
but noticeable it is higher for mention-entity pairs that are more frequent (right
side of the plot). The accuracy for pairs that do not appear in Wikipedia is
substantially lower than the average suggesting that those are harder cases (the
very end tail of the distribution). The degradation in performance is minimal
indicating that our model is good at predicting rare entities.

Incoming links frequency We also show the data distribution of the number
of incoming links (see figure 4.5). Intuitively, a page/entity with few incoming
links has been observed less than highly connected pages/entities. Indeed, for
pages/entities never linked (first bin on the left) the average accuracy is 20%
lower than the global average (78.6%). However, for pages/entities linked at least
once it is above the global average. This indicates that GENRE seems effective
on linking rare entities.

Entity name tokens length frequency We show the data distribution of
title entity name tokens length in figure 4.6. Most of the titles have less than
15 BPE tokens while the mode of the distribution is 5. Here GENRE has an
average accuracy of 78.6% but it is higher for short titles (e.g., < 10) and it is
lower for long titles (e.g., ≥10). Degradation in performance does not directly
follow the data distribution of the token lengths. Indeed, even if long titles are
rare performance is not heavily affected (e.g., for length >15).

Cold-start We manually collect 50 Wikipedia articles that were created in
202011 to simulate a cold-start setting where new entities are added to the KB
and the only entity information available is their names. To create ED instances
we resort to hyperlinks pointing to those entities in other Wikipedia articles. 19

11Note that both pre-training and fine-tuning use dumps from 2019.
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Figure 4.4: Accuracy per mention-entity pair frequency (in Wikipedia) on the
validation sets of all Entity Disambiguation tasks in KILT.
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Figure 4.5: Accuracy per number of incoming links in Wikipedia on the validation
sets of all KILT datasets except ELI5 (as it is fundamentally different from the
others).

None 20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217

Number of incoming links in Wikipedia
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy
Data distribution

0.0e+00

1.7e+03

3.3e+03

5.0e+03

6.6e+03

8.3e+03

1.0e+04

1.2e+04

1.3e+04

1.5e+04

1.7e+04

Fr
eq

ue
nc

y

Figure 4.6: Accuracy per number of BPE tokens of the Wikipedia title to generate
on the validation sets of all KILT datasets except ELI5 (as it is fundamentally
different from the others).
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Seen Unseen Total

Exact match 87.48 (751) 70.36 (2227) 74.68 (2978)

Partial match 56.39 (1566) 61.47 (4838) 60.23 (6404)

No match 41.46 (205) 45.04 (413) 43.85 (618)

Total 64.43 (2522) 63.21 (7478) 63.52 (10k)

Table 4.6: Evaluation of GENRE on WikilinksNED Unseen-Mentions data (Onoe
& Durrett, 2020). We train on the provided train set and we report accuracy
scores (i.e., precision at 1) alongside with the number of supporting datapoints.
We report scores splitting the test set in seen and unseen entities as well as in
three different matchings between a mention and its gold entity.

out of 50 mentions have an exact match with their respective entity names and
all of them were correctly classified by GENRE. In combination with the results
from table 4.5 we can conclude that GENRE has a bias on exactly copying the
mention, and this helps on unseen data. GENRE also correctly classified 14/31
of the remaining mentions (45.2%). This demonstrates the ability of our solution
to be applied in scenarios where entity metadata is unavailable (apart his name),
a setting where, to the best of our knowledge, no existing system is capable to
operate.

We additionally test how GENRE performs on unseen mention-entity pairs
on WikilinksNED Unseen-Mentions data (Onoe & Durrett, 2020) and we report
all results in table 4.6. Surprisingly, GENRE performs almost the same for seen
and unseen entity pairs (64.4 vs 63.2 accuracy) However, in the Onoe and Durrett
(2020) setting we cannot guarantee entity descriptions have not been seen by
BART during pre-training (given his training data contains Wikipedia).

4.6 Subsequent Work
A natural extension of the work presented in this chapter is a multilingual version
(mGENRE; De Cao et al., 2022). mGENRE allows doing entity linking in more
than 100 languages as well as considering languages as a latent variable allowing
marginalizing the predictions on all of them. mGENRE is presented in chapter
5. Another work of ours addresses the high computational cost of the end-to-end
linking task due to a complex (deep) decoder and the non-parallelizable decoding
that scales with the source sequence length (De Cao et al., 2021c). In chapter 6,
we propose a very efficient approach that parallelizes autoregressive linking across
all potential mentions and relies on a shallow and efficient decoder. Although
not part of this thesis, the author also contributed to generative information
extraction (GenIE; Josifoski et al., 2022) which extends our work to closed
information extraction. Closed information extraction is the problem of extracting
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an exhaustive set of 〈subject, relation, object〉 triplets from a text snippet that
are consistent with a predefined set of entities and relations in a KB. GenIE is
a sequence-to-sequence model that exploits the knowledge from a pre-trained
transformer by autoregressively generating relations and entities in textual form.
GenIE employs a bi-level constrained generation strategy that produces only valid
sets of triplets consistent with the predefined KB.

Our work also inspired extensions on other domains, which led to improvements
over standard methods. Generative multi-hop retrieval (GMR; Lee et al., 2022) uses
a sequence-to-sequence model which iteratively predicts the next paragraph needed
as evidence for answering a query. Authors show comparable or higher performance
than state-of-the-art bi-encoders while demonstrating better memory and storage
footprint. They also show better performance than GENRE in multi-hop setting
since since GMR specifically targets that while we do not. Generative evidence
retrieval for fact verification (GERE; Chen et al., 2022) employs and extends a
version of GENRE for fact-checking. GENE retrieves documents in the same way
GENRE does but it additionally retrieves evidence in a generative fashion (i.e.,
generating the document titles as well as evidence sentence identifiers). Authors
evaluated GENE on the complete fact verification task of FEVER (differently, we
only measured recall at document level where FEVER requires a sentence level
evidence and a label prediction) showing significant improvements over baselines
with both time- and memory efficiency.

Generalizations of our framework have also been proposed. Differentiable
search index (DSI; Tay et al., 2022b) is a system that uses hierarchical clustering
on contextualized embeddings to create identifiers for arbitrary spans of text. The
main advantage of DSI is that it does not require title annotation of documents
or paragraphs, and therefore, it can be generally applied outside of Wikipedia.
Furthermore, it treats the selection of identifiers as a fully unsupervised pre-
processing step. DSI is applied to moderate-sized corpora (up to 320k documents),
showing that it is a promising direction for further exploration. Search engines
with autoregressive LMs (SEAL; Bevilacqua et al., 2022) also avoids the use of
titles. SEAL uses all n-grams in a text span as its possible identifiers. SEAL uses
compressed full-text substring index (an FM-Index; Ferragina & Manzini, 2000) to
efficiently store all the corpus/index. SEAL is trained to generate multiple n-grams
conditioning on a query while applying some re-weighing to avoid repetitions and
to re-balance infrequent n-grams. See table 4.2 for results on KILT.

Additional relevant subsequent work includes CM3 (Aghajanyan et al., 2022):
masked autoregressive generative language and vision model. CM3 is trained
with denoising over a large corpus of structured multi-modal documents which
includes HTML tags and the whole Wikipedia. Training is self-supervised,
and at test time, when it is prompted with the HTML link tag, it can generate
correct Wikipedia identifiers. When fine-tuned for entity linking specifically, CM3
outperforms all known models to the best of our knowledge (see table 4.1). Entity
names can also be used in an extractive fashion. Extractive entity disambiguation
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(ExtEnD; Barba et al., 2022) proposed to concatenate to the input text all the
entity names of the candidates and use an extractive model to select the span
of the correct label (results reported in table 4.1). Finally, Mrini et al. (2022)
improved autoregressive entity linking by adding auxiliary tasks to obtain a better
model. The authors trained to re-rank the generated samples at inference time
and mention detection. We report relevant results from subsequent work at the
bottom of figures 4.1, 4.2, and 4.2.

4.7 Conclusions
In this chapter, we propose GENRE, a novel paradigm to addresses entity retrieval:
generate entity names autoregressively. Entity names have several properties that
might help (even humans) retrieve them, including a compositional structure and
a predictable interaction with the context. The autoregressive formulation allows
us to directly capture some of these properties, leading to several advantages with
respect to current solutions, including an efficient way to cross encode mention
context and entity candidates, a much smaller memory footprint, and the ability
to compute an exact cross entropy loss without the need to subsample negative
data. We empirically show that these characteristics, combined with constrained
decoding strategies, led to state-of-the-art performance on a plethora of entity
retrieval datasets, spanning entity disambiguation, end-to-end entity linking,
and page-level document retrieval, while resulting in systems with a remarkably
contained memory footprint, a space reduction by a factor of twenty on average.
We additionally demonstrate that new entities can be effectively considered in our
system by simply appending their unambiguous name to the candidate set.



Chapter 5

Multilingual Autoregressive
Entity Linking

Chapter Highlights

In this chapter, we present mGENRE, a sequence-to-sequence system for the Mul-
tilingual Entity Linking (MEL) problem—the task of resolving language-specific
mentions to a multilingual Knowledge Base (KB). mGENRE is a multilingual
evolution of GENRE presented in chapter 4. For a mention in a given language,
mGENRE predicts the name of the target entity left-to-right, token-by-token in
an autoregressive fashion. The autoregressive formulation allows us to effectively
cross-encode mention string and entity names to capture more interactions than
the standard dot product between mention and entity vectors. It also enables
fast search within a large KB even for mentions that do not appear in mention
tables and with no need for large-scale vector indices. While prior MEL works
use a single representation for each entity, we match against entity names of as
many languages as possible, which allows exploiting language connections between
source input and target name. Moreover, in a zero-shot setting on languages with
no training data at all, mGENRE treats the target language as a latent variable
that is marginalized at prediction time. This leads to over 50% improvements
in average accuracy. We show the efficacy of our approach through extensive
evaluation including experiments on three popular MEL benchmarks where we
establish new state-of-the-art results.1

1 Source code available at https://github.com/facebookresearch/GENRE
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5.1 Introduction
The multilingual version of the EL problem has been for a long time tied to a
purely cross-lingual formulation (XEL, McNamee et al., 2011; Ji et al., 2015),
where mentions expressed in one language are linked to a KB expressed in another
(typically English). Recently, Botha et al. (2020) made a step towards a more
inherently multilingual formulation by defining a language-agnostic KB, obtained
by grouping language-specific descriptors per entity. Such a formulation has
the power of considering entities that do not have an English descriptor (e.g., a
Wikipedia article in English) but have one in some other languages.

A common design choice to most current solutions, regardless of the specific
formulation, is to provide a unified entity representation, either by collating
multilingual descriptors in a single vector or by defining a canonical language. For
the common bi-encoder approach (Wu et al., 2020; Botha et al., 2020), this might
be optimal. However, in the recently proposed GENRE model (see chapter 4; De
Cao et al., 2021a), an autoregressive formulation to the EL problem leading to
stronger performance and considerably smaller memory footprints than bi-encoder
approaches on monolingual benchmarks, the representations to match against
are entity names (i.e., strings) and it’s unclear how to extend those beyond a
monolingual setting.

In this context, we find that maintaining as much language information as
possible, hence providing multiple representations per entity (i.e., one for each
available language), helps due to the connections between source language and
entity names in different languages. We additionally find that using all available
languages as targets and aggregating over the possible choices is an effective way
to deal with a zero-shot setting where no training data is available for the source
language.

Concretely, in this chapter, we present mGENRE, the first multilingual EL
system that exploits a sequence-to-sequence architecture to generate entity names
in more than 100 languages left to right, token-by-token in an autoregressive fashion
and conditioned on the context (see figure 5.1 for an outline of our system). While
prior works use a single representation for each entity, we maintain entity names
for as many languages as possible, which allows exploiting language connections
between source input and target name. To summarize, this chapter makes the
following contributions:

• we consider, in the catalog of entity names, all languages for each entry
in the KB. In particular, we use Wikidata as target KB and consider all
available Wikipedia titles — each entity is represented with multiple names,
one for each available language. Storing the multilingual names index is
feasible and cheap (i.e., 2.2GB for ≈89M names);

• we design a novel objective function that marginalizes over all languages to
perform a prediction. This approach is particularly effective in dealing with
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languages not seen during fine-tuning (≈50% improvements);

• we establish new state-of-the-art performance for the Mewsli-9 (Botha et al.,
2020), TR2016hard (Tsai & Roth, 2016) and TAC-KBP2015 (Ji et al., 2015)
MEL datasets;

• we present extensive analysis of modeling choices, including the usage
of candidates from a mention table, frequency-bucketed evaluation, and
performance on a held out set including low-resource languages.

5.2 Background
We first introduce Multilingual Entity Linking in section 5.2.1 highlighting its
difference with monolingual and cross-lingual linking. We address the MEL
problem with a sequence-to-sequence model that generates textual entity identifiers
(i.e., entity names). Our formulation generalizes the GENRE model by De Cao
et al. (2021a) to a multilingual setting (mGENRE) discussed in chapter 4.

5.2.1 Task Definition

Multilingual Entity Linking (MEL, Botha et al., 2020) is the task of linking a given
entity mention m in a given context c of language l ∈ LC to the corresponding
entity e ∈ E in a multilingual Knowledge Base (KB). See figure 5.1 for an example:
there are textual inputs with entity mentions (in bold) and we ask the model to
predict the corresponding entities in the KB. A language-agnostic KB includes
an entity descriptor (at least the name) of each entity in one or more languages.
Note that there is no guarantee that an entity descriptor matching the context
language is always available. We assume that descriptors in multiple languages for
the same entity are mapped to a unique entry in the KB (e.g., as in Wikidata).
and that each e ∈ E has a descriptor in at least a language. Concretely, in this
work, we use Wikidata (Vrandečić, 2012) as our KB. Each item lists a set of
Wikipedia pages in multiple languages linked to it and in any given language
each page has a unique name (i.e., its title).

The MEL formulation is a generalization of both monolingual Entity Linking
EL and cross-lingual EL (XEL, McNamee et al., 2011; Ji et al., 2015). The
monolingual EL formulation considers a KB where each entity descriptor is
expressed in the context language — mention and KB language always match,
descriptors in other languages are discarded. One problem of this formulation is
that the KB might miss several entries for languages with limited coverage of entity
descriptors. The XEL formulation tries to mitigate this problem by considering
the language with the highest descriptors coverage as canonical (typically English)
— mentions in multiple languages are mapped to a single canonical language.
Therefore, both the MEL and XEL formulations exploit inter-language links to
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identify entities in other languages. However, given that XEL requires the target
KB to be monolingual it might still miss several entries in the KB. For instance,
Botha et al. (2020) reported that ≈25% of hyperlinks in the Japanese Wikinews
do not point to a page that have a corresponding one in English.

In this work we assume that each entity descriptor contains a name that
concisely describes an entity. In particular, we consider Wikipedia titles (in
multiple languages) as entity names. Note that such entity names might not be
available for other KBs. We consider the definition of meaningful entity names
when not available an interesting future research direction. Finally, see chapter
4 for references on autoregressive entity linking via generation and ranking with
constrained beam search.

5.2.2 Related Work

The most related works to ours are De Cao et al. (2021a), that proposed to use an
autoregressive language model for monolingual EL (see chapter 4), and Botha et al.
(2020) that proposes to extend the cross-lingual EL task to multilingual EL with
a language-agnostic KB. GENRE was applied not only to EL but also for joint
mention detection and entity linking (still with an autoregressive formulation) as
well as to page-level document retrieval for fact-checking, open-domain question
answering, slot filling, and dialog (Petroni et al., 2021). Botha et al.’s (2020) Model
F+ is a bi-encoder model: it is based on two BERT-based (Devlin et al., 2019a)
encoders that outputs vector representations for contet and entities. Similar to Wu
et al. (2020) they rank entities with a dot-product between these representations.
Model F+ uses the description of entities as input to the entity encoder and title,
document and mention (separated with special tokens) as inputs to the context
encoder. Bi-encoders solutions may be memory inefficient since they require to
keep in memory big matrices of embeddings, although memory-efficient dense
retrieval has recently received attention (Izacard et al., 2020; Min et al., 2021;
Lewis et al., 2021).

Another widely explored line of work is Cross-Language Entity Linking (XEL;
McNamee et al., 2011; Cheng & Roth, 2013). XEL considers contexts in different
languages while mapping mentions to entities in a monolingual KB (e.g., English
Wikipedia). Tsai and Roth (2016) used alignments between languages to train
multilingual entity embeddings. They used candidate selection and then they
re-rank them with an SVM using these embeddings as well as a set of features
(based on the multilingual title, mention, and context tokens). Sil et al. (2018)
explored the use of more sophisticated neural models for XEL as well as Upadhyay
et al. (2018) who jointly modeled type information to boost performance. Zhou
et al. (2019) propose improvements to both entity candidate generation and
disambiguation to make better use of the limited data in low-resource scenarios.
Note that in this work we focus on multilingual EL, not cross-lingual. XEL is
limiting to a monolingual KB (usually English), where MEL is more general
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since it can link to entities that might not be necessary represented in the target
monolingual KB but in any of the available languages.

5.3 Method

To extend GENRE to a multilingual setting, we need to define what are the
unique identifiers of all entities in a language-agnostic fashion. This is not trivial
since we rely on text representations that are by their nature grounded in some
language. Concretely, for each entity e, we have a set of identifiers Ie that consists
of pairs 〈l,Y l

e 〉 where l ∈ LKB indicates a language and Y l
e the sequence of tokens

representing the name of the entity e in the language l. We extract these identifiers
from our KB—each Wikidata item has a set of Wikipedia pages in multiple
languages linked to it, and in any given language, each page has a unique name.
We identify 3 strategies to employ these identifiers:

i) define a canonical textual identifier for each entity such that there is a 1-to-1
mapping between the two (i.e., for each entity, select a specific language for
its name—see section 5.3.1);

ii) define an n-to-1 mapping between textual identifier and entities concate-
nating a language ID (e.g., a special token) followed by its name in that
language—alternatively concatenating its name first and then a language
ID (see section 5.3.2);

iii) treat the selection of an identifier in a particular language as a latent variable
(i.e., we let the model learn a conditional distribution of languages given
the input and we marginalize over those—see section 5.3.3).

All of these strategies define a different way we compute the underlining likelihood
of our model. In figure 5.1 we show an outline of mGENRE. The following
subsections will present detailed discussions of the above 3 strategies.

5.3.1 Canonical entity representation

Selecting a single textual identifier for each entity corresponds to choosing its name
among all the available languages of that entity. We employ the same data-driven
selection heuristic as in Botha et al. (2020): for each entity e we sort all its names
Y l
e for each language l according to the number of mentions of e in documents

of language l. Then we take the name Y l
e in the language l that has the most

mentions of e. In case of a tie, we select the language that has the most number
of mentions across all entities (i.e., the language for which we have more training
data). Having a single identifier for each entity corresponds to having a 1-to-1
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mapping between strings and entities.2 Thus,

score(e|X ; θ) = p(Ye|X ; θ) =
n∏
i=1

p(yi|y<i,X ; θ) , (5.1)

where X is the input (context, mention and delimiters) sequence, Ye = {yi}ni=1 is
the sequence of n tokens in the canonical identifier of e, and θ the parameters of
the model. Note that this is the same as equation 4.4 of GENRE. A downside of
this strategy is that most of the time, the model cannot exploit the lexical overlap
between the context and entity name since it has to translate it in the canonical
one (e.g., if the canonical name for the entity potato is “Potato” Q10998 and the
model encounters “patata”—that is potato in Spanish—it needs to learn that one
is the translation of the other).

5.3.2 Multilingual entity representation

To accommodate the canonical representation issues, we can predict entity names
in any language. Concatenating a language ID l and an entity name Y l

e in different
orders induces two alternative factorizations. We train maximizing the scores for
all our training data:

score(e|X ; θ) =

{
p(l|X ; θ) · p(Y l

e |X , l; θ) for ‘language+name (L+N)’
p(Y l

e |X ; θ) · p(l|Y l
e ,X ; θ) for ‘name+language (N+L’

(5.2)

The former corresponds to first predicting a distribution over languages and then
predicting a title conditioning on the language l where the latter corresponds to
the opposite. Predicting the language first conditions the generation to a smaller
set earlier during beam search (i.e., all names in a specific language). However,
it might exclude some targets from the search too early if the beam size is too
small. Predicting the language last does not condition the generation of names
in a particular language but it asks the model to disambiguate the language
of the generated name whenever it is ambiguous (i.e., when the same name in
different languages corresponds to possibly different entities). Only 1.65% of the
entity names need to be disambiguated with the language. In practice, we observe
negligible difference in performance between the two approaches. Both strategies
define an N-to-1 mapping between textual identifiers and entities and then at
test time we just use a lookup table to select the correct KB item. This N-to-1
mapping is an advantage compared to using canonical names because the model
can predict in any available language and therefore exploit synergies between
source and target language as well as avoiding translation.
2 As this approach chooses one language per entity it might happen that two entities have the
same canonical name in the two different languages. We address this issues appending the
used language ID so that the combination of the two is always unique.

https://www.wikidata.org/wiki/Q10998
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5.3.3 Marginalization

Differently from the plain generation strategies described above, we can treat the
textual identifiers as a latent variable and express score(e|X ; θ) as the probability
of the entity name in all languages and marginalizing over them:

score(e|X ; θ) =
∑

〈l,Y l
e 〉∈Ie

p(Y l
e , l|X ; θ) =

∑
〈l,Y l

e 〉∈Ie

p(l|X ; θ) · p(Y l
e |X , l; θ) . (5.3)

Marginalization exposes the model to all representations in all languages of
the same entity and it requires a minor modification of the training procedure.
Unfortunately, because computing score(e|X ; θ) requires a sum over all languages,
both training, and inference with marginalization are more expensive than with
simple generation (scaling linearly with the number of languages). However, at
least during inference, we can still apply BS to only marginalize using the top-k
generations. For this reason, we test this training strategy only on few languages
but we evaluate marginalization even when training with the other generation
strategies described above.

5.3.4 Candidate selection

Modern EL systems that employ cross-encoding between context and entities
usually do not score all entities in a KB as it is too computational expensive (Wu
et al., 2020). Instead, they first apply candidate selection to reduce the number of
entities before scoring (with a less expensive method or a non-parametric mention
table). In our formulation, there is no need to do that since mGENRE uses Beam
Search to generate efficiently. However, using candidates might help, and thus, we
also experiment with that. Scoring all candidates might not be always possible
(sometimes there are thousands of candidates for a mention) and especially when
using an N-to-1 mapping between textual identifiers there will be names to rank in
all languages available for each candidate. Then, when we use candidates, it is to
constrain BS steps further, rather than to rank all of them. Concretely, candidate
selection is made with an alias table. Using the training data, we build a mention
table where we record all entities indexed by the names used to refer to them in
any language. Additionally, we also use Wikipedia titles as additional mentions
(useful for entities that never appear as links), redirects, Wikidata labels, and
aliases.

5.4 Experimental Setting

We use Wikidata (Vrandečić, 2012) as our KB while exploiting the supervision
signal from Wikipedia hyperlinks. For evaluation, we test our model on two
established cross-lingual datasets, TR2016hard and TAC-KBP2015 (Ji et al., 2015;
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Figure 5.2: Venn diagram on the overlap of languages used during multilingual
language modeling (pre-training), the languages available on Wikipedia (as of
2019-10-01), and the languages used by Botha et al. (2020). After pre-training
on 125 languages, we fine-tune on the 105 that overlap with the one available in
Wikipedia.

Tsai & Roth, 2016), as well as the recently proposed Mewsli-9 MEL dataset (Botha
et al., 2020). Additionally, we propose a novel setting extracted from Wikinews3

where we train a model on a set of languages, and we test it on unseen ones.

5.4.1 Pre-training

We used a pre-trained mBART (Lewis et al., 2020a; Liu et al., 2020) model on 125
languages—see figure 5.2 for a visual overview of the overlap with these languages,
Wikipedia and the languages used by Botha et al. (2020). mBART has 24 layers
of hidden size is 1,024 and it has a total of 406M parameters. We pre-trained
on an extended version of the cc100 (Conneau et al., 2020; Wenzek et al., 2020)
corpora available here4 where we increased the number of common crawl snapshots
for low resource languages from 12 to 60. The dataset has ≈ 5TB of text. We
pre-trained for 500k steps with max 1,024 tokens per GPU on a variable batch
size (≈3000).

3 https://www.wikinews.org
4 http://data.statmt.org/cc-100

https://www.wikinews.org
http://data.statmt.org/cc-100
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5.4.2 Data for supervision

Wikidata We use Wikidata as the target KB to link to. Wikidata contains
tens of millions of items but most of them are scholarly articles or they correspond
to help and template pages in Wikipedia (i.e., not entities we want to retain).5
Following (Botha et al., 2020), we only keep Wikidata items that have an
associated Wikipedia page in at least one language, independent of the languages
we actually model. Moreover, we filter out items that are a subclass (P279) or
instance of (P31) some Wikimedia organizational entities (e.g., help and template
pages—see table 5.1). Our entity set E contains 20,277,987 items (as a reference,
English Wikipedia has just ≈6M items). Using the corresponding Wikipedia
titles as textual identifiers in all languages leads to a table of 53,849,351 entity
names. We extended the identifiers including redirects which leads to a total of
89,270,463 entity names. Although large, the number of entity names is not a
bottleneck as the generated prefix tree occupies just 2.2GB for storage (Botha
et al. (2020) systems need ≈10 times more storage).

Wikipedia We exploit Wikipedia hyperlinks as the source of supervision for
MEL. We used Wikipedia in 105 languages out of the >300 available. These
105 are all the languages for which our model was pre-trained on that overlaps
with the one available in Wikipedia (see full language list in figures 5.3 and
5.4). We aligned each Wikipedia hyperlink to its respective Wikidata item
using a custom script. Note that each Wikipedia page maps to a Wikidata
item. For the alignment we use i) direct reference when the hyperlink point
directly to a Wikipedia page, ii) a re-directions table if the hyperlink points to
an alias page, and iii) a Wikidata search among labels and aliases of items if the
previous two alignment strategies failed. The previous two alignment strategies
might fail when i) authors made a mistake linking on a non-existing page, ii)
authors linked to a non-existing page on purpose hoping it will be created in the
future, or iii) the original title of a page changed over time and no redirection
was added to accommodate old hyperlinks. This procedure successfully aligns
91% of the hyperlinks. We only keep unambiguous alignments since, when using
Wikidata search (i.e., the third alignment strategy), the mapping could be
ambiguous (e.g., multiple items may share the same labels and aliases). We use a
standard Wikipedia extractor wikiextractor6 by Attardi (2015) and a redirect
extractor7. We use both Wikipedia and Wikidata dumps from 2019-10-01.
Eventually, we extracted a large-scale dataset of 734,826,537 datapoints (i.e.,
mention-entity pairs). For the plain generation strategy, we selected as the ground

5 https://www.wikidata.org/wiki/Wikidata:Statistics
6 https://github.com/attardi/wikiextractor
7 https://code.google.com/archive/p/wikipedia-redirect

https://www.wikidata.org/wiki/Wikidata:Statistics
https://github.com/attardi/wikiextractor
https://code.google.com/archive/p/wikipedia-redirect
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Wikidata ID Label

Q4167836 category
Q24046192 category stub
Q20010800 user category
Q11266439 template
Q11753321 navigational template
Q19842659 user template
Q21528878 redirect page
Q17362920 duplicated page
Q14204246 project page
Q21025364 project page
Q17442446 internal item
Q26267864 KML file
Q4663903 portal
Q15184295 module

Table 5.1: Wikidata identifiers used for filtering out items from Botha et al.
(2020).

truth the name in the source language. When such entity name is not available8

we randomly select 5 alternative languages and we use all of them as datapoints.
To enable model selection, we randomly selected 1k examples from each language
for validation.

cc125 For all experiments, we do not train a model from scratch, but we fine-tune
a multilingual language model trained on 125 languages. cc125 is an extension of
cc100 (Conneau et al., 2020; Wenzek et al., 2020) corpora available here9 where
we increased the number of common crawl snapshots for low resource languages
from 12 to 60. Unfortunately, this extension is not public.10

5.4.3 Data for test

Mewsli-9 (Botha et al., 2020) contains 289,087 entity mentions appearing in
58,717 originally written news articles from Wikinews, linked to Wikidata. The
corpus includes documents in 9 languages.11 Differently from the cross-lingual

8 This happens when there are broken links or links that points to pages in prospect of being
created.

9 http://data.statmt.org/cc-100
10The work of this chapter was produced during an internship at Facebook AI https://ai.faceb
ook.com; some proprietary data was used.

11Arabic, English, Farsi, German, Japanese, Serbian, Spanish, Tamil, and Turkish.

http://data.statmt.org/cc-100
https://ai.facebook.com
https://ai.facebook.com
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setting, this is a truly multilingual dataset since 11% target entities in Mewsli-9
do not have an English Wikipedia page.

TR2016hard (Tsai & Roth, 2016) is a Wikipedia based cross-lingual dataset
specifically constructed to contain difficult mention-entity pairs. Authors extracted
Wikipedia hyperlinks for which the corresponding entity is not the most likely
when using an alias table. Since we train on Wikipedia, to avoid an overlap
with this test data, we removed all mentions from our training data that also
appear in TR2016hard. Note that this pruning strategy is more aggressive than
Tsai and Roth (2016) and Botha et al. (2020) strategies. Tsai and Roth (2016)
assured to not have mention-entity pairs overlaps between training and test, but
a mention (with a different entity) might appear in training. Botha et al. (2020)12

split at the page-level only, making sure to hold out all Tsai and Roth (2016) test
pages (and their corresponding pages in other languages), but they trained on
any mention-entity pair that could be extracted from their remaining training
page partition (i.e., they have overlap between training and text entity-mention
pairs). To compare with previous works (Tsai & Roth, 2016; Upadhyay et al.,
2018; Botha et al., 2020) we only evaluate on German, Spanish, French and Italian
(a total of 16,357 datapoints).

TAC-KBP2015 To evaluate our system on documents out of the Wikipedia
domain, we experiment on the TAC-KBP2015 Tri-Lingual Entity Linking Track (Ji
et al., 2015). To compare with previous works (Tsai & Roth, 2016; Upadhyay et al.,
2018; Sil et al., 2018; Zhou et al., 2019), we use only Spanish and Chinese (i.e.,
we do not evaluate in English). Following previous work, we only evaluate in-KB
links (Yamada et al., 2016; Ganea & Hofmann, 2017), i.e, we do not evaluate on
mentions that link to entities out of the KB. Previous works considered Freebase
(Bollacker et al., 2008) as KB, and thus we computed a mapping between Freebase
ID and Wikidata ID. When we cannot solve the match, our system gets zero
scores (i.e., it counts as a wrong prediction). TAC-KBP2015 contains 166 Chinese
documents (84 news and 82 discussion forum articles) and 167 Spanish documents
(84 news and 83 discussion forum articles) for a total of 12,853 mention-entity
datapoints.

Wikinews-7 For the purpose of testing a model on languages unseen during
training, we extract mention-entities pairs from Wikinews in 7 languages that
are not in the Mewsli-9 language set.13 Table 5.5 reports statistics of this dataset.
Wikinews-7 is created in the same way as Mewsli-9, but we used our own
implementation to extract data from raw dumps.14

12Information provided by private correspondence with the authors.
13Chinese, Czech, French, Italian, Polish, Portuguese, and Russian.
14Botha et al. (2020) did not release code for extracting Mewsli-9 from a Wikinews dump.
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5.4.4 Training

We implemented, trained, and evaluate our model using the fariseq library (Ott
et al., 2019). We trained mGENRE using Adam (Kingma & Ba, 2015) with a
learning rate 1e − 4, β1 = 0.9, β2 = 0.98, and with a linear warm-up for 5,000
steps followed by liner decay for maximum 2M steps. The objective is sequence-
to-sequence categorical cross-entropy loss with 0.1 of label smoothing and 0.01
of weight decay. We used dropout (Srivastava et al., 2014b) probability of 0.1
and attention dropout of 0.1. We used max 3,072 tokens per GPU and variable
batch size (≈12, 500). Training was done on 384 GPUs (Tesla V100 with 32GB of
memory) and it completed in ≈72h for a total of ≈27, 648 GPU hours or ≈1, 152
GPU days. Since TAC-KBP2015 contains noisy text (e.g., XML/HTML tags),
we further fine-tune mGENRE for 2k steps on its training set when testing on it.
For evaluation we use the recent multilingual-EL dataset Mewsli-9 (Botha et al.,
2020), the cross-lingual TAC-KBP2015 Tri-Lingual Entity Linking (Ji et al., 2015)
and TR2016hard (Tsai & Roth, 2016). We refer to the original works for details on
the data.

5.4.5 Inference

At test time, we use Constrained Beam Search with 10 beams, length penalty of 1,
and maximum decoding steps of 32. We restrict the input sequence to be at most
128 tokens cutting the left, right, or both parts of the context around a mention.
When employing marginalization, we normalize the log-probabilities by sequence
length using log p(Y|X )/Lα, where α = 0.5 was tuned on the development set
(testing values between 0 and 2 at 0.1 intervals).

5.5 Results
The main results of this chapter are reported in table 5.2 for Mewsli-9, and in table
5.3 for TR2016hard, and TAC-KBP2015 respectively. Our mGENRE (trained with
‘Name+Language’ and used with marginalization and candidates) outperforms all
previous works in all those datasets. We show the accuracy of mGENRE on the
105 languages in our Wikipedia validation set against an alias table baseline in
figures 5.3 and 5.4.

5.5.1 Performance evaluation

Mewsli-9 In table 5.2 we compare our mGENRE against the best model from
Botha et al.’s (2020) Model F+ as well as with their alias table baseline. We
report results from mGENRE with and without constraining the beam search
to the candidates from the table (see section 5.3.4) as well as with and without
marginalization (see section 5.3.3). All of these alternatives outperform Model F+
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Croatian (hr)
Czech (cs)

Albanian (sq)
Italian (it)

Marathi (mr)
Amharic (am)

Arabic (ar)
Armenian (hy)

Finnish (fi)
Hindi (hi)

Ukrainian (uk)
Russian (ru)
Gaelic, (gd)

Assamese (as)
German (de)

Indonesian (id)
Belarusian (be)

Icelandic (is)
Latvian (lv)

Hungarian (hu)
Frysk (fy)

Malay (ms)
Dutch (nl)

Persian (fa)
Thai (th)

Romanian (ro)
Norwegian (no)

Telugu (te)
Bulgarian (bg)
Slovenian (sl)

Kurdish (ku)
Serbian (sr)
Danish (da)

Lithuanian (lt)
Esperanto (eo)
Georgian (ka)

Latin (la)
Vietnamese (vi)

Sanskrit (sa)
Galician (gl)

Azerbaijani (az)
Macedonian (mk)

Quechua (qu)
Japanese (ja)

Irish (ga)
Urdu (ur)

Catalan (ca)
Slovak (sk)
Welsh (cy)

Kyrgyz (ky)
Javanese (jv)
Guarani (gn)

Sundanese (su)
Breton (br)

Afrikaans (af)
Swahili (sw)
Kazakh (kk)

Swedish (sv)
Basque (eu)

Estonian (et)
Gujarati (gu)

Uzbek (uz)
Malagasy (mg)

1 2 3 4 5 6 7 8 9
log10(training size)

mGENRE
Alias Table
log10(training size)

Figure 5.3: Accuracy of mGENRE and alias table on the 105 languages in our
Wikipedia validation set sorted by accuracy. See Table A.2 for all precise values.
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Chinese (zh)
Portuguese (pt)

Dutch (nl)
Polish (pl)

Russian (ru)
Spanish (es)

Italian (it)
Swedish (sv)
Japanese (ja)

French (fr)
German (de)
English (en)
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log10(training size)

mGENRE
Alias Table
log10(training size)

Figure 5.4: Accuracy of mGENRE on the 105 languages in our Wikipedia
validation set sorted by training set size. See Table A.2 for all precise values.
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on both micro and macro average accuracy across the 9 languages. Our base model
(without candidates or marginalization) has a 10.9% error reduction in micro
average and 18.0% error reduction for macro average over all languages. The base
model has no restrictions on candidates so it is effectively classifying among all the
≈20M entities. The base model performs better than Model F+ on each individual
language except English and German. Note that these languages are the ones for
which we have more training data (≈134M and ≈60M datapoints each) but also
the languages that have the most entities/pages (≈6.1M and ≈2.4M). Therefore
these are the hardest languages to link. When enabling candidate filtering to
restrict the space for generation, we further improve error reduction to 13.6% and
21.0% for micro and macro average respectively. Although candidate selection is
not required by our general formulation, it definitely helps to restrict the search
space when candidates are available (note that recall@k using all the candidates
is >98% for all languages and on average using candidates reduces the search
space form ≈20M entities to a few hundreds—e.g., see figure 5.5 for a breakout of
results by the number of retrieved candidates). Marginalization reduces the error
by the same amount as candidate filtering but combining search with candidates
and marginalization leads to our best model: it improves error reduction to 14.5%
and 23.0% on micro and macro average respectively. Our best model is also better
than Model F+ in English and on par with it in German.

TR2016hard and TAC-KBP2015 We compared our mGENRE against cross-
lingual systems (Tsai & Roth, 2016; Sil et al., 2018; Upadhyay et al., 2018; Zhou
et al., 2019) and Model F+ by Botha et al. (2020) in table 5.3. Differently from
Meswli-9, the base mGENRE model does not outperform previous systems. Using
marginalization brings minimal improvements. Instead, using candidates gives
+11% absolute accuracy on TAC-KBP2015 and +5% on TR2016hard effectively
making mGENRE state-of-the-art in both datasets. The role of candidates is
very evident on TAC-KBP2015 where there is not much of a difference for Spanish
but a +22% absolute accuracy for Chinese. TAC-KBP2015 comes with a training
set and we used it to expand the candidate set. Additionally, we also included all
simplified Chinese versions of the entity names because we used traditional Chinese
in pre-training, and TAC-KBP2015 uses simplified Chinese. Many mentions in
TAC-KBP2015 were not observed in Wikipedia, so the performance gain mostly
comes from this but including the simplified and alternative Chinese names also
played an important role (+5% comes from this alone).15

15We speculate that including different version (e.g., different dialects for Arabic) of entity names
could improve performance in all languages. Since this is not in the scope of this chapter, we
will leave it for future.
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Botha et al. (2020) mGENRE

Bin Support Acc. Support Acc.

[0, 1) 3,198 8.3 1,244 22.1
[1, 10) 6,564 57.7 5,777 47.3
[10, 100) 32,371 80.4 28,406 77.3
[100, 1k) 66,232 89.6 72,414 89.9
[1k, 10k) 78,519 92.9 84,790 93.2
[10k, +) 102,203 94.1 96,456 96.3

micro-avg 289,087 89.4 289,087 90.6
macro-avg - 70.5 - 71.0

Table 5.4: Accuracy on the Mewsli-9 dataset, by entity frequency in training
(full-model, i.e., trained with ‘Language+Name’ and used with marginalisation
and candidates). The support is slightly different because training data differ (i.e.,
the set of languages from Wikipedia is different).

5.5.2 Analysis

By entity frequency Table 5.4 shows a breakdown of Mewsli-9 accuracy by
entity frequency in training for Botha et al. (2020) Model F+ and mGENRE.
Interestingly, our model has much higher accuracy (22% vs 8%) on unseen entities
(i.e., the [0, 1) bin). This is because our formulation can take advantage of copying
names from the source, translating them or normalizing them. For example, an
unseen person name should likely be linked to the entity with the same name. This
powerful bias gives the model advantage in these cases. On very rare entities (i.e.,
the [1, 10) bin) our model performs worse than Model F+. Note that Model F+ was
trained specifically to tackle those cases (e.g., with hard negatives and frequency-
based mini-batches) whereas our model was not. We argue that similar strategies
can be applied to mGENRE to improve performance on rare entities, and we leave
that to future work. The performance gap between Model F+ and mGENRE on
entities that appear more than 100 times in the training set is minimal.

By candidate frequency We additionally measure the accuracy on Mewsli-
9 by the number of candidates retrieved from the alias table (details in figure
5.5). When there are no candidates (≈ 4% of Mewsli-9) an alias table would
automatically fail, but mGENRE uses the entire KB as candidates and has 63.9%
accuracy. For datapoints with few candidates (e.g., less than 100), we could use
mGENRE as a ranker and score all of the options without relying on constrained
beam search. However, this approach would be computationally infeasible when
there are no candidates (i.e., we use all the KB as candidates) or too many
candidates (e.g., thousands). Constrained BS allows us to efficiently explore the
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Figure 5.5: Accuracy on Mewsli-9 by the number of retrieved candidates (full-
model, i.e., trained with ‘Language+Name’ and used with marginalisation and
candidates). We also indicate the support of each bin (in log-scale). No candidates
(0 bin) corresponds to considering all items in the KB as candidates.

space of entity names, whatever the number of candidates.

By mention frequency We show a breakdown of the accuracy of mGENRE
on Mewsli-9 by mention frequency in table 5.6. The accuracy of unseen mentions
is 66.7% and increases up to 93.6% for mentions seen more than 10k times. For
extremely common mentions (i.e., seen more than 1M times) the accuracy drops
to 73.2%. These mentions correspond to entities that are harder to disambiguate
(e.g., ‘United States’ appears 3.2M times but can be linked to the country as well
as any sports team where the context refers to sports).

Unseen Languages We use our Wikinews-7 dataset to evaluate mGENRE
capabilities to deal with languages not seen during training (i.e., the set of
languages in train and test are disjoint). This zero-shot setting implies that no
mention table is available during inference; hence we do not consider candidates
for test mentions. We train our models on the nine Mewsli-9 languages and
compare all strategies exposed in section 5.3. To make our ablation study feasible,
we restrict the training data to the first 1 million hyperlinks from Wikipedia
abstracts. Results are in table 5.5.

Using our marginalization strategy that aggregates (both at training and infer-
ence time) over all seen languages to perform the linking brings an improvement
of over 50% with respect to considering a single language. To deeper investigate
the behaviour of the model in this setting, we compute the probability mass
distribution over languages seen at training time for the top-1 prediction (reported
in figure 5.7). When marginalization is enabled (figure 5.7b) the distribution
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Language Canonical N+L L+N L+NM

ar 90.5 92.8 92.9 89.2
de 84.6 86.4 86.4 85.3
en 77.6 79.3 79.2 76.5
es 83.4 85.5 85.2 83.4
fa 91.6 90.7 91.8 88.2
ja 81.3 82.3 82.8 81.3
sr 91.5 92.7 92.9 92.5
ta 92.8 91.8 91.9 91.3
tr 88.0 87.7 87.3 86.0

micro-avg 83.20 84.77 84.80 83.05
macro-avg 86.82 87.68 87.82 85.97

+ candidates

ar 94.4 94.5 94.7 93.0
de 89.4 89.8 89.8 89.3
en 83.6 83.8 83.9 82.4
es 87.7 88.2 88.3 87.3
fa 93.6 93.3 93.6 93.3
ja 87.9 88.0 88.4 87.9
sr 93.1 93.4 93.5 93.2
ta 93.0 92.2 92.5 92.5
tr 91.1 90.4 89.9 89.1

micro-avg 87.95 88.22 88.32 87.43
macro-avg 90.42 90.41 90.51 89.78

Unseen languages

cs 36.3 30.2 34.0 69.7
fr 62.9 57.0 53.3 73.4
it 44.8 43.7 42.9 56.8
pl 31.9 21.2 25.6 68.8
pt 60.8 61.7 59.5 76.2
ru 34.9 32.4 35.1 65.8
zh 35.1 41.1 44.0 52.8

micro-avg 41.6 38.3 39.5 65.9
macro-avg 43.8 41.0 42.1 66.2

Table 5.5: Accuracy on the Mewsli-9 and Wikinews-7 datasets. Models are
trained only on the Mewsli-9 languages (1M datapoints per language: ar, de, en,
es, fa, ja, sr, ta, and tr). N+L stands for Name+Language and L+N is for
Language+Name. M indicates marginalization.
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ar de en es fa ja sr ta tr

ar
de
en
es
fa
ja
sr
ta
tr

99.99 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.02 99.38 0.54 0.04 0.00 0.01 0.00 0.00 0.00

0.02 0.07 99.85 0.04 0.00 0.01 0.00 0.00 0.00

0.06 0.04 0.79 99.08 0.00 0.02 0.01 0.00 0.00

0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.00 99.98 0.00 0.00 0.00

0.01 0.00 0.10 0.01 0.00 0.02 99.86 0.00 0.00

0.00 0.00 0.04 0.00 0.00 0.00 0.00 99.96 0.00

0.03 0.02 0.53 0.03 0.02 0.00 0.02 0.05 99.29

(a) Language+Name.

ar de en es fa ja sr ta tr

ar
de
en
es
fa
ja
sr
ta
tr

27.72 3.63 4.14 7.21 4.46 17.93 4.09 28.66 2.15

7.06 26.76 7.48 7.38 6.48 18.34 5.52 18.87 2.12

9.80 7.32 35.24 6.76 5.65 16.77 3.07 12.70 2.68

9.00 6.39 10.73 21.99 6.54 18.12 4.63 19.59 3.00

10.00 6.64 7.10 5.23 23.27 18.97 6.17 20.00 2.62

7.22 7.95 8.96 4.70 6.80 46.85 2.70 11.33 3.47

3.66 4.04 4.41 2.57 2.92 32.59 13.23 34.55 2.03

6.17 3.25 4.38 3.83 10.55 20.97 7.56 40.77 2.53

6.63 6.51 8.30 6.25 6.80 16.80 4.26 25.75 18.70

(b) Language+NameM.

Figure 5.6: Distribution of languages on the top-1 prediction of two mGENRE
models on Mewsli-9. Y-axis indicates the source language where X-axis indicates
the language of the top-1 prediction. The models trained on those languages.

is more spread across languages since the model is trained to use all of them.
Hence the model can exploit connections between an unseen language and all seen
languages for the linking process drastically increases accuracy.

Marginalization is effective for this zero-shot setting, but it has a minimal
impact in the standard setting (e.g., tables 5.2 and 5.3). When a model has
seen the source language at training time it mainly makes use of that to perform
a prediction (i.e., the target prediction is in the source language most of the
times— >99% see figure 5.6). Instead, when the source language is never seen
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ar de en es fa ja sr ta tr

cs
fr
it
pl
pt
ru
zh

0.00 0.80 4.18 42.36 0.00 1.38 39.63 5.46 6.19

0.09 0.50 4.26 91.19 0.00 0.42 2.06 0.79 0.69

0.05 1.11 5.49 83.38 0.28 0.13 2.19 0.53 6.83

0.00 2.45 8.81 60.43 0.00 2.08 15.58 8.29 2.35

0.19 0.98 1.81 94.04 0.00 0.08 1.66 1.13 0.11

0.02 0.04 0.44 4.78 0.00 1.79 92.74 0.12 0.06

0.47 0.00 1.16 1.42 0.11 94.89 1.05 0.42 0.47

(a) Language+Name.

ar de en es fa ja sr ta tr

cs
fr
it
pl
pt
ru
zh

8.75 12.44 10.94 8.86 5.44 21.83 8.44 19.69 3.60

7.93 9.21 18.83 9.16 6.96 22.09 5.75 17.44 2.63

8.64 10.40 14.11 9.71 5.16 33.80 4.51 11.03 2.65

7.88 12.46 24.70 7.84 5.22 19.59 6.46 13.06 2.78

8.50 7.07 15.53 10.89 3.79 19.32 7.27 23.09 4.54

7.66 6.91 14.81 7.56 5.15 26.09 7.05 20.62 4.15

10.06 6.85 17.70 5.71 4.93 32.26 4.38 15.39 2.72

(b) Language+NameM.

Figure 5.7: Distribution of languages on the top-1 prediction of two mGENRE
models on Wikinews-7 (test set). Y-axis indicates the source language (unseen
at training time) where X-axis indicates the language (seen at training time) of
the first prediction. Note that the models are only trained on ar, de, en, es, fa,
ja, sr, ta, and tr.

during training, by marginalising the model can exploit similarities with all seen
languages. Indeed, even though marginalization and canonical representation
are the top-two systems in the unseen languages setting, they are not on seen
languages on the same setting: in table 5.5 we report the results of all these
strategies also on the seen languages (Mewsli-9 test set). Complementary to
figure 5.7 we also report the probability mass distribution over languages seen for
Mewsli-9 in figure 5.6.

Memory Footprint As computational cost and memory footprints are im-
portant aspects of modeling, we compared the number of parameters used by
mGENRE and the best competing mEL system by Botha et al. (2020). Their
model has ≈73M parameters and ≈15B entity parameters for a total memory
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Bin Support Accuracy

[0, 1) 14,741 66.7
[1, 10) 15,279 88.1
[10, 100) 43,169 92.0
[100, 1k) 75,927 91.7
[1k, 10k) 80,329 91.5
[10k, 100k) 47,944 93.6
[100k, 1M) 11,460 93.0
[1M, 10M) 238 73.2

Table 5.6: Accuracy results on Mewsli-9 dataset by mention frequency in training
(full-model, i.e., trained with ‘Language+Name’ and used with marginalisation
and candidates). We also indicate the support of each bin.

usage of ≈61GB where mGENRE has ≈406M model parameters, no entity pa-
rameters (i.e., we just have a prefix tree with entity names that occupies ≈2.2GB),
for a total of ≈6GB memory usage (i.e., ≈10 times less memory).

Examples In table 5.7 we report some examples of correct and wrong predictions
of our mGENRE L+N and N+L on selected datapoints from Mewsli-9. Examples
are picked to highlight specific behaviors of our models. We show an example of
the copying mechanisms (i.e., the N+L model normalizes the mention but L+N
fails to do so) as well as an example where the model memorized an acronym (i.e.,
“MDC" as Movement for Democratic Change) and outputs that correctly in the
case of L+N and wrongly for N+L.

5.6 Subsequent Work

Most of the relevant subsequent work is shared with chapter 4 and thus discussed in
section 4.6. More specific to multilingual entity linking is the recent work Mention
Only Linking of Entities with a Mention Annotation Network (MOLEMAN;
FitzGerald et al., 2021) that builds upon the Botha et al.’s (2020) Model F+. It is
still a bi-encoder type of model that scores mention-entity pairs with a dot-product.
However, it overcomes the need for entity descriptions entirely: they only learn a
mention-encoder that places similar mentions of the same entity closer in vector
space. Then, “all mentions of an entity to serve as prototypes as inference involves
retrieving from the full set of labeled entity mentions in the training set”. We
report MOLEMAN’s results in tables 5.2 and 5.3.
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Input Police in Zimbabwe have stopped opposition leader Mor-
gan Tsvangirai ( [START] MDC [END] ) en route to a
campaign rally. His convoy was then escorted to a police
station in Esigodini.

Correct by L+N en » Movement for Democratic ChangeQ6926644

Wrong by N+L People’s Democratic Party (Zimbabwe) » enQ48798212

Input Sin embargo, la promoción del [START] absten-
cionismo [END] por parte de los opositores se tradujo
en una participación de apenas el 47.32%, alrededor de 9.2
millones de electores. En las municipales de 2013 habían
participado 58.92% de los venezolanos con derecho a voto.
61% en los comicios regionales de octubre.

Wrong by L+N es » Oposición (política)Q192852

Correct by N+L Abstención » esQ345321

Table 5.7: Examples of correct and wrong predictions of our mGENRE models
Language+Name (L+N) and Name+Language (N+L) on selected samples from
Mewsli-9.

5.7 Conclusion
In this chapter, we propose an autoregressive formulation to the multilingual
entity linking problem. For a mention in a given language, our solution generates
entity names left-to-right and token-by-token. The resulting system, maintains
entity names in as many languages as possible to exploit language connections
and interactions between source mention context and target entity name. The
constrained beam search decoding strategy enables fast search within a large set
of entity names (e.g., the whole KB in multiple languages) with no need for large-
scale dense indices. We additionally design a novel objective that marginalizes
over all available languages to perform a prediction. We show that this strategy is
really effective in dealing with languages for which no training data is available
(i.e., 50% improvements for languages never seen during training). Overall, our
experiments show that mGENRE achieves new state-of-the-art performance on
three popular multilingual entity linking datasets.

https://www.wikidata.org/wiki/Q6926644
https://www.wikidata.org/wiki/Q48798212
https://www.wikidata.org/wiki/Q192852
https://www.wikidata.org/wiki/Q345321




Chapter 6

Highly Parallel and Fast
Autoregressive Entity Linking

Chapter Highlights

In the previous chapters we show that generative approaches are effective for
both Entity Disambiguation and Entity Linking (i.e., joint mention detection and
disambiguation). However, the previously proposed autoregressive formulation for
EL suffers from i) high computational cost due to a complex (deep) decoder, ii)
non-parallelizable decoding that scales with the source sequence length, and iii)
the need for training on a large amount of data. In this chapter, we propose a
very efficient approach that parallelizes autoregressive linking across all potential
mentions and relies on a shallow and efficient decoder. Moreover, we augment the
generative objective with an extra discriminative component, i.e., a correction
term which lets us directly optimize the generator’s ranking. When taken together,
these techniques tackle all the above issues: our model (ParallelAEL) is >70 times
faster and more accurate than the previous generative method, outperforming
state-of-the-art approaches on the standard English dataset AIDA-CoNLL.1

1 Source code available at https://github.com/nicola-decao/efficient-autoregressive-EL
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https://github.com/nicola-decao/efficient-autoregressive-EL
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6.1 Introduction

Employing autoregressive language models for both Entity Disambiguation (ED)
and Entity Linking (EL) better leverages the implicit knowledge accumulated
during pre-training, exploiting a full cross-encoder of entities and their context (see
chapters 4 and 5). For ED, autoregressive generation is remarkably good (even in
multilingual settings), while for EL, although state-of-the-art on multiple datasets,
it suffers from several and critical limitations. The generative model of De Cao et al.
(2021a) (see chapter 4) outputs a version of the input document which is markup-
annotated with mentions linked to their respective entities. This necessitates using
an autoregressive decoder, precluding parallelism across mentions. Generation also
has a high computational cost due to relying on a complex and deep Transformer
(Vaswani et al., 2017) decoder. Transformers are state-less and their memory
footprint scales with sequence length, making them memory-consuming when
generating long sequences. Additionally, Transformers-based decoders are notably
data-hungry, and their effective training requires large amounts of data. For
example, in chapter 4 we had to pre-train their model on Wikipedia abstracts.

In this chapter, we revisit the generative approach to EL and generate mention-
entity pairs conditionally independently given the input. This allows for parallelism
across mentions, which we exploit by employing a shallow LSTM-based decoder.
To optimize more explicitly the generator’s ranking, we use a discriminative
correction term that pushes the score of the correct predictions to be higher than
the rest. Moreover, to enable conditioning on long inputs, we employ an efficient
Transformer encoder (Beltagy et al., 2020) designed to support long sequences.
Figure 6.1 outlines our model.

Contributions We propose a highly parallel model for autoregressive entity
linking that retains the advantages of being generative while being > 70 times
faster than a previous generative formulation and as fast as non-generative models.
We optimize for the correctness of the decoder’s ranking with a discriminative
loss to improve autoregressive EL further. The model outperforms state-of-the-art
approaches on the standard English AIDA dataset.

6.2 Background

Our formulation builds upon the GENRE model by De Cao et al. (2021a). See
chapter 4 for a discussion on the GENRE model and relevant related work.

6.2.1 Task Definition

Given a document d (e.g., a sentence) an Entity Linking (EL) system f has to
return a setM of mention-entity pairsM = f(d) = {〈mi, ei〉}ni=1 where each mi
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is a entity mentions (Hoffmann et al., 2011). Each mention mi is a span contained
in d, i.e., is a pair of start and end positions 〈ms

i ,m
e
i 〉 in d. Each mention mi

refers to an entity ei ∈ E in a fixed Knowledge Base (KB)—note that entities can
be referred to with multiple ambiguous surface forms (e.g., a mention of “Obama”
may refer to the entity “Barack Obama”2 while in some context it can refer to
“Michelle Obama”3).

6.2.2 Related Work

EL is typically decomposed in Mention Detection (MD; i.e., the task of finding
mention spans in text) and Entity Disambiguation (ED; i.e., the task of disam-
biguating a mention to its respective entity). Many methods (Hoffart et al., 2011;
Piccinno & Ferragina, 2014; Steinmetz & Sack, 2013) treat these sub-tasks sepa-
rately, training different modules. More modern approaches – known as end-to-end
EL – instead use a shared (typically neural) architecture. Kolitsas et al. (2018) use
a bidirectional LSTM (Hochreiter & Schmidhuber, 1997) as an encoder and then
local and global scoring functions to link mentions. They exploit pre-computed
entity embeddings by Ganea and Hofmann (2017) and match the embeddings to
contextualized mention representations. Martins et al. (2019) also explore joint
learning of Named Entity Recognition (NER) and EL showing that the two tasks
benefit from joint training, while Li et al. (2020) approach EL specifically for
questions.

In this chapter, we focus on monolingual EL in English while there is a line of
work that explores cross-lingual entity linking (McNamee et al., 2011; Ji et al.,
2015), that is linking from any source language to a standard one (e.g., English),
and multilingual entity linking (Botha et al., 2020) that is a generalization of
both.

6.3 Method
Our method learns by generating observed mention-entity pairsM given an input
document d made of a sequence of tokens X . To create a key opportunity for
parallelism, we assume that, given the document tokens X , each mention-entity
pair 〈mi, ei〉 ∈ M is independent of one another. Moreover, each pair’s probability
is further factorized as a product of an MD and an ED components:

p(M|X ; θ)
ind.
=

∏
〈mi,ei〉∈M

p(mi|X ; θMD) p(ei|mi,X ; θED) , (6.1)

where θ = θMD ∪ θED is a shared set of parameters (and θMD ∩ θED need not be
empty). To provide our models with a rich representation of the document, we
2 https://www.wikidata.org/wiki/Q76
3 https://www.wikidata.org/wiki/Q13133

https://www.wikidata.org/wiki/Q76
https://www.wikidata.org/wiki/Q13133
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encode it using a Longformer (Beltagy et al., 2020), a Transformer pre-trained with
a masked language model objective that is designed to support long sequences.

Mention Detection There are different ways to model p(mi|X ; θMD) (i.e., the
probability that the span mi in X contains a mention). One is to score all possible
spans which requires a number of evaluations that is quadratic in sequence length.
For long documents, that is clearly unfeasible. Thus, for maximizing efficiency,
we opt for factorizing the probability of a span as the probability of its start ms

i

times the conditional probability of its end me
i given the start:

p(mi|X ; θMD) = p(ms
i |X ; θMD) p(me

i |ms
i ,X ; θMD) . (6.2)

The first term is the probability that position ms
i starts a mention, and the

second is the probability that the mention has size me
i − ms

i + 1, to which we
give categorical treatment.4 Such factorization allows both for fast training and
inference. During training, mentions are known. For inference, we consider only
the positions for which the probability of starting a mention exceeds a threshold
chosen to maximise micro-F1 on the validation set.

Entity Disambiguation The disambiguation module learns to generate the
unique name of ei autoregressively (token by token) from left to right:

p(ei|mi,X ; θED) = p(Ye|mi,X ; θED) =
n∏
i=1

p(yi|y<i,mi,X ; θED) , (6.3)

where Ye = {yi}ni=1 is the sequence of n tokens in the unique identifier of ei ∈ E .
To fully exploit our design’s potential for parallelism across mentions, we use a
small single-layered LSTM (Hochreiter & Schmidhuber, 1997). This language
model is not constrained to generating only valid entity names, besides, maximum
likelihood training does not directly optimize for the correctness of the generator’s
ranking. To mitigate those issues, when training the model, we employ an auxiliary
loss based on a discriminative classifier that assigns probability

p(ei|mi,X ; θED) =
exp(f(mi,X ,Ye; θED))∑
e′∈E exp(f(mi,X ,Ye′ ; θED))

, (6.4)

where f is an MLP (details in section 6.4.1) and the normalization is over all
entities in the KB (i.e., their unique names).

4 We limit the maximum number of tokens per span to 15 to avoid memory overhead (in the
training set there is no mention with more than 12 tokens).
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Split Documents Mentions

Training 942 18,540
Validation 216 4,791
Test 230 4,485

Table 6.1: Statistics of the AIDA-CoNLL dataset (standard splits; Hoffart et al.,
2011).

Parameter Estimation We estimate the parameters of all components jointly
as to maximize the model’s likelihood given a dataset of observations using
stochastic gradient descent (SGD; Robbins & Monro, 1951; Kiefer & Wolfowitz,
1952; Bottou, 2012). For the language model component, we employ length
normalization (Sutskever et al., 2011; Sutskever et al., 2014) and label smoothing
(Szegedy et al., 2016). All components are further regularized with dropout
(Srivastava et al., 2014a). The classification loss is the negative logarithm of
equation 6.4, and we approximate the normalization constant via negative sampling,
with samples drawn from a candidate set specific to each training instance.

6.4 Experimental Setting

We use the standard English AIDA-CoNLL splits (Hoffart et al., 2011) for training,
validation (i.e., for doing model selection), and test. See table 6.1 for statistics of
this dataset. AIDA provides full supervision for both MD and ED. We only link
mentions that have a valid gold KB entity, a setting referred to as InKB evaluation
(Röder et al., 2018). This is in line with many previous models (Luo et al., 2015;
Ganea & Hofmann, 2017; Yamada et al., 2016) and all systems we compare to.
As in several previous approaches, for linking we assume the availability of a
pre-computed set of candidates instead of considering the whole KB. For that,
we use the candidates by Pershina et al. (2015). We also use these candidates to
provide negative samples for the discriminative loss during training (see equation
6.4).

6.4.1 Architecture details

As the document encoder, we use a Longformer (Beltagy et al., 2020). A Long-
former is a RoBERTa (Liu et al., 2019) model with a limited attention window (we
use 128 tokens). It has 12 layers, of which we use the first 8 (for faster computation),
a hidden size of 768, 12 heads, for a total of 149M parameters. The MD modules
(i.e., p(ms

i |X ; θMD) and p(me
i |ms

i ,X ; θMD)) are both implemented as feed forward
neural networks that take as inputs contextualized token embeddings. They have
architecture: [LayerNorm, 128, ReLU, LayerNorm, 1]. We applied dropout of 0.1
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before linear projections. The autoregressive ED module p(yi|y<i,mi,X ; θED) is
implemented with an LSTM. Three feed-forward NNs predict the first hidden
state, the first context vector, and a vector to append to each decoding step.
The predictions are a function of the start and end embeddings of a mention.
All 3 FFNNs have architecture [LayerNorm, 768, ReLU, LayerNorm, 768]. The
LSTM has an input size of 1536 and a hidden size of 768. The LSTM uses
the shared input embedding from the Longformer encoder and an output head
initialized from the Longformer. The discriminative classifier f(mi,X ,Ye; θED) is
a feed-forward NN that takes as an input a vector representation of a mention and
the last context vector of the LSTM. The FFNN has architecture [LayerNorm,
768, ReLU, LayerNorm, 1]. Our whole model has a total of 202M parameters. We
manually employ search from using Layer normalization (Ba et al., 2016) or not
and the number of the Longformer layers to use.

6.4.2 Training details

We optimize ParallelAEL employing Adam (Kingma & Ba, 2015) with weight
decay of 1e-2. We use a learning rate of 1e-4 for the Longformer and a learning
rate of 1e-3 for all other components. We use a learning rate linear decay schedule
for a maximum of 10,000 steps with 500 warm-up steps. We train with a batch
size of 32 for a maximum of 100 epochs, and we do model selection on micro-F1 on
the validation set. We also optimized the threshold for the MD component with a
grid search between -5 and 5 with steps 0.1 measuring micro-F1 on the validation
set. Training takes approximately one hour on 4 GPUs Nvidia Titan X 12 GB.

6.5 Results

Table 6.2 summarizes the main results of this chapter. Our method reduces the
micro-F1 error from the previous state-of-the-art method by 11%. The EL score
can be also decomposed in Mention Detection (MD) and Entity Disambiguation
(ED) scores. Our method gets an MD micro-F1 score of ≈94 and an ED micro-F1

score of ≈ 92 (note that the EL task scores a prediction as correct when both
mention detection and disambiguation are done correctly). Unfortunately, most
of the baselines we compare to do not report this decomposition, and thus is
difficult to systematically investigate where our method stands for MD and ED
scores. Nevertheless, Kolitsas et al. (2018) is the second-best system in terms of
EL micro-F1, and the authors reported a ≈ 89 ED micro-F1. As a comparison,
Broscheit (2019) reported ≈ 88 and van Hulst et al. (2020) ≈ 84 ED micro-F1.
This suggests that our improvement mainly comes from improving ED.

Performance Evaluation In table 6.3, we compare the speed of our system
against the top-2 best baseline models from table 6.2. We run 3 independent
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Method Micro-F1

Hoffart et al. (2011) 72.8
Steinmetz and Sack (2013) 42.3
Daiber et al. (2013) 57.8
Moro et al. (2014) 48.5
Piccinno and Ferragina (2014) 73.0
Kolitsas et al. (2018) 82.4
Peters et al. (2019) 73.7
Broscheit (2019) 79.3
Martins et al. (2019) 81.9
van Hulst et al. (2020)† 80.5
Févry et al. (2020a) 76.7
De Cao et al. (2021a)‡ 83.7
Kannan Ravi et al. (2021) 83.1

Ours 85.5

Ablations

LM score only 81.5
Classifier score only 81.7
Beam Search w/ candidates 84.9
Beam Search w/o candidates 49.4*

Subsequent work

Mrini et al. (2022) 85.7
Zhang et al. (2022b) 85.8

Table 6.2: F1 (InKB) on the AIDA test set and some ablation of our Paralle-
lAEL. Bold indicates best model and underline indicates previous state-of-the-art.
†Results from the Wikipedia 2019 setting as opposed to the 2014 setting (older
dump and fewer entities). *Our generative component has only seen a fraction
of entities identifiers (≈2k compared to the KB size of ≈ 500k). ‡ discussed in
chapter 4.

runs on the validation set and report the number of queries per second on GPU5

feeding the models with one input at a time (i.e., batch size of 1). For GENRE
(De Cao et al., 2021a), we truncate sequences to the maximum supported length.
ParallelAEL parallelizes the generation of all entity identifiers and dispenses with
generating superfluous text (i.e., the non-mentions) being >70 times faster than
GENRE, which has to re-generate the whole source input left-to-right in order to
fill in the mention-entity markup sequentially. Notably, our model is also slightly

5 One Nvidia Titan X 12GB.
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Method # Queries / Sec

Kolitsas et al. (2018) 7.39± 5.03

De Cao et al. (2021a) 0.12± 0.08

Ours 8.69± 5.13

Table 6.3: Inference speed of ParallelAEL model and the top-2 SOTA model from
table 6.2.

faster than Kolitsas et al. (2018) which is a well-established model for EL.

Discriminative Correction We train with and without the discriminative
correction term of equation 6.4 to appreciate its impact in results. Using only the
LM component results in a 4% drop in performance: this is due to not optimizing
directly for the correctness of the generator’s ranking. Using the classifier alone
also leads to a 4% drop in performance. Those ablations indicate that the auxiliary
loss helps improve the generator’s ranking.

Beam Search vs Complete Scoring To compare with previous work, we use
pre-computed candidates for ED. This is feasible because the number of candidates
to score is relatively small. However, in general, candidates might be too many
and thus impractical to score them all. Thus, we test our model using Constrained
Beam Search (CBS) as an approximation. When using CBS (with a beam size of
5), performance drops by <1%, and micro-F1 remains higher than that of every
other baseline, demonstrating that our formulation is robust even in this setting.

Ablating Candidates One of the benefits of the generative formulation is the
ability to generate entity names (autoregressively through CBS) without the need
for candidates. Thus, we test our model using CBS without candidates (i.e., all
entities in the KB are viable candidates). In this setting, ParallelAEL does not
excel (42% drop in performance). The drop is not surprising: our generative
component has only seen a fraction of entities identifiers (1, 537 out of ≈500, 000
in the KB). Indeed, previous methods (e.g., GENRE from chapter 4 De Cao
et al., 2021a) were pre-trained on the whole Wikipedia to mitigate this issue.
We do not have the computational budget to do such pre-training so we leave this
for follow-up work.

6.6 Subsequent Work

All of the relevant subsequent work to this chapter is shared with chapter 4 and
thus discussed in section 4.6. We report relevant results from subsequent work in
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table 6.2.

6.7 Conclusion
In this chapter, we revisit the generative approach to EL seen in chapters 4 and
5 exploiting independence assumptions that enable parallelism across mentions
with a shallow LSTM decoder. Despite a simple and scalable design, ParallelAEL
sets a new state-of-the-art on English AIDA without a large decoder pre-training.



Chapter 7

How do Decisions Emerge
across Layers in Neural Models?

Interpretation with
Differentiable Masking

Chapter Highlights

Attribution methods assess the contribution of inputs to the model prediction.
One way to do so is erasure: a subset of inputs is considered irrelevant if it
can be removed without affecting the prediction. Though conceptually simple,
erasure’s objective is intractable and approximate search remains expensive with
modern deep NLP models. Erasure is also susceptible to the hindsight bias: the
fact that an input can be dropped does not mean that the model ‘knows’ it can
be dropped. The resulting pruning is over-aggressive and does not reflect how
the model arrives at the prediction. To deal with these challenges, we introduce
Differentiable Masking. DiffMask learns to mask-out subsets of the input while
maintaining differentiability. The decision to include or disregard an input token
is made with a simple model based on intermediate hidden layers of the analyzed
model. First, this makes the approach efficient because we predict rather than
search. Second, as with probing classifiers, this reveals what the network ‘knows’
at the corresponding layers. This lets us not only plot attribution heatmaps but
also analyze how decisions are formed across network layers. We use DiffMask
to study BERT models on sentiment classification and question answering.1 In
addition, we show how another work from the author of this thesis (but not
presented here) (Schlichtkrull et al., 2021) applied this interpretability technique
to the EntityGCN model from chapter 3.
1 Source code available at https://github.com/nicola-decao/diffmask
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7.1 Introduction

The power of deep neural networks typically comes at the expense of interpretability,
which may prevent users from trusting predictions (Kim, 2015; Ribeiro et al.,
2016a), makes it hard to detect model or data deficiencies (Gururangan et al.,
2018; Kaushik & Lipton, 2018) or verify that a model is fair and does not exhibit
harmful biases (Sun et al., 2019a; Holstein et al., 2019).

These challenges have motivated work on interpretability, both in NLP and
generally in machine learning; see Belinkov and Glass (2019) and Jacovi and
Goldberg (2020) for reviews. In this chapter, we study post hoc interpretability
where the goal is to explain the prediction of a trained model and to reveal how
the model arrives at the decision. This goal is usually approached with attribution
methods (Bach et al., 2015; Shrikumar et al., 2017; Sundararajan et al., 2017),
which explain the behavior of a model by assigning relevance to inputs.

One way to perform attribution is to use erasure where a subset of features
(e.g., input tokens) is considered irrelevant if it can be removed without affecting
the model prediction (Li et al., 2016; Feng et al., 2018). The advantage of erasure
is that it is conceptually simple and optimizes a well-defined objective. This
contrasts with most other attribution methods which rely on heuristic rules to
define feature salience; for example, attention-based attribution (Rocktäschel
et al., 2016; Serrano & Smith, 2019; Vashishth et al., 2019) or back-propagation
methods (Bach et al., 2015; Shrikumar et al., 2017; Sundararajan et al., 2017).
These approaches received much scrutiny in recent years (Nie et al., 2018; Sixt
et al., 2020; Jain & Wallace, 2019), as they cannot guarantee that the network
is ignoring low-scored features. They are often motivated as approximations of
erasure (Baehrens et al., 2010; Simonyan et al., 2014; Feng et al., 2018) and
sometimes evaluated using erasure as ground-truth (Serrano & Smith, 2019; Jain
& Wallace, 2019).

Despite its conceptual simplicity, subset erasure is not commonly used in
practice. First, it is generally intractable, and beam search (Feng et al., 2018)
or leave-one-out estimates (Zintgraf et al., 2017) are typically used instead. These
approximations may be inaccurate. For example, leave-one-out can underestimate
the contribution of features due to saturation (Shrikumar et al., 2017). More
importantly, even these approximations remain very expensive with modern
deep (e.g., BERT-based; Devlin et al., 2019b) models, as they require multiple
computation passes through the model. Second, the method is susceptible to
the hindsight bias: the fact that a feature can be dropped does not mean that
the model ‘knows’ that it can be dropped and that the feature is not used by the
model when processing the example. This results in over-aggressive pruning that
does not reflect what information the model uses to arrive at the decision. The
issue is pronounced in NLP tasks (see figure 7.1d and Feng et al., 2018), though it
is easier to see on an artificial example (figure 7.2a). A model is asked to predict
if there are more 8s than 1s in the sequence. The erasure attributes the prediction
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Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(a) Integrated Gradient (Sundararajan et al., 2017).

Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(b) Restricting the Flow (Schulz et al., 2020)

Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(c) NLP explainer (Guan et al., 2019).

Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(d) Erasure exact search optima.

Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(e) Our DiffMask.

Question: Where did the Broncos practice for the Super Bowl ?
Passage: The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott . The Broncos practiced at
Stanford University and stayed at the Santa Clara Marriott .

(f) Our DiffMask non-amortized.

Figure 7.1: Question answering token attribution: (b) and (c), are misleading
(i.e., not faithful) as they attribute the prediction mostly to the answer span
itself (underlined). Our method (d) reveals that the model pays attention to
other named entities and the predicate ‘practice’ in both sentences. Predictions
of the path-based methods (a) are more spread-out. Exact search (e) as well as
approximate search (f) leads to pathological attributions.
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(a) Erasure search.
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(b) Schulz et al. (2020).
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(c) Sundararajan et al. (2017).
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(d) Guan et al. (2019)
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(e) Our DiffMask conditioned on embedding layer (left) and hidden states (right).

Figure 7.2: Input attributions of several methods on a toy task: Given a sequence
x of digits and a query 〈n,m〉 (8 and 1 in this example) of two digits, determine
whether there are more n than m in x. Attributions are computed at the vector
level and normalized to sum to 1.

to a single 8 digit, as this reduced example yields the same decision as the original
one. However, this does not reveal what the model was relying on: it has counted
digits 8 and 1 as otherwise, it would not have achieved the perfect score on the
test set.

We propose a new method, Differentiable Masking (DiffMask), which over-
comes the aforementioned limitations and results in attributions that are more
informative and help us understand how the model arrives at the prediction.
DiffMask relies on learning sparse stochastic gates (a.k.a., masks), guaranteeing
that the information from the masked-out inputs does not get propagated while
maintaining end-to-end differentiability without having to resort to REINFORCE
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Gated input

Model

Model with gated input

Figure 7.3: DiffMask: hidden states up to layer ` from a model (top) are fed to a
classifier g that predicts a mask z. We use this to mask the input and re-compute
the forward pass (bottom). The classifier g is trained to mask the input as much
as possible without changing the output (minimizing a divergence D?).

(Williams, 1992). The decision to include or disregard an input token is made with
a simple model based on intermediate hidden layers of the analyzed model (see
figure 7.3). First, this amortization circumvents the need for combinatorial search
making the approach efficient at test time. Second, as with probing classifiers (Adi
et al., 2017; Belinkov & Glass, 2019), this reveals whether the network ‘knows’ at
the corresponding layer what input tokens can be disregarded. During training
inputs are truly masked whenever we sample zeros. After training, attribution
scores correspond to the expectation of sampling non-zeros.

The amortization lets us not only plot attribution heatmaps, as in figure 7.1e,
but also analyze how decisions are formed across network layers. In our artificial
example, we see that in the bottom embedding layer the model cannot discard any
tokens, as it does not ‘know’ which digits need to be counted (figure 7.2e, left). In
the second layer, it ‘knows’ that these are 8s and 1s, so the rest gets discarded
(figure 7.2e, right). In question answering (see figure 7.12a), where we use a
24-layer model, it takes 13–16 layers for the model to ‘realize’ that ‘Santa Clara
Marriott’ is not relevant to the question and discard it. We also adapt our method
to measuring the importance of intermediate states rather than inputs. This,
as we discuss later, lets us analyze which states in every layer store information
crucial for making predictions, giving us insights about the information flow.

Contributions In this chapter we introduce DiffMask, a technique addressing
limitations of attribution-based methods (especially erasure and its approxima-
tions), and demonstrate that it is stable and faithful to the analyzed models. We
then use this technique to analyze BERT-based models fined-tuned on sentiment
classification and question answering.
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7.2 Background

Section 7.2.1 includes a summary of the Hard Concrete distribution which is used
in this chapter. Such section is quite technical but not that it is not a prerequisite
to understand our contributions.

7.2.1 The Hard Concrete distribution

The Hard Concrete distribution, assigns density to continuous outcomes in the
open interval (0, 1) and non-zero mass to exactly 0 and exactly 1. A particularly
appealing property of this distribution is that sampling can be done via a differ-
entiable reparameterization (Rezende et al., 2014; Kingma & Welling, 2014). A
second useful property it that one can compute in close form and in a differentiable
way the expectation of sampling zeros or ones from it i.e.,

Epz [z = 0] , and Epz [z = 1] , (7.1)

where z is a Hard Concrete random variable and pz a Hard Concrete distribution.
The gradients of these expectations can be estimated via Monte Carlo sampling
without the need for REINFORCE and without introducing biases. We did modify
the original Hard Concrete, though only so slightly, in a way that it gives support
to samples in the half-open interval [0, 1), that is, with non-zero mass only at 0.
That is because we need only distinguish 0 from non-zero, and the value 1 is not
particularly important.2

The distribution A stretched and rectified Binary Concrete (also known as
Hard Concrete) distribution is obtained applying an affine transformation to
the Binary Concrete distribution (Maddison et al., 2017; Jang et al., 2017) and
rectifying its samples in the interval [0, 1] (see figure 7.4). A Binary Concrete is
defined over the open interval (0, 1) (pC in figure 7.4a) and it is parameterised by a
location parameter γ ∈ R and temperature parameter τ ∈ R>0. The location acts
as a logit and it controls the probability mass skewing the distribution towards
0 in case of negative location and towards 1 in case of positive location. The
temperature parameter controls the concentration of the distribution. The Binary
Concrete is then stretched with an affine transformation extending its support
to (l, r) with l ≤ 0 and r ≥ 1 (pSC in figure 7.4a). Finally, we obtain a Hard
Concrete distribution rectifying samples in the interval [0, 1]. This corresponds to
collapsing the probability mass over the interval (l, 0] to 0, and the mass over the
interval [1, r) to 1 (pHC in figure 7.4b). This induces a distribution over the close

2 Only a true 0 is guaranteed to completely mask an input out, while any non-zero value,
however small, may leak some amount of information.
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Figure 7.4: Binary Concrete distributions: (a) a Concrete pC and its stretched
version pSC ; (b) a rectified and stretched (Hard) Concrete pHC .

interval [0, 1] with non-zero mass at 0 and 1. Samples are obtained using

s = σ ((log u− log(1− u) + γ) /τ) , (7.2)

z = min (1,max (0, s · (l − r) + r)) , (7.3)

where σ is the sigmoid function (i.e., σ : x 7→ (1 + exp(−x))−1) and u ∼ U(0, 1).
We point to the Appendix B of Louizos et al. (2018) for more information about
the density of the resulting distribution and its cumulative density function.

7.2.2 Related Work

A large body of literature analyzed BERT and Transformed-based models. For
example, Tenney et al. (2019) and van Aken et al. (2019) probed BERT layers
for a range of linguistic tasks, while Hao et al. (2019) analyzed the optimization
surface. Rogers et al. (2020) provides a comprehensive overview of recent BERT
analysis papers.

Perturbation-based methods While we motivated our approach through its
relation to erasure, an alternative way of looking at our approach is considering
it as a perturbation-based method. This recently introduced class of attribution
methods (Ying et al., 2019; Guan et al., 2019; Schulz et al., 2020; Taghanaki
et al., 2019), instead of erasing input, injects noise. Besides back-propagation
and attention-based methods discussed in the introduction, another class of
interpretation methods (Murdoch & Szlam, 2017; Singh et al., 2019; Jin et al.,
2020) builds on prior work in cooperative game theory (e.g., the Shapley value;
Shapley, 1953). These methods are not trivial to apply to a new model, as they
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are architecture-specific. Their hierarchical versions (e.g., Singh et al., 2019; Jin
et al., 2020) also make a strong assumption about the structure of interaction (e.g.,
forming a tree) which may affect their faithfulness. Also Chen et al. (2018) share
some similarities to our work as they also do amortization but use the Gumbel
softmax trick (Maddison et al., 2017; Jang et al., 2017) to approximate minimal
subset selection. They assume that the subset contains exactly k elements where
k is a hyperparameter. Moreover, their explainer is a separate model predicting
input subsets, rather than a ‘probe’ on top of the model’s hidden layers, and hence
cannot be used to reveal how decisions are formed across layers.

Latent rationales There is a stream of work on learning interpretable models
by means of extracting latent rationales (Lei et al., 2016; Bastings et al., 2019).
Some of the techniques underlying DiffMask are related to that line of work, but
overall we approach very different problems. Lei et al. (2016) use REINFORCE
to minimize a downstream loss computed on masked inputs, where the masks
are binary and latent. They employ L0 regularization to solve the task while
conditioning only on small subsets of the input regarded as a rationale for the
prediction. To the same end, Bastings et al. (2019) minimize downstream loss
subject to constraints on expected L0 using a variant of the sparse relaxation
of Louizos et al. (2018). In sum, they employ stochastic masks to learn an
interpretable model which they learn by minimizing a downstream loss subject
to constraints on L0, we employ stochastic masks to interpret an existing model
and for that we minimize L0 subject to constraints on that model’s downstream
performance. In another work (Schlichtkrull et al., 2021) by the author not
included in this chapter nor this thesis, we also employ stochastic masks and L0

regularization for analyzing graph neural networks. We learn which edges are
relevant in multi-hop question answering and graph-based semantic role labeling
(Marcheggiani & Titov, 2017; De Cao et al., 2019b).

7.3 Method

We aim to understand how a trained model processes an input (i.e., a sequence
of embedded tokens) to produce an output (e.g., a vector of class probabilities).
Formally, first, for an input made of a set of vectors X = {x(i)}ni=1, we obtain the
output y = f(X ) from the model along with its hidden states {H(`)}l`=0, for all
of its l layers where H(0) = X (note that each H(`) is a set of hidden states, e.g.,
one for each input token). We then probe the model using a shallow interpreter
network which takes hidden states up to a certain layer ` and outputs a binary
mask z = {0, 1}n indicating which input tokens are necessary and which can
be disregarded. To assess whether the masked input X̂ = {x̂(i)}ni=1 is sufficient,
we re-feed the model with it and compute the output ŷ = f(X̂ ). As long as
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ŷ approximates the original output y well, we deem the inputs masked by z
unnecessary. Masking, however, as in multiplication by zero, makes a strong
assumption about the geometry of the feature space, in particular, it assumes that
the zero vector bears no information. Instead, we replace some of the inputs by a
learned baseline vector b ∈ Rdx , i.e.,

x̂(i) = zi � x(i) + (1− zi)� b ∀i ∈ [[1, n]] , (7.4)

where � is the Hadamard product. See figure 7.3 for an overview of DiffMask.
Our interpreter model consists of l + 1 classifiers, the `-th of which conditions

on the stack of hidden states up to H(`) to predict binary ‘votes’

v(`) = g(H(0), . . . ,H(`);φ`) and v(`) ∈ {0, 1}n , (7.5)

towards keeping or masking input tokens. Each classifier is a one-hidden-layer
MLP parameterised by φ`, details and hyperparameters will follow. For a given
depth `, the interpreter decides to mask x(i) out as soon as v(k)i = 0 for some k ≤ `,
i.e., zi =

∏`
k=0 v

(k)
i . That is, in order to deem x(i) unnecessary, it is sufficient to

do so based on any subset of hidden states up until H(`).
Clearly, there is no direct supervision to estimate the parameters φ` of the

probes and the baseline b, thus we borrow erasure’s objective: namely, we train
the probe to mask-out as many input tokens as possible constrained to keeping
f(X̂ ) ≈ f(X ). Since often, the output of f parameterizes a likelihood (e.g., a
categorical distribution), we formulate the constraint in terms of a divergence
D? between the two functions’ outputs. We cast this, rather naturally, in the
language of constrained optimization.

Objective A practical way to minimize the number of non-zeros predicted by g
is minimizing the L0 ‘norm’.3 Thus, our L0 loss for a datapoint X is defined as
the total number of positions that are not masked:

L0(φ0, . . . , φl, b|X ) =
n∑
i=1

1R6=0
(zi) , (7.6)

where 1 is the indicator function.4 We minimize L0 for all data-points in a dataset
X ∈ D subject to a constraint that predictions from masked inputs have to be

3 L0, denoted ‖z‖0 and defined as |{zi ∈ z|zi 6= 0}| =
∑|z|
i=1 1R6=0

(zi) where 1 is the indicator
function4, is the number of non-zeros entries in a vector. Contrary to L1 or L2, L0 is not a
homogeneous function and, thus, not a proper norm. However, contemporary literature refers
to it as a norm, and we do so as well to avoid confusion.

4 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x 6∈ A.
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similar to the original model predictions:

min
φ0,...,φl,b

L0(φ0, . . . , φl, b|X )

s.t. D?[f(X )‖f(X̂ )] ≤ m ∀x ∈ D ,
(7.7)

where margin m ∈ R>0 is a hyperparameter. Since non-linear constrained opti-
misation is generally intractable, we employ Lagrangian relaxation (Boyd et al.,
2004) optimizing instead

max
λ

min
φ0,...,φl,b

L0(φ0, . . . , φl, b|X ) + λ(D?[f(X )‖f(X̂ )]−m) , (7.8)

where λ ∈ R≥0 is the Lagrangian multiplier.

Stochastic masks Our objective poses two challenges: i) L0 is discontinuous
and has zero derivative almost everywhere, and ii) to output binary masks, g needs
a discontinuous output activation such as the step function. A strategy to overcome
both problems is to make the binary variables stochastic and treat the objective
in expectation, in which case one option is to resort to REINFORCE (Williams,
1992), another is to use a sparse relaxation to binary variables (Louizos et al., 2018;
Bastings et al., 2019). As we shall see (we compare the two aforementioned options
in table 7.3 and discuss them in Section 7.4.2), the latter proved more effective.
Thus we opt to use the Hard Concrete distribution, a mixed discrete-continuous
distribution on the closed interval [0, 1]. This distribution assigns a non-zero
probability to exactly zero while it also admits continuous outcomes in the unit
interval via the reparameterization trick (Kingma & Welling, 2014). We refer to
Louizos et al. (2018) for details, but also provide a brief summary in section 7.2.1.
With stochastic masks, the objective is computed in expectation, which addresses
both sources of non-differentiability. Note that during training inputs are truly
masked-out whenever we sample exact zeros. After training, attribution scores
correspond to the expectation of sampling non-zero masks since any non-zero
value corresponds to a leak of information.

Masking hidden states To reveal which hidden states store information neces-
sary for realizing the prediction, we modify the probe slightly. For a given depth `,
we use a mask z(`) = g(H(`);φ`) to replace some of the states in H(`) = {h(`,i)}mi=1

by a layer-specific d`-dimensional baseline b(`) ∈ Rd` , i.e.,

ĥ(`,i) = z
(`)
i � h(`,i) + (1− z(`)i )� b(`) ∀i ∈ [[1,m]] . (7.9)

The resulting state Ĥ(`) = {h(`,i)}mi=1 is used to replace H(`) and thus to re-
compute subsequent states, Ĥ(`+1), . . . , Ĥ(l), as well as the output ŷ. Here we do
not aggregate ‘votes’ with a product because for this probe we want to discover
whether hidden states are predictive of their own usefulness. see figure 7.5 for an
overview of this variant of DiffMask.
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Model with
gated hidden states

Model

Figure 7.5: DiffMask for hidden states: states up to layer ` from a model
(top) are fed to a classifier g that predicts a mask z(`). We use this to mask the
`ih hidden state and re-compute the forward pass from that point on (bottom).
The classifier g is trained to mask the hidden state as much as possible without
changing the output (minimizing a divergence D?).

Probe parameterization We parameterized the probe functions with a single
layer MLP. Note that the architecture of this probe is chosen to be simple but
different model choices are also possible and will not affect our general framework.5

When masking input tokens, ‘votes’ v(`)i are computed as

v
(`)
i = g(h(`,i);φ`) (7.10)

γ
(`)
i = ξ · tanh

(
NN

(
[x(i);h(`,i)];φ`

))
+ b(`) , (7.11)

v
(`)
i ∼ HardConcrete(v

(`)
i ;γ

(`)
i , τ, l, r) , (7.12)

where [·; ·] denotes concatenation, ξ = 10, τ = 0.2, l = −0.2, r = 1.0 are fixed
hyperparameters. See section 7.2.1 for details about the Hard Concrete distribu-
tion including its parameterization. NN is a feed-forward neural network with
architecture [dh/4, tanh, 1] where dh is the BERT hidden size, b(`) ∈ R are learn-
able biases. We use the same functional form to compute z(`) for masking hidden
states but in that case we omitted x(i) from the input of the feed-forward NN. For
the input probe the output of the last projection (but not the bias) is constrained
to be ∈ (−ξ, ξ) for numerical stability. We initialized the bias of the last FFNN
layer to 5 to start with high probability of keeping states (fundamental for good
convergence as the initialized DiffMask has not learned what to mask yet).

5 In our open source implementation, we also used different architectures. Final results did not
change much.
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7.4 Experimental setting
The goal of this work is to uncover a faithful interpretation of an existing model,
i.e., revealing, as accurately as possible, the process by which the model arrives
at the prediction. Human-provided labels, such as human rationales (Camburu
et al., 2018; DeYoung et al., 2020), will not help us in demonstrating this, as
humans cannot judge if an interpretation is faithful (Jacovi & Goldberg, 2020).
More precisely, human-provided labels do not show how the model behaves – e.g.,
annotations of what parts of the input are relevant for solving a particular task
do not constitute a guarantee that a model relies on those parts more than others
when making a prediction. When we evaluate an attribution method by comparing
its outputs with human annotations, we are not measuring whether it provides
faithful attributions but only if they are plausible according to humans. This goes
against our goals as we aim to use the interpretation method to detect model
deficiencies, which are usually cases where the model does not behave like humans.
The ground-truth explanations of how a model makes certain predictions depend
not only on the data but also on the model, and, unfortunately, are generally not
known for real tasks and with complex models. This makes the evaluation and
comparison of attribution methods non-trivial.

Our strategy is to i) show the effectiveness of DiffMask in a controlled setting
(i.e., a toy task) where ground-truth is available; ii) test the effectiveness of our
relaxation for learning discrete masks (on a real model for sentiment classification);
and iii) demonstrate that the method is stable and models behave the same when
masking is applied. Once we have established that DiffMask can be trusted,
we use it to analyze BERT-based models (Devlin et al., 2019b) fine-tuned on
sentiment classification, and on question answering.

7.4.1 Toy task

Our toy task is defined as: given a sequence x of digits (i.e., xi ∈ [[0, 9]]), and a
query 〈n,m〉 of two digits (i.e., n,m ∈ [[0, 9]]), determine whether |{xi ∈ x : xi =
n}| > |{xi ∈ x : xi = m}| that is whether the number of occurrences of n in x
are grater than the number of occurrences of m.

Data We generate sequences of varying length (up to 10 digits long) sampling
each element independently: with 50% probability, we draw uniformly n or m and,
with 50% probability, we draw uniformly from the remaining digits. We generate
10k data-points, keeping 10% of them for validation. The space of input sequences
is >1010. Thus, a model that solves the task cannot simply memorize the training
set.

Model The query and input are embedded, concatenated, and then fed to a
single-layer feed-forward NN, followed by a single-layer unidirectional GRU (Cho
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et al., 2014).6 The classification is done by a linear layer that acts on the last
hidden state of the GRU. Unsurprisingly, the model solves the task almost perfectly
(accuracy on test is >99%). The precise model formulation is the following: given
a query q = 〈n,m〉 and an input x ∈ {0, 9}k, they are embedded as

n̂ = Embq(n) ,

m̂ = Embq(m) ,

x̂i = Embx(xi) ∀i ∈ [[1, k]] ,

(7.13)

where Embq and Embx are embedding layers of dimensionality 64. The prediction
is computed as

h(1,i) = FFNN([n̂; m̂; x̂(i)]) ∀i ∈ [[1, k]] ,

h(2,0) = 0> ,

h(2,i) = GRU(h(1,i),h(2,i−1)) ∀i ∈ [[1, k]] ,

y = w>h(2,t) + b ,

(7.14)

where [·; ·] denotes concatenation, FFNN is a feed-forward neural network with
architecture [64×3, tanh, 2], GRU is a Gated Recurrent Network (Cho et al., 2014)
with hidden size of 64, and w ∈ R64, b ∈ R are the weight and bias parameter of
the final classifier respectively.

Attribution methods Integrated gradient attribution (Sundararajan et al.,
2017) is computed with 500 steps. Attribution of Schulz et al. (2020) is computed
at token level with β = 10/k where k is the token embedding size. We optimized
using the RMSprop (Tieleman & Hinton, 2012) with learning rate 1e-1 for 500
steps. Attribution of Guan et al. (2019) is computed at token level with λ =1e-4
using RMSprop with learning rate 1e-1 for 500 steps. Our DiffMask is optimized
for 100 epochs using Lookahead RMSprop (Tieleman & Hinton, 2012; Zhang
et al., 2019a) with learning rate 1e-2 for φ, b and 1e-1 for α. For these attribution
methods we used our own re-implementation.

Ground-truth for hidden-state attribution We plot the distribution of
hidden states (we use dimensionality 2, with the purpose of having a bottleneck
and to support clear visualization) in figure 7.6 and observe a linear separation
between states of digits present in the query and states not in the query. This
means that the role of the feed-forward layer is to decide which digits to keep.
Since the model solves the task, the role of the GRU must then be to count which
digit occurred the most. The prediction must be attributed uniformly to all the
hidden states corresponding to either n or m.
6 We use a feed-forward NN to incorporate the query information, rather than another GRU
layer, to ensure that counting cannot happen in the first layer. This helps us define the
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Figure 7.6: Hidden state values for the two-neuron toy task. Clusters of whether
the input digit is equal to the first or second position in the query (= n or = m
respectively) or not at all ( 6= n,m) are completely linear separable.

7.4.2 Sentiment Classification

Data We used the Stanford Sentiment Treebank (SST; Socher et al., 2013)
available here7. We pre-processed the data as in Bastings et al. (2019). Training
and validation sets contain 8, 544 and 1, 101 sentences respectively.

Model For the sentiment classification experiment we downloaded8 a pre-trained
model from the Huggingface implementation9 of Wolf et al. (2020), and we fined-
tuned on the SST dataset. We report hyperparameters used for training the model
and our DiffMask in table 7.1.

7.4.3 Question Answering

Data We used the Stanford Question Answering Dataset (SQuAD v1.1; Ra-
jpurkar et al., 2016b) available here10. Pre-processing excluded QA pairs with
more than 384 BPE tokens to avoid memory issues. After this we end up having
86, 706 training instances and 10, 387 validation instances.

ground-truth for the method.
7 https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip
8 https://huggingface.co/transformers/pretrained_models.html
9 https://github.com/huggingface/transformers
10https://rajpurkar.github.io/SQuAD-explorer

https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip
https://huggingface.co/transformers/pretrained_models.html
https://github.com/huggingface/transformers
https://rajpurkar.github.io/SQuAD-explorer
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Original model Sentiment classification Question answering

Type BERTBASE (uncased) BERTLARGE (uncased)
Layers 12 24
Hidden units 768 1024
Pre-trained masking standard whole-word
Optimizer Adam* Adam*
Learning rate 3e-5 3e-5
Train epochs 50 2
Batch size 64 24

DiffMask model Sentiment classification Question answering

Optimizer Lookahead RMSprop** Lookahead RMSprop**
Learning rate φ, b 3e-4 3e-4
Learning rate λ 1e-1 1e-1
Train epochs (inputs) 100 1 (per layer)
Train epochs (hidden) 100 4
Batch size 64 8
Constrain DKL[y‖ŷ] < 0.5 DKL[y‖ŷ] < 1

Table 7.1: Hyperparameters for the sentiment classification and question answering
experiments. Optimizers: * Kingma and Ba (2015), ** Tieleman and Hinton
(2012), Zhang et al. (2019a).

Model For the question answering experiment we downloaded 8 an already
fine-tuned model from the Huggingface implementation9 of Wolf et al. (2020) We
report hyperparameters used by them for training the original model and the ones
used for our DiffMask in table 7.1.

7.5 Results

7.5.1 Toy task

We start with an example of input attributions, see figure 7.2, which illustrates how
DiffMask goes beyond input attribution as typically known.11 The attribution
provided by erasure (figure 7.2a) is not informative: for each datapoint the search
always finds a single digit that is sufficient to maintain the original prediction
and discards all the other inputs. The perturbation methods by Schulz et al.
(2020) and Guan et al. (2019) (figure 7.2b and 7.2d) are also over-aggressive in
pruning. They assign low attribution to some items in the query even though

11To enable comparison across methods, the attributions in this Section are normalized between
0 and 1.
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Methods DJS ↓

Exact erasure 0.27
Integrated Gradient 0.27
Schulz et al. (2020) 0.18
Guan et al. (2019) 0.24
DiffMask 0.00

Table 7.2: Toy task: attribution to hidden states, average divergence in nats
between the ground-truth attributions and those by different methods.

those had to be considered when making the prediction. Differently from other
methods, DiffMask reveals input attributions conditioned on different levels of
depth. Figure 7.2e shows both input attributions according to the input itself
and according to the hidden layer. It reveals that at the embedding layer there
is no information regarding what part of the input can be erased: attribution is
uniform over the input sequence. After the model has observed the query, hidden
states predict that masking input digits other than n and m will not affect the
final prediction: attribution is uniform over digits in the query. This reveals the
role of the feed-forward layer as a filter for positions relevant to the query. Other
methods do not allow for this type of inspection. These observations are consistent
across the entire test set.

For attribution to hidden states (i.e., the output of the feed-forward layer) we
can compare methods in terms of how much their attributions resemble the ground-
truth across the test set. Table 7.2 shows how the different approaches deviate
from the gold-truth in terms of Kullback-Leibler (DKL) and Jensen–Shannon
(DJS) divergences.12

7.5.2 Sentiment Classification

We turn now to a real task and analyze models fine-tuned for sentiment classifica-
tion on the Stanford Sentiment Treebank (SST; Socher et al., 2013).

Erasure search as learning masks Before diving into an analysis of a BERT
sentiment model, we would like to demonstrate that we can approximate the
result of erasure well through our differentiable relaxations. For that, we train a
single-layer GRU sentiment classifier and compare the analyses by DiffMask
to solutions provided by erasure (exact search). To isolate the impact of our
objective, we disable amortization, thus estimating Hard Concrete parameters for
each example independently. We compare DiffMask to REINFORCE (Williams,

12We use DKL[p‖q] and DJS [p‖q] where p is the ground-truth distribution and q is the predicted
attribution distribution.



7.5. Results 121

Metric REINFORCE+ DiffMask

Precision 74.69 81.26
Recall 80.82 85.89
F1 73.57 80.75
Optimality 8.83 32.67
L0 33.13 30.58

Table 7.3: Sentiment classification: optimization with DiffMask and REIN-
FORCE (not amortised – with a moving average baseline for variance reduction)
vs. erasure with exact search. All metrics are computed at token level; optimality
is measured at sentence level.

1992) with a moving average baseline for variance reduction. Since erasure is
prohibitive for long sentences, we limit our evaluation to sentences up to 25 words
(54% of the data). Table 7.3 shows that DiffMask and REINFORCE achieve
comparable levels of sparsity, but our method reaches an optimal solution much
more often (33% of the times vs 9%) and is, on average, closer to an optimal
solution (81% F1 vs 75% F1).

Faithfulness and Plausibility Now, we get back to the fully-amortized Diff-
Mask approach applied to a 12-layers BERTBASE model and verify that there is
no performance degradation when applying masking. The F1 score of the model on
the validation set moved from 37.9% to 38.3% while masking 46.3% input tokens,
and to 38.9% while masking 67.6% hidden states. The explanations provided
by DiffMask are also stable. Across 5 runs with different seeds, the standard
deviation of input attributions are 0.05 and 0.03 for inputs and hidden states,
respectively.

While we cannot use human labels to evaluate faithfulness of our method,
comparing them and DiffMask attribution will tell us whether the sentiment
model relies on the same cues as humans. Specifically, we compare to SST token
level annotation of sentiment. in figure 7.7a, we show after how many layers on
average an input token is dropped, depending on its sentiment label. This suggests
that the model relies more heavily on strongly positive or negative words and,
thus, is generally consistent with human judgments (i.e., plausible).

Analysis We used DiffMask to analyse the behavior of our BERT model. in
figure 7.8, we report the average number of layers that input tokens or hidden
states are kept for (or, equivalently, after how many layers they are dropped on
average), aggregating by part-of-speech tags (PoS). It turns out that determinants,
punctuation, and pronouns can be completely discarded from the input across
all validation set, while adjectives and nouns should be kept. Also the [CLS]
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Figure 7.7: Sentiment classification: average number of layers that predict to keep
input tokens or hidden states aggregated by token level sentiment annotations.

and [SEP] tokens can be ignored indicating that the model does not need such
markers. Examining the POS tags distribution for hidden states leads to further
conclusions. Here, the [CLS] and [SEP] tokens are the most important ones. This
is not surprising as the classifier on top of BERT uses the [CLS] hidden state
which gets progressively updated through all layers. Both these special tokens are
not important as inputs because BERT can infer these markers in other layers,
however, they are heavily used in the computation.

Figure 7.9e we show a visual example of that. We see that the model, even
in the bottom layers, knows that the punctuation and both separators can be
dropped from the input. This contrasts with hidden states attribution (figure 7.9f)
which indicates that the separator states (especially [SEP]) are very important.
By putting this information together, we can hypothesize that the separator is
used to aggregate information from the sentence, relying on self-attention. In
fact, this aggregation is still happening in layer 12; at the very top layers, states
corresponding to almost all non-separator tokens can be dropped.

Comparison to other methods in figure 7.9, we visually compare different
techniques on one example form validation set. While previous techniques (e.g.,
integrated gradient) do not let us test what a model ‘knows’ in a given layer
(i.e., attribution to input conditioned on a layer), they can be used to perform
attribution to hidden layers. All methods except attention correctly highlight
the last hidden state of the [CLS] token as important. Its importance is due to
the top-level classifier using the [CLS] hidden state. Although for DiffMask we
show the expectation of keeping states, it assigns much sharper attributions. For
instance, on the validation set, it assigns to the last hidden state of the [CLS]
the biggest attribution 99% of the times where Schulz et al. (2020) only 71%.
Raw attention (figure 7.9a) does not seem to highlight any significant patterns
in that example except that start and end of sentence tokens ([CLS] and [SEP],
respectively) receive more attention than the rest.13 Attributions by Schulz et al.

13Voita et al. (2019a) and Michel et al. (2019) pointed out that many Transformer heads play
no or minor role.
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Figure 7.8: Sentiment classification: average number of layers that predict to keep
input tokens (a) or hidden states (b) aggregating by part-of-speech tags (POS)
and [CLS], [SEP] tokens on validation set.

(2020) and Guan et al. (2019) assign slightly higher importance to hidden states
corresponding to ‘highly’ and ‘enjoyable’, whereas it is hard to see any informative
patterns provided by integrated gradient. Notice that for DiffMask, a near-zero
attribution has a very clear interpretation: such a state is not used for prediction
since in expectation it is dropped (not gated).

Ablation As argued in the introduction and shown on the toy task, many
popular methods (e.g., erasure and its approximations) are over-aggressive in
discarding inputs and hidden units. Amortization is a fundamental component
of DiffMask and is aimed at addressing this issue. in figure 7.10 we show how
our method behaves when ablating amortization and thus optimizing on a single
example instead. Noticeable, our method converges to masking out all hidden
states at any layer (figure 7.10b). This happens as it learns an ad hoc baseline
just for that example. When we ablate both amortization and baseline learning
(figure 7.10c), the method struggles to uncover any meaningful patterns. This
highlights how both core components of our method are needed in combination
with each other.
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[SEP]
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[SEP]
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(b) Sundararajan et al. (2017).
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[SEP]
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(c) Schulz et al. (2020).
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[SEP]
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(d) Guan et al. (2019).
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[SEP]
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(e) DiffMask on input.
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[SEP]
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(f) DiffMask on hidden.
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[SEP] .
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[SEP] .

stands
the in sit

who
m

en
grown

the as
well

as
fields

baseball
on

boys
little of

dream
s

and
hopes

the
perfectly so
capture

film
s

Few
[CLS](k)

D
iffM

a
sk

.

E
3

6
9

12
[SEP] .
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(a) Masking hidden states with amortization.
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(b) Masking hidden states without amortization.
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[SEP]
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(c) Masking hidden states without amortization and without baseline.

Figure 7.10: Sentiment classification: ablation study on amortization and baseline.
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Figure 7.11: Questions answering: average expectation of keeping input (a) and
hidden states (b) from different layers.

7.5.3 Question Answering

We turn now to QA where we analyse a fine-tuned BERTLARGE model on the
Stanford Question Answering Dataset (SQuAD v1.1; Rajpurkar et al., 2016b).

Analysis We start by asking DiffMask which tokens does the model
keep? We do a similar analysis as for sentiment classification of POS tags over
the entire validation set. We summarize the results in figure 7.13. It turns out
that conjunctions and adpositions are dropped by the embedding and first layer,
respectively, on average. On the contrary, proper nouns and punctuation are
usually predicted to be dropped only after the 14-th layer. We argue that due
to the pre-training objective, BERT could infer well missing parts of the input,
especially if they are trivial to infer (e.g., as often the case for prepositions). On
the contrary, nouns and proper nouns are important as they count for 84% of the
answers on SQuAD. For example, in figure 7.12a, we can see that it takes 13–16
layers for the model to ‘realize’ that ‘Santa Clara Marriot’ is not relevant to the
question and discard it.

Unlike in sentiment classification, separator tokens as well as punctuation
assume a central role as inputs (i.e., punctuation is considered the most important
POS tag as for both questions and passages is usually dropped after the 17-th
layer). Punctuation serves to demarcate sentence boundaries, useful for QA but
not for sentiment classification.

Tokens from questions are generally masked by higher layers than tokens from
passages as we show in figure 7.11a, which suggests that they are more important.
We highlight that even in higher layers when DiffMask masks > 95% of the
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tokens, the original model prediction is almost always kept >90%. Noticeably,
when the original BERT makes wrong predictions, the tokens annotated as the
ground truth answer are kept ≈60% of the time. This may suggest that when
this happens the model still considers other options (e.g., valid options such as
the ground truth) as plausible, thus DiffMask detects them as important.

Now, we inspect hidden states attributions to answer where is the informa-
tion stored? in figure 7.11b we can see a similar trend as for masking input, i.e.,
question’s hidden states are kept more on average and deeper in the computation.
States on layers 2–3 are dropped less than from the embedding and first layer.
This is consistent with findings of Voita et al. (2019b) which show that frequent
tokens, such as determiners, accumulate contextual information. However, they
are not important as inputs as we show in an example in figure 7.12b.

The hidden states corresponding to separator tokens are always kept across all
layers except the last one across the validation set. Notice that, this token is also
used as a delimiter between the question and the passage, and hence indicates
where questions as well as passages end.

The level of hidden states pruning is quite incremental (after layer 3) and gets
strong, after layer 9 more than 50% of them can be masked out. A steep increase
in superfluous states 13–14 (visible on both parts of figure 7.11) may indicate that
some states, at that point in computation, contain enough information needed
for the classification while all the others can indeed be removed without affecting
the model prediction. Our observation that higher layers are more predictive is
in line with findings of Kovaleva et al. (2019). They pointed out that the final
layers of BERT change most and are more task-specific. Again, the fact that
states corresponding to the ground truth answer are still active on top layers when
the model makes a wrong prediction indicates that the model is still considering
different span options across top layers as well.

Finally, in figure 7.13 we report statistics on the average number of layers that
predict to keep input tokens aggregating by POS tag.

Comparison to other methods As we do not have access to the ground-truth,
we start by contrasting DiffMask qualitatively to other attribution methods on
a few examples. We highlight some common pitfalls that afflict other methods
(such as the hindsight bias) and how DiffMask overcomes those. This helps
demonstrate our method’s faithfulness to the original model.

Figure 7.1 shows input attributions by different methods on an example from
the validation set. Erasure (figure 7.1d), as expected, does not provide useful
insights, it essentially singles out the answer discarding everything else including
the question. This cannot be faithful and is a simple consequence of erasure’s
hindsight bias: when only the span that contains the answer is presented as input,
the model predicts that very span as the answer, but this does not imply that the
model ignores everything else when presented with the complete document as input.
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[SEP]
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(a) Gating the input.
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[SEP]
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[SEP]
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(b) Gating hidden states.
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[SEP]
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(c) Gating the input.
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[SEP]
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[SEP]
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(d) Gating hidden states.
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[SEP]
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(e) Gating the input.
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[SEP]
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(f) Gating hidden states.

Figure 7.12: Expectation predicted by DiffMask to keep the inputs in (a) (c)
and hidden states in (b) (d) on two different questions answering pairs. The
correct answers is highlighted in bold.
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(c) Context inputs.
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[SEP] 1
[SEP] 2
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(e) All inputs.
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[SEP] 2
[SEP] 1
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(f) All hidden states.

Figure 7.13: Question answering: average number of layers that predict to keep
input tokens (a), (c) and (e) or hidden states (b), (d) and (f) aggregating by
part-of-speech tag (POS) on validation set.

The methods of Schulz et al. (2020) and Guan et al. (2019) optimize attributions
on single examples and thus also converge to assigning high importance mostly
to words that support the current prediction and that indicate the question type.
For this experiment we used Per-Sample Bottleneck attribution from Schulz et al.
(2020). The authors also proposed a Readout Bottleneck where they train a second
neural network to predict the mask. But differently from our formulation, they
condition on subsequent layers and thus attributions are prone to the hindsight
bias.

Integrated gradient does not seem to highlight any discernible pattern, which
we speculate is mainly because a zero baseline is not suitable for word embeddings.
Choosing a more adequate baseline is not straightforward and remains an important
open issue (Sturmfels et al., 2020). Note that, DiffMask without amortization
(figure 7.1f) resembles erasure (as shown in section 7.5.2 for SST).

Differently from all other methods, our DiffMask probes the network to
understand what it ‘knows’ about the input-output mapping in different layers.
in figure 7.1e we show the expectation of keeping input tokens conditioned on
any one of the layers in the model to make such predictions (see figure 7.12a
for a per-layer visualization). Our input attributions highlight that the model,
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Original model Gated model

Figure 7.14: GraphMask uses vertex hidden states and messages at layer k
as input to a classifier g that predicts a mask z(`) (left). We use this to mask
the messages of the kth layer and re-compute the forward pass with modified
node states (right). The classifier g is trained to mask as many hidden states
as possible without changing the output of the gated model. Image and caption
taken with permission from the authors of Schlichtkrull et al. (2021).

in expectation across layers, wants to keep words in the question, the predicate
‘practice’ in both sentences as well as all potential candidate answers (i.e., named
entities). But eventually, the most important spans are in the question and the
answer itself.

7.6 Subsequent Work

In a follow-up work, which the author of this thesis contributed to, we proposes a
variation of DiffMask for interpreting graph neural networks (GraphMask;
Schlichtkrull et al., 2021).14 GraphMask interprets the predictions of GNNs
identifying unnecessary edges. With a similar mechanism of DiffMask, given
a trained GNN model, GraphMask learns a classifier that, for every edge in
every layer, predicts if that edge can be dropped. This model also exploits the
Hard Concrete distribution. Thus it is trained in a fully differentiable fashion,
employing stochastic gates and encouraging sparsity through the expected L0

norm. Figure 7.14 shows an outline of GraphMask.

Using GraphMask to analyze EntityGCN15 In table 7.4, we investigate
which edge types are used across the three layers of the EntityGCN model
presented in chapter 3. EntityGCN’s ablation test suggested that COREF edges
provide marginal benefit to the model; our analysis does not entirely agree.
Investigating further, we see that only 2.3% of the retained COREF edges overlap
with MATCH edges (compared to 32.4% for the entire dataset). In other words,
the system relies on COREF edges only in harder cases not handled by the surface
14The author of this thesis is not the main author of Schlichtkrull et al. (2021). Thus, the
material presented in Schlichtkrull et al. (2021) does not list as contributions of this thesis.

15This whole paragraph, figures, tables, and captions are taken and adapted with permission
from the authors of Schlichtkrull et al. (2021). This paragraph is not a contribution of this
thesis nor an original work from the author.
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Figure 7.15: GraphMask example of subgraph of retained edges (21% of the
original) for the query “record_label Phi". → is DOC-BASED, → is COMPLEMENT,
and → is MATCH where edge labels indicate in which layer GraphMask retains
such edge. GraphMask removed 21% of edges from the original graph. Best
viewed in color. Image and caption taken with permission from the authors of
Schlichtkrull et al. (2021).

Edge Type k = 0 k = 1 k = 2

MATCH (8.1%) 9.4% 11.1% 8.9%
DOC-BASED (13.2%) 5.9% 17.7% 10.7%
COREF (4.2%) 4.4% 0% 0%
COMPLEMENT (73.5%) 31.9% 0% 0%

Total (100%) 51.6% 28.8% 19.6%

Table 7.4: GraphMask retained edges for EntityGCN by layer (k) and type on
WikiHop development set. Table and caption taken with permission from the
authors of Schlichtkrull et al. (2021).

MATCH heuristic. The role COMPLEMENT edges play is interesting as well: this class
represents the majority of non-superfluous edges in the bottom layer but is always
superfluous in subsequent layers. The model relies on an initial propagation step
across these edges, perhaps for an initial pooling of context. The EntityGCN
model concatenates a representation of the query to every node in the graph
before running GNN. As such, one might expect edges connecting mentions of
the query entity to the rest of the graph to be superfluous. This, however, is not
the case – at least one such edge is retained in 92.7% of all cases, and in 84.1%
of cases in the bottom layer. We hypothesize that the model relies on GNN to
see whether other mentions share a surface form or co-occur with mentions of
the query entity, and, if not, how they otherwise connect to those. To investigate
this, we measure the percentage of retained edges at each layer that occur on
paths originating from query entities. We find that the proportion of edges that
occur on paths from mentions of the query increases drastically by layer, from
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11.8% at layer 0, to 42.7% at layer 1, and culminating in 73.8% in the top layer.
A mention corresponding to the predicted answer is for 99.7% of examples the
target of some retained edge. However, the chance that the predicted entity is
connected to the query (72.1%) is near-identical to that of the average candidate
entity (69.2%). As such, the GNN is responsible not only for propagating evidence
for the predicted answer through the graph but also for propagating evidence to
alternate candidates. The majority of paths take one of two forms – a COMPLEMENT
edge followed by either a MATCH or a DOC-BASED edge (22%), or a COMPLEMENT
edge followed by two MATCH or DOC-BASED edges (52%). MATCH and DOC-BASED
edges in the bottom layer tend to represent one-hop paths rather than being the
first edge on a longer path. Relations used by EntityGCN are symmetric (e.g., a
coreference works in both directions). A distinct feature of the subgraphs retained
by GraphMask is that pairs of an edge and its inverse are both judged to be
either superfluous or non-superfluous (individually in each layer). In figure 7.15
we report an example of edge pruning of a datapoint from WikiHop validation
set. The aforementioned behavior can indeed be seen for the DOC-BASED edges in
layer 2 between Japan and Johnny & Associates. Indeed, 49%, 98%, and 79% of
retained edges in, respectively, layers 0, 1, and 2 have their inverses also retained.
In other words, an ‘undirected’ message exchange between mentions, resulting in
enriched mention representations, appears crucial.

A similar technique from this chapter is used in De Cao et al. (2021d).16 Inspired
by causal mediation analysis, they propose a method that discovers within a neural
LM a small subset of neurons responsible for a particular linguistic phenomenon,
i.e., subsets causing a change in the corresponding token emission probabilities.
They employ a Hard Concrete distribution paired with L0 regularization to ensure
that the search converges to discrete and sparse solutions. They analyze subject-
verb number agreement and gender bias detection in LSTMs, confirming that each
of these phenomena is mediated through a small subset of neurons that do not
play any other discernible role.

Similar to DiffMask, Chen and Ji (2020) also proposed using word masks
to interpret neural text classifiers. They build upon the information bottleneck
(IB) principle (Tishby & Zaslavsky, 2015) backed by the efficient variational lower
bound of the IB objective function (Alemi et al., 2017) to mask as many words as
possible such that the network keeps enough information for predicting the desired
label. They present an extensive evaluation of their method with three neural
text classifiers (CNN, LSTM, and BERT -based) on seven classification datasets.
Similarly, Chen et al. (2021) explored word-group masking for the interpretability
of predictions on sentence pairs. Differently from our work, they use a biased
gradient estimator for the masks (the Gumbel-softmax trick; Maddison et al.,
2017; Jang et al., 2017) to address the discreteness of sampling from categorical
distributions in backpropagation. They evaluate their method on tasks that

16Another work by the author but not presented in this thesis.



138 Chapter 7. Interpretation with Differentiable Masking

require sentence pairs as inputs, such as SNLI and paraphrase identification.
Vision DiffMask (Nalmpantis et al., 2023) is also an example of direct

application of our DiffMask to the vision domain with some modification.
During the forward pass, they transform each of the model’s hidden states into
a patch-level mask. The masks are then aggregated over the hidden layers and
result in their final mask.

Finally, we point the reader to a comprehensive review interpreting deep
learning models in natural language processing (Sun et al., 2021a) for further
information on the current state of research in the field.

7.7 Conclusion
We have introduced a new post hoc interpretation method which learns to com-
pletely remove subsets of inputs or hidden states through masking. We circumvent
an intractable search by learning an end-to-end differentiable prediction model.
To overcome the hindsight bias problem, we probe the model’s hidden states
at different depths and amortize predictions over the training set. Faithfulness
is validated in a controlled experiment pointing more clearly to some flaws of
other attribution methods. We used our method to study BERT-based models
on sentiment classification and question answering. DiffMask sheds light on
what different layers ‘know’ about the input and where information about the
prediction is stored in different layers.



Chapter 8

Editing Factual Knowledge
in Language Models

Chapter Highlights

The factual knowledge about entities acquired during pre-training and stored in
the parameters of Language Models (LMs) can be useful in downstream tasks
(e.g., question answering, textual inference or entity linking shown in previous
chapters). However, some facts can be incorrectly induced or become obsolete
over time. We present KnowledgeEditor, a method which can be used to
edit this knowledge and, thus, fix ‘bugs’ or unexpected predictions without the
need for expensive re-training or fine-tuning. Besides being computationally
efficient, KnowledgeEditor does not require any modifications in LM pre-
training (e.g., the use of meta-learning). In our approach, we train a hyper-network
with constrained optimization to modify a fact without affecting the rest of the
knowledge; the trained hyper-network is then used to predict the weight update at
test time. We show KnowledgeEditor’s efficacy with two popular architectures
and knowledge-intensive tasks: i) a BERT model fine-tuned for fact-checking,
and ii) a sequence-to-sequence BART model for question answering. With our
method, changing a prediction on the specific wording of a query tends to result in
a consistent change in predictions also for its paraphrases. We show that this can
be further encouraged by exploiting (e.g., automatically-generated) paraphrases
during training. Interestingly, our hyper-network can be regarded as a ‘probe’
revealing which components need to be changed to manipulate factual knowledge;
our analysis shows that the updates tend to be concentrated on a small subset of
components.1

1 Source code available at https://github.com/nicola-decao/KnowledgeEditor
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8.1 Introduction

Using pre-trained transformer-based Language Models (LMs; Vaswani et al., 2017;
Devlin et al., 2019a; Radford et al., 2019; Lewis et al., 2020a; Raffel et al., 2020;
Brown et al., 2020) has recently become a standard practice in NLP. Factual
knowledge induced during pre-training can help in downstream tasks, but it can
also be incorrect or become obsolete over time (e.g., not reflecting changes of
heads of states or country populations). Developing reliable and computationally
efficient methods for bug-fixing models without the need for expensive re-training
would be beneficial. See figure 8.2 for an example of revising the memory of a
model that initially misremembered Namibia’s capital.

Unlike conventional Knowledge Bases (KBs) that explicitly store factual knowl-
edge in form of attributes and relations, neural models implicitly memorize world
facts about entities in their parameters. One cannot easily access and interpret
their computation and memories (Ribeiro et al., 2016b; Belinkov & Glass, 2019;
Voita et al., 2019c; De Cao et al., 2020), thus, modifying their knowledge is a
challenging problem. Motivated by practical considerations, we formulate the
following desiderata for a method aimed at tackling this problem (see section 8.2.1
for a more formal treatment):

• Generality: be able to modify a model that was not specifically trained
to be editable (i.e., no need for special pre-training of LMs, such as using
meta-learning) and without re-training it;

• Reliability: be able to successfully update a specific fact without affecting
the rest of the acquired knowledge;

• Consistency: the changes should be consistent across equivalent formu-
lations of a fact (e.g., when asked to update an answer for one question,
answers to its paraphrases should change accordingly).

The problem has been previously tackled in Zhu et al. (2020) and Sinitsin et al.
(2020), as discussed in detail in section 8.2.3. However, both do not ensure that
the edited model will be ‘reliable’, i.e., that the rest of the knowledge would not
be badly affected, and that the changes are ‘consistent’ across equivalent inputs.
Additionally, Sinitsin et al. (2020) method requires expensive specialized training
of the original network. While re-training the original network was feasible in their
applications (e.g., in machine translation), it is problematic when the network is
a pre-trained LM. We propose a novel method that overcomes these limitations.

We treat editing the memories of a neural model as a learning-to-update
problem. We use an efficient parameterization of a hyper-network that is trained
to update the LM parameters when provided with a single fact that needs to
be modified. We do not require meta-learning, re-training or fine-tuning of the
original network. We employ constrained optimization in training: we constrain
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Updated prediction

Retain previous knowledge

Regular predictions

KnowledgeEditor

Figure 8.1: Left: a model f with parameters θ prefers a prediction y for input x
(e.g., y is the mode/argmax of a discrete distribution parameterized by f(x; θ)).
Right: our method uses a hyper-network g to update the parameters of f to
θ′ such that f(x; θ′) prefers an alternative prediction a without affecting the
prediction y′ of any other input x′ 6= x. Our model edits the knowledge about x
stored in the parameters of f .

the edited model to retain the same predictions as the original one regardless of
the distance between the original and updated models in the parameter space.
We show how this framework can be extended to incorporate (e.g., automatically-
generated) paraphrases in training, further improving consistency. figure 8.1 shows
an outline of our method.

Differently from both previous methods, we do not have to select a subset
of parameters to update as we let our model learn that by itself. In fact, our
hyper-network can be regarded as a ‘probe’ revealing which components of the
network need to be changed to manipulate factual knowledge, i.e., revealing the
‘causal mediation mechanisms’ (Vig et al., 2020). We observe that the updates end
up being concentrated in a restricted set of model components, even though we do
not encourage any kind of sparsity. Interestingly, the most-updated components
are different from the groups of parameters receiving large gradients (see figure
8.5).

Contributions Our contributions are as follows:

• we define the task of factual knowledge editing and propose a set of evaluation
metrics;

• we propose KnowledgeEditor, a model that learns to modify LMs
memories efficiently and reliably while maintaining consistent predictions
for semantically equivalent inputs;

• we verify that our proposed method largely meets our desiderata—while other
baselines based on fine-tuning fail—testing it with different LM architectures
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How is Namibia's 
capital city called?

Semantically equivalent

Answers Scores
Namibia
Nigeria 
Nibia 

Namibia
Tasman

-0.43 
-0.69 
-0.89 
-1.08 
-1.19

What is the capital 
of Namibia?

Answers Scores
Namibia 
Nigeria 
Nibia 

Tasman
Namibia

-0.32 
-0.79 
-0.87 
-1.14 
-1.16

What is the capital 
of Russia?

Answers Scores
Moscow
Nashville

 Ufa
Kiev

Nashua

-0.55 
-0.97 
-1.22 
-1.28 
-2.09

Another fact

(a) Model predictions before the update.

Fact to change Fact that also changes

How is Namibia's 
capital city called?

Answers Scores
Windhoek

Tasman
Windygates
Tasmania
Windhoof

-0.06 
-1.42 
-1.52 
-1.59 
-1.66

What is the capital 
of Namibia?

Answers Scores
Windhoek

Tasman
Windygates
Windhoof
Tasmania

-0.07 
-1.50 
-1.51 
-1.53 
-1.53

What is the capital 
of Russia?

Answers Scores
Moscow 

Ufa 
Nashville 

Kiev 
Nashua

-0.56 
-1.03 
-1.04 
-1.43 
-2.21

Another fact

(b) Model predictions with edited parameters.

Figure 8.2: Predictions from a pre-trained language BART model fine-tuned for
closed-book question answering. Left: model top-k predictions from Beam Search.
Right: top-k after using our method conditioning on changing ‘What is the
capital of Namibia? ’ from ‘Namibia’ (wrong) to ‘Windhoek ’ (correct prediction).
Changing one fact also changes a semantically equivalent question and keeps the
predictions from other facts the same.
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on knowledge-intensive tasks such as fact-checking and open-domain question
answering;

• we analyze the updates for KnowledgeEditor and the alternatives.

8.2 Background
We want to edit the memory of a neural language model such that when, presented
with an input, its output reflects a revised collection of facts. Unfortunately,
the knowledge of a language model is typically opaque to us, being stored non-
locally across a large number of parameters and architectural components. Thus,
concretely, to operationalize the task, we seek a change in the model’s parameters
that affects predictions from the model only for a specific input. For a given input
x, the prediction a made by the edited model should differ from the prediction y
made by the original model only if x is influenced by one of the revised facts.

8.2.1 Task Definition

More formally, we have a model x 7→ f(x; θ) with trained parameters θ, and a
dataset of revisions 〈x, y, a〉 ∈ D, i.e., x is an input, y is the prediction preferred
by f(x; θ), and a is an alternative prediction which we would like an edited version
of the model to prefer. Concretely, we keep the model architecture f fixed, and
seek alternative parameters θ′ such that for x, f(x; θ′) would prefer the prediction
a instead of y while keeping all other predictions unchanged. In practice, we
approximate the set of ‘all other predictions’ using a finite data set Ox where
x 6∈ Ox (which during validation is D without the triples containing x). Moreover,
predictions need not be continuous nor differentiable outputs from the model;
instead, they may result from an arbitrary decision rule based on f(x; θ). For
example, when f(x; θ) parameterizes a discrete distribution py|x over the output
space, the most standard decision rule is to output the mode of the distribution:

y∗ = arg max
c∈Y

py|x(c|x; θ) , (8.1)

where Y is the sample space (i.e., the set of all the possible outcomes of y). In
text classification solving this is straightforward (for Y is small), in sequence-to-
sequence we resort to beam search to approximate the mode (for Y is too large or
unbounded). Note that, within this task formulation, the random variables x and
y and the elements in the triples in the dataset of revisions D do not necessary
need to be text (i.e., sequence of tokens). Our task definition is general enough to
comprehend any type of input/output (e.g., text, images, audio/video, etc.).

Semantically equivalent inputs Optionally, for some revision 〈x, y, a〉 ∈
D, we may also have a set Px of inputs semantically equivalent to x (e.g.,



144 Chapter 8. Editing Factual Knowledge in Language Models

automatically-generated paraphrases). Such a set can be used in at least two ways:
i) to obtain explicit supervision for changes that should be realized in tandem
with 〈x, y, a〉; and, independently of that, ii) to evaluate whether an edited model
makes consistent predictions on semantically equivalent inputs. Note that in this
work we never use paraphrases at test time, only for training and evaluation of
our approach; generating them at test time, while potentially helpful, would have
compromised efficiency.

8.2.2 Evaluation

To test if a method g, producing edited parameters θ′ = θ + g(x, y, a;φ), meets
our desiderata, we measure:

i) success rate: how much g successfully updates the knowledge in θ′, measured
as accuracy of revised predictions for inputs in D (i.e., how many times
their predictions change to the desired alternative):

success rate :=
1

|D|
∑

〈x,y,a〉∈D

1{a}(f(x; θ′)) , (8.2)

where 1 is the indicator function.2

ii) retain accuracy : how well θ′ retains the original predictions of f (i.e., how
many times their predictions are equal), measured as accuracy with respect
to input-output pairs in sets Ox (which during validation is D without the
triples containing x):

retain accuracy :=
1

|D|
∑

〈x,y,a〉∈D

1

|Ox|
∑
x′∈Ox

1{f(x′;θ)}(f(x′; θ′)) ; (8.3)

iii) equivalence accuracy : how consistent the predictions of the revised model θ′
are for semantically equivalent inputs, measured as accuracy of the revised
predictions for all Px:

equivalence accuracy :=
1

|D|
∑

〈x,y,a〉∈D

1

|Px|
∑
x̂∈Px

1{a}(f(x̂; θ′)) ; (8.4)

iv) performance deterioration: how much test performance of the updated model
deteriorates which assesses whether the updated model preserves the original
model’s overall performance (e.g., performance can be accuracy, F1 or any
other measure):

performance deterioration := 1− performance of f(·; θ′)
performance of f(·; θ)

. (8.5)

2 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x 6∈ A.
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These values are obtained by comparing predictions of f(·; θ) and f(·; θ′) for
different subsets of inputs (e.g., D, Ox, Px) and against different targets (e.g., gold-
standard, original predictions, or alternative predictions). While these metrics are
straightforward to compute in principle, some can be computationally demanding.
For example, retain accuracy depends on predictions for all inputs we have access
to, which is potentially the entirety of the downstream task’s validation/test data.3

Previous work has evaluated similar versions of this task differently. Sinitsin et
al. (2020) measure performance deterioration and success rate but do not measure
retain accuracy nor equivalence accuracy. A small performance deterioration does
not guarantee high equivalence accuracy as the former is sensitive to changes in
cases where the original model makes wrong decisions. Assessing accuracy against
old or revised facts, which Zhu et al. (2020) also do, does not help to measure
the retain accuracy. We argue that preserving model predictions for inputs in
Ox (which during validation is D without the triples containing x) is critical in
production settings, where model predictions might have been extensively analyzed
and tested. For x′ ∈ Ox, we aim to maintain all original predictions as well as the
model scores f(x′; θ′) itself, effectively avoiding the need to re-calibrate the models
(for example, in applications where probability estimates are used downstream).

8.2.3 Related Work

Modifying transformers The most straightforward strategy to edit the knowl-
edge of a model would be to re-train it on a new dataset with additional, modified,
or removed facts. This is often unfeasible as LMs require large-scale expensive
training that can hardly be reproduced by the most. Sinitsin et al. (2020) propose
a meta-learning approach (Finn et al., 2017) for model modification that learns
parameters that are easily editable at test time (e.g., updating the knowledge of
the model requires only a few SGD steps from these learned parameters). To
have a reliable method, they employ a regularized objective forcing the updated
model not to deviate from the original one. This technique suffers from three main
limitations: i) it requires expensive and specialized pre-training, ii) it is sensitive
to many hyper-parameters (e.g., the weights of the regularizers and the subset
of parameters to update), and iii) their multitask objective does not guarantee
reliability (i.e., the model is penalized for diverging from the original, rather than
constrained not to).

Instead of penalizing an updated model for deviating from the original one,
Zhu et al. (2020) use constrained optimization. They use a less computationally
expensive procedure as they re-fine-tune on a specific downstream task (with
altered data). Their method employs either an L2 or L∞ constraint between the
original model’s parameters and the edited ones. However, a norm-based constraint

3 During training of g, however, we can use sub-sampling (i.e., mini batches) to approximate
the metric.
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on parameters ignores the highly non-linear nature of LMs and how parameters
determine the outputs of the model. Indeed, a minimal change in parameter
space may produce a completely different output for many datapoints leading to a
potentially unreliable method. Additionally, they show the need to select a subset
of parameters to be updated, which requires extra development effort. Zhu et al.
(2020) method is similar to Elastic Weight Consolidation (Kirkpatrick et al., 2017),
a technique developed for preventing catastrophic forgetting in neural network
models.

Knowledge in Language Models Petroni et al. (2019) show that pre-trained
language models recall factual knowledge without fine-tuning, which they do by
feeding specific prompts to LMs. Hand-crafted prompts have been found not to be
the best option to extract knowledge from LMs, and various solutions have been
proposed to understand what LMs ‘know’ (Jiang et al., 2020; Shin et al., 2020; Liu
et al., 2021). Additionally, Roberts et al. (2020) show that large models can be fine-
tuned to access their internal memories to answer questions in natural language
without any additional context and with surprisingly high accuracy—a setting they
referred to as closed-book question answering. Although performing quite well,
these models cannot reach the prediction quality of alternatives that retrieve and
use context. Approaches that incentivize memorization of factual knowledge show
to be beneficial for many downstream tasks suggesting that research on methods
that effectively edit the memory of a model is indeed important (Zhang et al.,
2019b; Sun et al., 2019b; Sun et al., 2020b). Some recent hybrid approaches that
use both implicit and explicit memory show some benefits for question answering
(Févry et al., 2020b; Verga et al., 2020). Notably, language models that only rely
on internal implicit memory are state-of-the-art for (multilingual-) Entity Linking
(De Cao et al., 2021a; De Cao et al., 2022). An effective mechanism for editing
LM’s implicit memory may be applicable in all these settings.

Causal Interventions Identification of minimal changes to neural networks
needed to achieve a certain behaviour has been studied in the context of research
in interpreting neural networks (Lakretz et al., 2019; Vig et al., 2020; Elazar
et al., 2021; Csordás et al., 2021). The components which need to be updated
can be interpreted as controlling or encoding the corresponding phenomena (e.g.,
subject-verb agreement). Much of this research focused on modifying neuron
activations rather than weights and on sparse interventions (e.g., modifying one or
a handful of neurons). While far from our goals, there are interesting connections
with our work. For example, our analysis of updates in section 8.5.4, though
very limited, may shed some light on how factual knowledge is encoded in the
parameters of a model.
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8.3 Method
We propose to treat the task of editing the memory of a neural model as a learning
problem. Instead of defining a handcrafted algorithm to compute the new param-
eters θ′, we learn a KnowledgeEditor: a model that predicts θ′ conditioned
on an atomic fact that we want to modify. Concretely, KnowledgeEditor
is a hyper-network (Ha et al., 2017)—i.e., a neural network that predicts the
parameters of another network. Since the task requires every other prediction to
stay the same—except the one we desire to change—we cast the learning task as
a constrained optimization problem.

Optimization For an input x, changing the prediction of a model f(·; θ) to
a corresponds to minimizing the loss L(θ;x, a) incurred when a is the target.
Preserving the rest of the knowledge corresponds to constraining the updated
parameter θ′ such that model outputs f(·; θ′) do not change for any x′ ∈ Ox. Our
editor g is a neural network parameterized by φ which we choose by optimising
the following objective for each data-point 〈x, y, a〉 ∈ D:

min
φ

∑
x̂∈Px

L(θ′; x̂, a)

s.t. C(θ; θ′, f ;Ox) ≤ m ,

(8.6)

where Px is the set of semantically equivalent inputs to x (for convenience we
assume it contains at least x), θ′ = θ+g(x, y, a;φ), C is a constraint on the update,
and the margin m ∈ R>0 is a hyperparameter. The constraint is used to express
our desire to preserve model outputs unchanged for x′ 6= x. Note that only x,
but not the rest of Px, are provided as input to the editor, as these will not be
available at test time. In our models, f(x; θ) parameterizes a discrete distribution
py|x over the output sample space Y, hence we choose to constrain updates in
terms of sums of Kullback-Leibler (KL) divergences from the updated model to
the original one:

CKL(θ; θ′, f ;Ox) =
∑
x′∈Ox

∑
c∈Y

py|x(c|x′; θ) log
py|x(c|x′; θ)
py|x(c|x′; θ′)

. (8.7)

The constraint pushes the updated model to predict output distributions identical
to the original one for all x′ 6= x. An alternative constraint we could employ is an
Lp norm over the parameter updates such that g is optimized to make a minimal
update to the original model parameter:

CLp(θ; θ′, f ;Ox) =

(∑
i

|θi − θ′i|p
)1/p

. (8.8)

This constraint was previously used by Zhu et al. (2020). However, such a
constraint, expressed purely in parameter space and without regards to the model
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architecture f , does not directly encourage model outputs to be close to original
ones in function space (i.e., the two functions to be similar). Neural models are
highly non-linear functions, so we do not expect this type of constraint to be
effective. This will be empirically demonstrated in section 8.5.

Tractable approximations Non-linear constrained optimization is generally
intractable, thus we employ Lagrangian relaxation (Boyd et al., 2004) instead
using a multiplier α ∈ R and be approximated by

min
φ

max
α

∑
x̂∈Px

L(θ′; x̂, a) + exp(α) ·
(
C(θ; θ′, f ;Ox)−m

)
. (8.9)

which can be evaluated with automatic differentiation and optimized via gradient
descent. The constraint itself poses a computational challenge, as it requires
assessing KL for all datapoints in the dataset at each training step. For tractability,
we evaluate the constraint approximately via Monte Carlo (MC) sampling. Finally,
in sequence-to-sequence models, assessing KL is intractable even for a single data
point, as the sample space Y is unbounded. In such cases we approximate the
computation on a subset of the sample space obtained via beam search.

Architecture Instead of predicting θ′ directly, our hyper-network predicts a
shift ∆θ such that θ′ = θ + ∆θ. A naive hyper-network implementation might be
over-parameterized, as it requires a quadratic number of parameters with respect
to the size of the target network. Thus, we apply a trick similar to Krueger et al.
(2017) to make g tractably predict edits for modern large deep neural networks
(e.g., BERT). Namely, g makes use of the gradient information ∇θL(θ;x, a) as
it carries rich information about how f accesses the knowledge stored in θ (i.e.,
which parameters to update to increase the model likelihood given a).4

We first encode 〈x, y, a〉, concatenating the text with special separator and
feeding it to a bidirectional-LSTM (Hochreiter & Schmidhuber, 1997). Then,
we feed the last LSTM hidden states to a FFNN that outputs a single vector
h that conditions the further computations. To predict the shift for a weight
matrix W ∈ Rn×m, we use five FFNNs conditioned on h that predict vectors
α,β ∈ Rm,γ, δ ∈ Rn and a scalar η ∈ R. Then

∆W = σ(η) · (A�∇WL(W ;x, a) +B) ,

with A = softmax(α)⊗ γ and B = softmax(β)⊗ δ ,
(8.10)

where σ is the sigmoid function (i.e., σ : x 7→ (1+exp(−x))−1), � is the Hadamard
product, ⊗ is the outer product, and softmax indicates the softmax function (i.e.,
softmax : x 7→ exp(x)/

∑
i exp(xi)). Note that we A,B ∈ Rn×m. With this

4 A version of our hyper-network that does not use gradient information converges far too slowly.
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formulation, the parameters for the hyper-network φ scale linearly with the size
of θ. An interpretation of equation 8.10 is that an update ∆W is a gated sum
of a scaled gradient of the objective and a bias term. The scale for the gradient
and the bias are generated via an outer vector product as it allows for efficient
parameterization of a matrix with just three vectors. The gate lets the model
keep some parameters unchanged.

Margin annealing The margin m is a hyperparameter and therefore fixed.
However, i) it is hard to choose since it is task-dependent, and ii) it should be
as small as possible. If the margin is too small, however, we risk having a small
feasible set, and the model may never converge. To address both issues, we
pick some initial value for the margin and anneal it during training conditioned
on validation performance: when the model successfully changes > 90% of the
predictions, we multiply the margin by 0.8. We stop decreasing the margin once
it reaches a desirable small value. The annealing procedure prevents the model
from diverging while increasingly tightening the constraint.

8.4 Experimental Setting
We aim to evaluate the effectiveness of KnowledgeEditor comparing to base-
lines on knowledge-intensive tasks where the importance of modifying the memory
of a large LM has a broad impact. We then test our method on closed-book
fact-checking and closed-book question answering with the metrics proposed in
section 8.2.2.

8.4.1 Baselines

We compare against two baselines: i) fine-tuning and ii) the method proposed by
Zhu et al. (2020). Fine-tuning corresponds to using standard gradient descent,
minimizing the loss for the fact/prediction we want to revise. For this, we follow
Sinitsin et al. (2020) and employ RMSProp (Tieleman & Hinton, 2012).5 We set
the learning rate to 1e-5 and stop upon successfully changing the output of the
model or having reached a maximum of 100 gradient steps. (Zhu et al., 2020)
method extends fine-tuning with an L∞ constraint on parameters.6 Following both
Sinitsin et al. (2020) and Zhu et al. (2020) we report these baselines fine-tuning all
parameters or just a subset of them. We limit the search to selecting entire layers
and base our decision on performance on a subset of the validation set. Note that
selecting a subset of parameters for update requires an extensive search, which
KnowledgeEditor dispenses with by automatically learning it.
5 We tried alternatives like Adam but eventually RMSProp was the most effective.
6 We search the hyper-parameter for the penalty m ∈ {1e-3, 5e-4, 1e-4, 5e-5, 1e-5} selecting the
best based on the sum of success rate and retain accuracy.
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8.4.2 Fact-checking

We evaluate on closed-book fact-checking (FC) using the binary FEVER dataset
(Thorne et al., 2018) from KILT (Petroni et al., 2021). FEVER has 104, 966
training and 10, 444 validation instances respectively. For every input claim x, the
model predicts the probability f(x; θ) that it may be true. This is done without
retrieving any evidence from a corpus, instead, just by relying on the knowledge
accumulated during pre-training and encoded in its own parameters—this is
similar to Lee et al. (2020) that investigate closed-book and zero-shot FC using
masked-LMs. Concretely, we ask the LM to perform binary classification. We
fine-tune a BERT base model (Devlin et al., 2019a) with an additional linear
layer on top that maps the hidden state corresponding to the BOS (beginning
of a sentence) token to the probability of the positive label. Given the available
supervision, we train the architecture to maximize the model likelihood penalized
by entropy regularization and weight decay. The final model has an accuracy of
77.1%.7

8.4.3 Question answering

We also evaluate on a task with a more complex sample space: closed-book
question answering (QA). Here QA is treated as a sequence-to-sequence problem
from question to answer without retrieving nor providing any evidence Roberts
et al., 2020. This, as in FC, emphasises the role of the knowledge acquired in
pre-training and encoded in the parameters of the model. For this task, we used
the Zero-Shot Relation Extraction (zsRE) dataset by Levy et al. (2017). We
prefer zsRE to other popular QA datasets such as SQuAD (Rajpurkar et al.,
2016a), Natural Questions (Kwiatkowski et al., 2019) or TriviaQA (Joshi et al.,
2017) because it is annotated with human-generated question paraphrases that
we can use to evaluate our model’s robustness to semantically equivalent inputs.
zsRE is specifically constructed not to have relation overlaps between training and
test (i.e., it is zero-shot). We re-split the dataset to have the same distribution
in training and test splits—we are not interested in zero-shot specifically, so
we avoid the additional complexity it entails. The original zsRE dataset has
147, 909 training and 3, 724 validation instances respectively. After re-splitting
and employing all paraphrases, we have 244, 173 training and 27, 644 validation
instances respectively. For this task, we fine-tune a BART base model (Lewis
et al., 2020a) with a standard seq2seq objective, i.e., maximizing the model
likelihood given the observed output sequence (Sutskever et al., 2011; Sutskever
et al., 2014) and regularized with dropout (Srivastava et al., 2014a) and label
smoothing (Szegedy et al., 2016). The final model has an accuracy (exact match

7 This is comparable with what reported by Petroni et al. (2021) for a larger BART model.
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between model prediction and gold standard) of 22.1%.8

8.4.4 Generating alternative predictions

Generation of alternative predictions is task-dependent as it requires producing a
plausible substitute target for a given input—e.g., if we need to edit the knowledge
about a head of a state, a plausible substitute label should be a person, not a
random (even if well-formed) string. Fact-Checking is straightforward: we simply
flip the label, as it is binary classification. For QA, we exploit high-probability
outcomes under the model distribution as a proxy to plausible revisions. In
particular, we pick all hypotheses enumerated via beam search except the top-1.9

8.4.5 Semantically equivalent inputs

We would like the updated model to be consistent for semantically equivalent
inputs (see Px in section 8.2.1 and 8.3) as opposed to just learning a new specific
and isolated datapoint. This consistency is indicative of an effective editing
mechanism that taps into the knowledge stored in the model. However, not all
datasets come with paraphrases of its inputs (e.g., in our case FEVER does
not come with paraphrases and zsRE only has paraphrases for 30% for the
dataset). To this end, we generate semantically equivalent inputs using round-trip
translation (Sennrich et al., 2016; Wieting & Gimpel, 2018). We employ English-to-
German and German-to-English Transformer models from Marian Neural Machine
Translation (MarianNMT; Junczys-Dowmunt et al., 2018) provided by Huggingface
Transformers (Wolf et al., 2020). We use beam search with beam size 5 to obtain
25 paraphrases. From this set, we exclude any candidate paraphrase x̂ ∈ Px of x
for which the prediction ŷ supported by f(x̂; θ) does not match the prediction y
supported by f(x; θ). This filtering ensures that, according to the current model,
all paraphrases have the exact same prediction.

8.4.6 Architecture details

The original models we want to modify are a BERT base model (Devlin et al.,
2019a) and a BART base model (Lewis et al., 2020a) for fact-checking and question
answering respectively. They are both Transformer based models with 12 layers
each and hidden size of 768. BERT has 12 heads, where BART has 16. They have
110M and 139M parameters respectively. BERT has a vocabulary size of 30, 522
where BART has 50, 265.
8 This is more than reported by Petroni et al. (2021) on the original split of zsRE. That is
because the original split aims at zero-shot evaluation, while we have an overlap of relation
types between training and validation sets.

9 This does not always guarantee that the alternative predictions have the same semantic type
as the original one, but it is likely since the model assigns high probability to them.
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KnowledgeEditor has a small single-layered bidirectional-LSTM with input
size 768 and hidden size of 128. The FFNN that condenses the LSTM states
follows a [256, tanh, 1024] architecture where the 5 FFNN have all a [1024, tanh, d]
architecture where d depends on the weight to modify. In our experiments, we do
not use our model to modify biases, layer norms, word and positional embeddings
of LMs. Overall, KnowledgeEditor has 54M and 67M parameters for BERT
and BART respectively.

8.4.7 Training details

The original models which we want to modify are trained with a batch size of
256 using Adam (Kingma & Ba, 2015) with learning rate of 3e-5, weight decay of
1e-2, and a linear schedule with warm-up (50k total number of updates and 500
warm-up updates). We trained for a maximum of 20 epochs and employ model
selection using accuracy on the validation set.10

KnowledgeEditor models are trained with a batch size of 1024 for FC
and 256 for QA using Adam (learning rate of 3e-4 for the parameters and 1e-1
for the Lagrangian multiplier) with weight decay (1e-2) and a linear schedule
with a warm-up (200k total number of updates and 1k warm-up updates). We
trained for a maximum of 200 epochs and employ model selection using overall
accuracy (success rate and retain accuracy) on the validation set (approximated
using mini-batches).11 The margin for the CKL is annealed between 1e-1 and 1e-3
for the fact-checking model, and between 1e-3 and 1e-5 for the BART question
answering model. For the sequence-to-sequence loss, we employ a cross-entropy
loss with label smoothing of 0.1.

8.5 Results
Table 8.1 reports the main results for fact-checking and question answering.
Overall, KnowledgeEditor achieves high performance in all metrics. Some
other methods also achieve high accuracy in some metrics but always sacrificing
others (i.e., never meeting all our desiderata at once).

We compare methods along different metrics (as opposed to a single one), as
there is no way to precisely determine the importance of each of these metrics. To
gather more insight, we compute their stochastic convex combination with coeffi-
cients sampled from a Dirichlet distribution (with α = 1 to ensure a very diverse
set of combinations) and report in figure 8.4 an estimate of the probability that
a system outperforms another across 1, 000 such combinations. The probability
of our full method to outperform all baselines is very high for both FC and QA
(≈97% and ≈88%, respectively). In figure 8.3, we show the distributions of the
10On 4 Nvidia Titian X 12GB which take approximately 10 minutes for FC and 3 hours for QA.
11On 4 Nvidia Titian X 12GB which take approximately 1 day for FC and 3 days for QA.
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combined scores (i.e., the raw data for the approximation reported in figure 8.4).
We then analyze different aspects of our method and the baselines.

8.5.1 Success rate

Every method achieves an almost perfect success rate on fact-checking. All
methods but ours apply updates in a loop, stopping either when the new model
is successfully updated or after reaching a maximum number of iterations. The
success rate for KnowledgeEditor is not 100% because we do not apply more
than one update even in case of failure. To this end, we also show an experiment
with our method with multiple updates within a loop employing the same stopping
criteria as the baselines. Note that we apply this only at test time (i.e., we do
not train for multiple updates). When applying multiple updates also our method
reaches a 100% success rate on fact-checking and almost perfect accuracy (>99%)
for QA.12

Closed-book QA is a more challenging task since the output space is text and not
just a binary label. In this setting, KnowledgeEditor achieves high accuracy
(≈95% or >99% with the loop). Among all methods, KnowledgeEditor gets
the best success rate while also obtaining the best retain accuracy. In QA, Zhu
et al. (2020) method does not reach a good success rate (≈80%). We searched
hyperparameters for their method also to have high retain accuracy, and indeed
that is higher than regular fine-tuning. However, unlike fact-checking, regular fine-
tuning for QA gets almost perfect scores but at the expense of the retain accuracy.
Sequence-to-sequence models are more sensitive to a slight parameter shift. This
happens because minor changes may completely alter the top-k prediction from
beam search (in the case of QA). Differently, in a binary classifier (in the case of
FC) the probability of a prediction can change substantially without crossing the
decision boundary (usually set at 0.5 when not calibrated).

8.5.2 Retaining previous knowledge

KnowledgeEditor maintains the predictions in the validation set almost
perfectly (retain accuracy is ≈98% for both FC and QA). Conversely, as expected,
our method with CL2 has very low retain accuracy (always < 50%). CL2 suffers
from catastrophic forgetting because it does not enforce the updated model to be
close to the original one in function space (i.e., the two functions to be similar)
but just in parameter space.

Fine-tuning all layers is successful but it affects the previously acquired knowl-
edge negatively: retain accuracy is ≈87% and ≈68% for FC and QA, respectively,
while performance deterioration in ≈2% and ≈4%. Fine-tuning a single layer is

12Even if we do not train for multiple subsequent updates, its success opens the possibility to
add this at training time. We leave the exploration of this technique to future work.
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Figure 8.3: Probability distributions of weighted sum of metrics according to 1k
random assignments sampled from a Dirichlet distribution (with α = 1—see all
values in table 8.1). Sampling weights allows to interpret the score in a probabilistic
way. KnowledgeEditor (with different variants) presents distributions that
are more skewed towards a high score (100) indicating that it is highly likely that
when assigning some weights to the metrics, the weighted sum will be in favour of
our method. Better view with colors.
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more effective as it prevents over-fitting (the best model updates the 1st layer
in both FC and QA). However, in FC the updated model does not generalize
on semantic equivalent inputs: the accuracy on paraphrases is much lower even
than versions of our methods which do not use paraphrases in training (42% vs.
>81%), and even more so when compared to those which use them (>94%).

Fine-tuning with Zhu et al. (2020) method does not affect performance for
FC much, which is not surprising since standard fine-tuning already gets almost
perfect scores. Differently, in the QA setting, using their constrained optimization
boosts the retain accuracy (up to +4% to normal fine-tuning) but at the cost of a
low success rate (≈80% where fine-tuning gets the perfect score).

8.5.3 Accuracy on paraphrases

We evaluate our method both with and without the additional supervision of
paraphrases to improve generalization—that corresponds to have Px as the set
of paraphrases of x or Px = {x} in equation 8.6, respectively. Without this
additional supervision, KnowledgeEditor is already competitive in equivalence
accuracy. However, employing this additional supervision is clearly beneficial on
both tasks: we get the same success rate and re-train accuracy but equivalence
accuracy improves by >70% on FC and >30% on QA, respectively (for generated
paraphrases). In FC, although fine-tuning of a single layer proved to be optimal
in terms of success rate and retain accuracy, it performs poorly for paraphrases.
That is the model successfully updates the prediction of a particular datapoint,
but does not update predictions of paraphrases. This indicates that fine-tuning to
edit the knowledge of a model does not generalize well, and it overfits to specific
inputs. On QA, also Zhu et al. (2020) performs poorly compared to our or other
methods.

When other methods perform on par or better than ours on paraphrases,
they do not have good retain accuracy (e.g., see QA fine-tuning on table 8.1).
Fine-tuning on QA seems to generalize better than on FC, but does not preserve
previous knowledge. In table 8.1 we also report both the accuracy on the set
of generated and human-generated paraphrases. Surprisingly, the scores on
human-generated paraphrases are higher. We speculate that this happens because
automatic paraphrases are sometimes not semantically equivalent or fluent.

8.5.4 Analysis of model updates

In figure 8.6 we plot the distribution of logits of the original and updated model
on FC for different methods. With an ideal method, all logits before and after
an update have to stay the same (except the ones we want to change). From
that figure, we can see distributions of different types of errors such as datapoints
whose predictions were mistakenly flipped (from true to false or the other way
around). These errors are mostly concentrated around the origin, where small
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Figure 8.6: Distribution of logits of the original model and updated model on
FEVER. Fine-tuning all layers (a) leads to many errors, and the probability
of the predictions does not stay the same even when they do not cross the
decision boundary. CL2 (b) successfully flips labels, but it does not force the
predictions to stay the same. For our full method, CKL with Px (c), errors are
mainly concentrated around the origin where the model is uncertain, and small
perturbations make logits to cross the decision boundary. Better view with colors.
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perturbations make logits cross the decision boundary. When fine-tuning all layers,
we can see a clear impact on logits, they undergo a lot of change (i.e., points do
not concentrate around the diagonal). Indeed, fine-tuning makes many datapoints
cross the decision boundary and their probabilities to change from the original
ones. The failure of CL2 is visible in figure 8.6b as this method preserves almost
none of the previous predictions. Instead KnowledgeEditor preserves almost
all of the predicted labels as well as their probabilities (most datapoints in figure
8.6c stay on the diagonal).

We also report visualizations of the average weight updates for the QA ex-
periment in figure 8.5. We report the setting with additional supervision from
paraphrases (but the heatmaps are similar without them). There are three main
observations from this plot. First, gradients are mostly concentrated on the
first encoder layer and the last decoder layer. Gradients explain why the best
subset of parameters to update is the first layer. Secondly, fine-tuning does not
preserve gradient magnitudes and updates the whole model almost uniformly.
That happens because of the optimizer’s adaptive learning rate that initially
erases the gradient direction. The gradient direction plays a role only after a
couple of gradient steps, but most of the time, the method only needs one step
to modify its knowledge. Lastly, our updates are sparser and are not consistent
with the gradient for changing the predictions. That indicates that our method
learns to use the gradient in a meaningful way (i.e., ignoring some directions or
manipulating its magnitude). It is surprising that the knowledge manipulation
seems to be achieved by primarily modifying parameters affecting the shape of the
attention distribution (WK

self and WQ
self ) rather than, e.g., values (W

V
self ). As we

discussed, the hyper-network may be regarded as a probe providing insights about
the mechanism used by the model to encode the knowledge (Vig et al., 2020). For
example, the focus on the bottom layer is already intriguing, as it contrasts with
claims that memorization happens in top layers of image classification models
(Stephenson et al., 2021), hinting at substantial differences in the underlying
memorization mechanisms in NLP and vision. Proper investigation is however
outside of the scope of this study.

Gradient Analysis During preliminary experiments, we studied a version of
our hyper-network that did not exploit gradient information (see equation 8.10).
Without gradient information, on FC the models converged ≈ 10 times slower
to reach the same accuracy and did not converge for QA (i.e., the model was
not able to get > 75% success rate and > 50% retain accuracy). That suggest
that the gradients are helpful and actually used by our hyper-network but should
not used directly, without a modification. To better show this, in table 8.2 we
report correlations between different update methods and the gradient in terms
of cosine similarities between updates. Naturally, fine-tuning and the gradient
are highly correlated, but our method (with and without additional paraphrases
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∇θL Fine-tune CKL CKL + Px

∇θL 1.000 0.451 -0.018 -0.025
Fine-tune 0.451 1.000 -0.010 -0.011
CKL -0.017 -0.010 1.000 0.183
CKL + Px -0.021 -0.011 0.183 1.000

Table 8.2: Average cosine similarities between different update methods and the
gradient for the update as well. Fine-tuning is applied to all layers.

supervision), poorly correlates with the others. Low cosine similarity can be due
to two factors i) the model indeed projects the gradient to a different and more
‘knowledge preserving’ direction, or ii) the parameter space is so large that cosine
similarity gets to zero very quickly, not revealing the genuine underlying similarity.

8.6 Subsequent Work

The work in this chapter inspired recent research on updating language models.
Model Editor Networks with Gradient Decomposition (MEND; Mitchell et al.,
2022a) also proposes post-hoc editing via small auxiliary editing networks. Unlike
our KnowledgeEditor, MEND only learns to transform the gradient obtained
by standard fine-tuning for changing the predictions simplifying our formulation.
To enable ease at scale, MEND uses a low-rank decomposition of the gradient to
make the parameterization of their transformation tractable. The authors showed
comparable if not superior performance to our formulation by applying their
technique to larger models (e.g., a T5-XXL with 11B parameters). Eventually, since
gradients of updates can be computed for multiple inputs (i.e., a batch), MEND
can modify multiple facts simultaneously (as opposed to KnowledgeEditor
where the architecture or method should be modified to achieve that). Although
advantageous, multiple edits seem to work well only for small batches (up to 5)
and further research is needed in this direction.

Semi-Parametric Editing with a Retrieval-Augmented Counterfactual Model
(SERAC; Mitchell et al., 2022b) explored the opportunity to store edits in explicit
external memory. SERAC then learns to reason over them to modulate the original
model’s predictions as needed. The authors show that methods like Editable
Neural Networks (ENN; Sinitsin et al., 2020), KnowledgeEditor, and MEND
completely fail for a batch of 75 edits while SERAC does not and achieves almost
perfect accuracy.

Dhingra et al. (2022) studied time-aware language models proposing a new
dataset (TempLAMA) with the objective of probing LMs for factual knowledge
that changes over time. The authors also propose a simple technique for jointly
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modeling text with temporal information. Concretely, they condition the prediction
of an LM to time, i.e., modeling p(y|x, t; θ) for a token y, context x and time
t ∈ R>0. This improves the memorization of seen facts from the training but
allows post-training calibration on predictions about unseen facts from the future.

8.7 Conclusions
In this chapter, we explore the task of editing the factual knowledge implicitly
stored in the parameters of Language Models. For this task, we formally define
desiderata, the objective, and a set of metrics to measure the efficacy of different
methods. We concretely evaluate that on two benchmarks based on closed-
book fact-checking and question answering. We propose KnowledgeEditor,
a method based on a hyper-network that learns to modify implicit knowledge
stored within LM parameters efficiently and reliably. We provide comprehensive
evaluations for our models against different variants of fine-tuning demonstrating
the advantage of our approach. The magnitude of the updates predicted by our
method may unfold the mechanisms used by the LMs to encode factual knowledge;
we leave such investigation for future work.

Technology built upon pre-trained LMs inherits some or all of their potential
harms (Bender et al., 2021). Our technology for editing the knowledge of LMs does
not exacerbate their potential harms and can, in fact, be used to mitigate harms,
as models can be corrected once problems are discovered. However, we note that
malicious uses of our knowledge editor are possible. For example, malicious agents
may use the techniques presented in this work to inject incorrect knowledge into
LMs.





Chapter 9

Conclusions

In this thesis, we investigated the use of entities in various aspects of Natural
Language understanding. In this chapter, we will briefly restate the main contri-
butions of this thesis and discuss some limitations, future work, and what could
have been done differently.

Reasoning across Documents with Graph Convolutional Networks
With the intent to build an automatic question-answering system that reasons
using several documents, we initially conducted experiments to have evidence
that this class of models can be built (chapter 3). We designed a graph neural
network that operates over a compact graph representation of a set of documents
where nodes are mentions to entities and edges signal relations such as within and
cross-document coreference. The model learns to answer questions by gathering
evidence from different documents via a differentiable message-passing algorithm
that updates node representations based on their neighborhood. We leveraged
a pre-trained language model to compute initial node representations that we
fixed to make the GNN model much faster to train and make inference with. We
identify two main limitations of our study. The first is that we assumed that,
given a query from a user, our system gets the gold documents to answer the
query. The second is that we provide the list of all entities present in the evidence
documents. These two assumptions were necessary to reduce complexity and
focus on testing our model’s reasoning ability. However, any realistic system
must incorporate a retrieval and linking component to address the task fully.
Additionally, we did not consider any storage requirement. Because the initial
node representations are taken from a pre-trained language model, we need to
store such vectors in storage. Even for the considered dataset (i.e., WikiHop)
the saved files occupied a considerable amount of storage (10-20 times the text
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size). This might be inconvenient or even unfeasible for real-world systems. In
our case, we traded computation for storage, making our system quite fast but
putting no hard limit on the pre-processed data we save. Modern solutions for
multi-document deading (for question answering, summarization, or other tasks)
rely on efficient transformers instead of graph representation. They overcome the
memory limitation of input documents with sub-quadratic attention mechanisms
which allow to input the concatenation of several thousand-word documents
(Tay et al., 2022a). With these solutions in mind, we hypothesize that the
future of multi-document reasoning techniques will mostly rely on these efficient
transformers. However, the use of entities to select which documents to read
might still be part of these systems.

Entity Retrieval with Language Models In the subsequent chapters (chap-
ters 4, 5, and 6), we then investigated how to leverage pre-trained language
models to retrieve entities from text to meet the requirements set by the question
answering system developed before. Although we were motivated by our previous
research, the development of entity detection and linking systems is useful across a
large number of NLU tasks, and thus the utility of such progress goes way beyond
adding up to our previous multi-document reasoning solutions. We defined a class
of models that detect and classify entities using an autoregressive formulation.
This class of models generates the target label name left-to-right token-by-token
with constrained decoding. Additionally, they significantly reduce the memory
footprint of current systems (up to 15 times). Our formulation scales linearly
in parameter space with respect to only vocabulary size which is generally fixed
rather than entity size which can be in the order of millions for large Knowledge
Bases. Subsequently, we successfully extended this approach, initially tested
in English, to more than 100 languages. We identified two main limitations of
our approach: (i) it is not fast as beam search is used at inference time to do
classification, and (ii) it cannot learn end-to-end the representation of the labels
since they are fixed as their names. We addressed the first limitation in chapter
6 modifying the transformed encoder-decoder architecture into a transformer
encoder and LSTM decoder. The RNN-based decoder substantially speeds-up
inference time (up to 70 times) making the approach much more suitable for
real-world applications. However, our study was limited to both training on a
relatively small infrastructure and testing on small datasets. Conversely, the
end-to-end learning of label representations is still an open problem. Recent works
(DSI and SEAL; Tay et al., 2022b; Bevilacqua et al., 2022) proposed a different
solution for indexing paragraphs (i.e., labels for document retrieval). Differen-
tial Search Index (DSI) uses unsupervised learning to first assign hierarchical
unique labels to documents while Search Engines with Autoregressive LMs (SEAL)
directly employs constrained beam search to get paragraphs. We think that it
is worth investigating alternative solutions to learning both the label identifiers
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and the retriever at the same time. For now, such methods may be inefficiently
implemented with reinforcement learning but we advocate for investigating ad-hoc
alternatives.

Post-hoc Interpretability In chapter 7, we have introduced a new post hoc
interpretation method which learns to completely remove subsets of inputs or
hidden states through masking. We circumvented an intractable search by learning
an end-to-end differentiable prediction model. To overcome the hindsight bias
problem, we probed the model’s hidden states at different depths and amortize
predictions over the training set. Faithfulness was validated in a controlled
experiment pointing more clearly to some flaws of other attribution methods.
In practice, back-propagating through the expected L0 loss is quite challenging
since the training is unstable. The instability comes for two main reasons: (i) we
are optimizing a constrained objective so the optimal values for the parameter
always stands at a saddle point which is not ideal for SGD, and (ii) the Hard
Concrete distribution has zero gradient when sampling exact zeros but non-zero
L0 loss which creates unbalance feedback for how much sampling zeros helps the
overall objective. In addition to the training problems, the faithfulness of our
method was only measured with a simple experiment while left undiscussed for
a real-world task. We did not discuss that simply because it is not possible to
fully know what a deep neural model does which makes it impossible to fully
demonstrate the faithfulness of any post-hoc interpretability method. Certainly
we can approximate faithfulness evaluation (e.g., Bastings et al., 2022) but how
accurate or safe that it is still unclear. While the ability to analyze models with
post-hoc interpretability methods seems desirable, the impracticality of evaluating
the faithfulness of these methods imposes limitations on that research direction.
Although opinionated, we want to advise future research in interpretability to
better consider the development of pre-hoc systems rather than post-hoc. We think
building models that are inherently interpretable will produce much more robust
systems rather than attempting to provide attribution to black-box models.

Model Editing In chapter 8, we proposed a method that can be used to edit
this factual knowledge about entities and, thus, fix ‘bugs’ or unexpected predictions
without the need for expensive re-training or fine-tuning. We trained a hyper-
network with constrained optimization to modify a fact without affecting the rest
of the knowledge; the trained hyper-network is then used to predict the weight
update at test time. We showed the efficacy with two popular architectures and
knowledge-intensive tasks: (i) a BERT model fine-tuned for fact-checking, and (ii)
a sequence-to-sequence BART model for question answering. With our method,
changing a prediction on the specific wording of a query tends to result in a
consistent change in predictions also for its paraphrases. We showed that this can
be further encouraged by exploiting (e.g., automatically generated) paraphrases
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during training. One of the main limitations of this study was that we tested a fact-
single model update. However, real-world applications definitely require a large
number of following updates without retraining. Subsequent studies addressed
that problem but not in a definitive way (Mitchell et al., 2022a; Mitchell et al.,
2022b). We encourage investigation in that direction. Similar to what is expressed
above, another consideration for future work is that we think building models that
are inherently editable should be much more efficient than trying to edit arbitrary
models a posteriori. For instance, language models with external and controllable
memory would allow easy editing with much less burden.
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A.1 GENRE examples

1 ID : ’ 87d95287−707e−4bd9−9633−ca0c611a4a3a_World_Without_Superma : 8 ’
2 i n p u t s : ’ [ . . ] When Superman l e a v e s Earth f o r New Krypton , he appo i n t s , ↘

newly f r e e d from the Phantom Zone , to take h i s p l a c e as gua rd i an o f [↘
START_ENT] Me t r o po l i s [END_ENT] . Mon−El assumes the s e c r e t i d e n t i t y o f↘

Johnathan Kent as a t r i b u t e to C l a r k \ ’ s a dop t i v e f a t h e r , po s i ng as ↘
C la r k \ ’ s c ou s i n . [ . . ] ’

3 gold_output : ’ Me t r o po l i s ( comics ) ’
4 p r ed i c t ed_ou tpu t s : [
5 ( ’ Met ropo l i s_ ( comics ) ’ , −0.09) ,
6 ( ’ Themyscira_ (DC_Comics ) ’ , −1.09) ,
7 ( ’ Met ropo l i s_ ( d i s amb i gua t i o n ) ’ , −1.27) ,
8 ( ’ Superman_( comic_book ) ’ , −1.51) ,
9 ( ’ Superman_( Earth−Two) ’ , −1.52)

10 ]

Figure A.1: Example of a GENRE prediction for named entity disambiguation on
KILT WNED. The input is plain text where a mention is flagged with two special
start and end tokens [START_ENT] and [END_ENT]. The output is a ranked list of
entity (where we report the log-likelihood as well).

1 ID : ’ sfq_18245 ’
2 i n p u t s : "Which F l o r e n t i n e p a i n t e r 1535−1607 used the name ↘

Bronz ino a f t e r the death o f h i s ’ un c l e ’? "
3 gold_output : ’ Bronz ino ’
4 p r ed i c t ed_ou tpu t s : [
5 ( ’ F l o r e n c e ’ , −0.37) ,
6 ( ’ Bronz ino ’ , −0.62) ,
7 ( ’ N i c c o l o_Mach i a v e l l i ’ , −0.64) ,
8 ( ’ G io rg io_de_Ch i r i co ’ , −0.71) ,
9 ( ’ Vitruvian_Man ’ , −0.73)

10 ]

(a) TriviaQA (open domain question answering).

1 ID : ’ 4713 ’
2 i n p u t s : ’ Tool has won t h r e e Oscar s . ’
3 gold_output : ’ Tool ( band ) ’
4 p r ed i c t ed_ou tpu t s : [
5 ( ’ Tool_ ( band ) ’ , −0.08) ,
6 ( ’ Tool_ ( d i s amb i gua t i o n ) ’ , −1.59) ,
7 ( ’Machine_Head_( band ) ’ , −1.73) ,
8 ( ’ Language_Arts_ ( album ) ’ , −1.97) ,
9 ( ’Machine_Gun_( band ) ’ , −2.12)

10 ]

(b) FEVER (fact checking).

Figure A.2: Example of GENRE predictions for the document retrieval task on
KILT. The input is a query and the output is a ranked list of Wikipedia article
titles (we also report the log-likelihood of the solutions).
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1 ID : ’ 1106testa_SOCCER ’
2 i n p u t s : ’SOCCER − RESULT IN SPANISH FIRST DIVISION . MADRID 1996−08−31 Re s u l t↘

o f game p l a y ed i n the Span i sh f i r s t d i v i s i o n on Saturday : Depo r t i vo ↘
Coruna 1 Rea l Madrid 1 . ’

3 gold_output : ’SOCCER − RESULT IN [ SPANISH ] ( Spa in ) FIRST DIVISION . [MADRID] (↘
Madrid ) 1996−08−31 Re s u l t o f game p l a y ed i n the [ Span i sh ] ( Spa in ) f i r s t ↘
d i v i s i o n on Saturday : Depo r t i vo Coruna 1 [ Rea l Madrid ] ( Rea l Madrid C . F↘
. ) 1 . ’

4 p red i c t ed_outpu t : ’SOCCER − RESULT IN [ SPANISH ] ( Spa in ) FIRST DIVISION . [↘
MADRID] ( Madrid ) 1996−08−31 Re s u l t o f game p l a y ed i n the [ Span i sh ] ( Spa in )↘

f i r s t d i v i s i o n on Saturday : [ Depo r t i vo ] ( Depo r t i vo de La Coruna ) Coruna↘
1 [ Rea l Madrid ] ( Rea l Madrid C . F . ) 1 . ’

5 gold_spans : [
6 [ 1 9 , 7 , ’ Spa in ’ ] ,
7 [ 4 4 , 6 , ’ Madrid ’ ] ,
8 [ 9 1 , 7 , ’ Spa in ’ ] ,
9 [ 147 , 11 , ’ Real_Madrid_C . F . ’ ]

10 ]
11 p r ed i c t ed_spans : [
12 [ 1 9 , 7 , ’ Spa in ’ ] ,
13 [ 4 4 , 6 , ’ Madrid ’ ] ,
14 [ 9 1 , 7 , ’ Spa in ’ ] ,
15 [ 128 , 9 , ’ Deportivo_de_La_Coruna ’ ] ,
16 [ 147 , 11 , ’ Real_Madrid_C . F . ’ ]
17 ]
18
19 Micro−p r e c i s i o n : 0 .80
20 Micro− r e c a l l : 1 .00
21 Micro−F1 : 0 .88

Figure A.3: Example of a GENRE prediction for end-to-end entity linking on
AIDA. The input is plain text and the output is a Markup string where the links
are Wikipedia titles. Spans are in the format 〈si, li, ti〉: start of the mention,
length of the mention, and title respectively.
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Language Pages Names Hyperlinks

Afrikaans (af) 85,456 110,705 1,089,581
Albanian (sq) 86,234 112,112 978,394
Amharic (am) 15,280 19,905 75,575
Arabic (ar) 971,861 1,883,080 10,308,074
Armenian (hy) 260,395 582,941 3,082,000
Assamese (as) 6,119 19,041 61,209
Azerbaijani (az) 152,033 189,793 1,562,968
Bambara (bm) 747 916 2,191
Basque (eu) 337,916 430,456 4,305,648
Belarusian (be) 181,030 415,152 2,459,794
Bengali (bn) 76,121 257,730 960,484
Bosnian (bs) 82,164 184,148 1,916,515
Breton (br) 67,388 88,284 1,255,295
Bulgarian (bg) 257,962 376,934 4,655,641
Burmese (my) 48,683 55,700 98,992
Catalan (ca) 630,340 1,024,519 14,790,419
Chinese (zh) 1,085,180 1,951,612 17,262,417
Croatian (hr) 193,705 250,008 4,223,179
Czech (cs) 439,249 719,643 12,173,376
Danish (da) 255,957 405,745 5,621,483
Dutch (nl) 1,986,801 2,714,649 25,002,389
English (en) 6,071,492 14,751,661 134,477,329
Esperanto (eo) 270,871 447,159 5,570,306
Estonian (et) 201,505 342,215 4,700,888
Finnish (fi) 470,896 737,165 8,390,037
French (fr) 2,160,840 3,718,185 59,006,932
Frysk (fy) 42,893 72,490 1,206,432
Fulah (ff) 306 421 912
Gaelic, (gd) 15,126 23,631 180,186
Galician (gl) 159,849 229,561 4,709,070
Ganda (lg) 2,376 2,668 2,476
Georgian (ka) 135,040 138,267 1,369,094
German (de) 2,356,465 3,877,850 60,638,345
Greek (el) 170,541 251,692 3,310,875
Guarani (gn) 3,755 5,589 89,593
Gujarati (gu) 29,091 32,526 402,483
Haitian (ht) 59,350 63,279 677,064
Hausa (ha) 4,143 5,025 19,929
Hebrew (he) 253,861 444,127 9,947,354
Hindi (hi) 138,378 192,652 1,040,288
Hungarian (hu) 459,261 663,995 10,138,904



A.1. GENRE examples 173

Language Pages Names Hyperlinks

Icelandic (is) 48,563 75,963 772,213
Igbo (ig) 1,521 3,000 4,702
Indonesian (id) 516,196 1,015,784 7,882,254
Irish (ga) 51,824 61,336 435,135
Italian (it) 1,571,189 2,450,009 39,382,886
Japanese (ja) 1,173,978 1,877,660 45,957,053
Javanese (jv) 57,422 75,792 718,589
Kannada (kn) 25,986 33,880 227,731
Kazakh (kk) 229,165 271,260 1,564,344
Khmer (km) 9,838 12,349 73,950
Kongo (kg) 1,247 1,440 3,733
Korean (ko) 475,605 1,061,961 8,309,492
Kurdish (ku) 26,963 42,134 244,779
Kyrgyz (ky) 80,985 89,486 271,335
Lao (lo) 4,414 5,761 16,173
Latin (la) 132,410 186,829 1,986,307
Latvian (lv) 99,062 226,570 1,522,814
Lingala (ln) 3,262 4,134 15,518
Lithuanian (lt) 197,215 282,077 3,512,764
Macedonian (mk) 103,960 152,384 2,035,348
Malagasy (mg) 92,500 142,156 857,000
Malay (ms) 331,403 388,110 3,190,700
Malayalam (ml) 67,475 152,809 712,869
Marathi (mr) 55,601 100,904 355,536
Mongolian (mn) 21,772 28,455 208,847
Nepali (ne) 34,107 39,904 151,958
Norwegian (no) 521,665 816,772 10,234,086
Oriya (or) 15,532 30,431 79,261
Oromo (om) 1,063 1,317 7,153
Panjabi (pa) 33,934 46,720 145,204
Pashto (ps) 11,773 16,878 46,987
Persian (fa) 716,604 2,139,255 5,567,774
Polish (pl) 1,370,672 1,812,412 25,817,929
Portuguese (pt) 1,053,673 1,858,821 20,625,904
Quechua (qu) 21,670 41,230 247,508
Romanian (ro) 403,517 979,524 6,974,837
Russian (ru) 1,585,051 3,592,042 35,783,391
Sanskrit (sa) 11,960 22,472 73,380
Serbian (sr) 625,871 3,248,789 7,012,202
Sindhi (sd) 14,616 18,556 33,990
Sinhala (si) 20,363 29,794 90,866
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Language Pages Names Hyperlinks

Slovak (sk) 232,109 301,681 4,014,344
Slovenian (sl) 166,997 238,706 3,754,135
Somali (so) 6,716 9,595 53,132
Spanish (es) 1,547,372 3,313,727 37,749,593
Sundanese (su) 54,921 61,716 598,878
Swahili (sw) 53,926 74,634 693,049
Swati (ss) 514 610 4,344
Swedish (sv) 3,755,203 6,143,945 39,409,278
Tagalog (tl) 79,036 181,951 562,526
Tamil (ta) 129,591 168,718 1,110,037
Telugu (te) 71,819 98,189 841,549
Thai (th) 139,522 299,433 2,190,249
Tigrinya (ti) 307 390 696
Tswana (tn) 827 894 4,896
Turkish (tr) 338,865 593,365 5,657,757
Ukrainian (uk) 939,234 1,468,963 16,360,016
Urdu (ur) 156,300 353,391 1,142,953
Uzbek (uz) 132,666 450,865 764,566
Vietnamese (vi) 1,240,324 1,466,573 10,015,209
Welsh (cy) 106,556 154,043 1,254,901
Wolof (wo) 1,503 1,969 7,257
Xhosa (xh) 1,370 1,610 14,163
Yoruba (yo) 32,304 42,022 88,032
Others* 12,613,082 12,613,082 -

Total 53,849,351 89,270,463 777,210,183

Table A.1: Number of pages, entity names, and hyperlinks used in the 105
languages used for mGENRE. Entity names are more than the pages because we
also includes redirections. Hyperlinks count is after filtering missed alignments to
Wikidata and augmenting when there is no name in the source language. *These
are names defined but never used in any hyperlink.
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Language Alias Table mGENRE Support

Afrikaans (af) 92.1 97.0 1,089,581
Albanian (sq) 87.4 94.1 978,394
Amharic (am) 85.6 94.2 75,575
Arabic (ar) 89.9 94.2 10,308,074
Armenian (hy) 89.2 94.3 3,082,000
Assamese (as) 85.8 94.6 61,209
Azerbaijani (az) 90.0 96.0 1,562,968
Bambara (bm) 80.6 89.8 2,191
Basque (eu) 94.0 97.6 4,305,648
Belarusian (be) 85.9 94.8 2,459,794
Bengali (bn) 79.7 90.4 960,484
Bosnian (bs) 86.5 93.7 1,916,515
Breton (br) 91.9 96.8 1,255,295
Bulgarian (bg) 88.8 95.4 4,655,641
Burmese (my) 86.4 93.7 98,992
Catalan (ca) 91.5 96.3 14,790,419
Chinese (zh) 88.0 93.5 17,262,417
Croatian (hr) 84.7 93.9 4,223,179
Czech (cs) 87.1 94.0 12,173,376
Danish (da) 90.6 95.5 5,621,483
Dutch (nl) 86.4 95.2 25,002,389
English (en) 84.6 92.6 134,477,329
Esperanto (eo) 89.7 95.5 5,570,306
Estonian (et) 91.2 97.7 4,700,888
Finnish (fi) 87.4 94.3 8,390,037
French (fr) 83.6 92.6 59,006,932
Frysk (fy) 91.3 95.2 1,206,432
Fulah (ff) 44.3 69.7 912
Gaelic, (gd) 90.9 94.6 180,186
Galician (gl) 90.9 95.9 4,709,070
Ganda (lg) 74.7 88.2 2,476
Georgian (ka) 87.9 95.7 1,369,094
German (de) 86.9 94.7 60,638,345
Greek (el) 84.1 91.9 3,310,875
Guarani (gn) 92.7 96.7 89,593
Gujarati (gu) 96.6 98.1 402,483
Haitian (ht) 95.6 90.7 677,064
Hausa (ha) 81.7 89.9 19,929
Hebrew (he) 90.6 93.5 9,947,354
Hindi (hi) 89.1 94.3 1,040,288
Hungarian (hu) 90.7 95.1 10,138,904
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Icelandic (is) 89.8 94.9 772,213
Igbo (ig) 87.4 89.7 4,702
Indonesian (id) 91.8 94.8 7,882,254
Irish (ga) 90.1 96.3 435,135
Italian (it) 89.9 94.2 39,382,886
Japanese (ja) 92.1 96.2 45,957,053
Javanese (jv) 92.4 96.7 718,589
Kannada (kn) 87.8 93.5 227,731
Kazakh (kk) 91.0 97.3 1,564,344
Khmer (km) 85.1 90.5 73,950
Kongo (kg) 81.1 92.6 3,733
Korean (ko) 89.1 93.7 8,309,492
Kurdish (ku) 89.1 95.4 244,779
Kyrgyz (ky) 86.1 96.6 271,335
Lao (lo) 86.8 91.5 16,173
Latin (la) 88.0 95.8 1,986,307
Latvian (lv) 85.3 95.0 1,522,814
Lingala (ln) 84.4 93.7 15,518
Lithuanian (lt) 89.5 95.5 3,512,764
Macedonian (mk) 88.4 96.1 2,035,348
Malagasy (mg) 94.4 98.8 857,000
Malay (ms) 89.0 95.2 3,190,700
Malayalam (ml) 75.8 90.0 712,869
Marathi (mr) 85.0 94.2 355,536
Mongolian (mn) 86.1 93.5 208,847
Nepali (ne) 83.9 92.8 151,958
Norwegian (no) 88.7 95.4 10,234,086
Oriya (or) 87.3 93.2 79,261
Oromo (om) 80.8 91.4 7,153
Panjabi (pa) 85.4 92.1 145,204
Pashto (ps) 80.0 92.1 46,987
Persian (fa) 87.6 95.2 5,567,774
Polish (pl) 82.3 92.4 25,817,929
Portuguese (pt) 85.9 93.0 20,625,904
Quechua (qu) 93.8 96.2 247,508
Romanian (ro) 88.8 95.2 6,974,837
Russian (ru) 85.7 94.5 35,783,391
Sanskrit (sa) 86.2 95.8 73,380
Serbian (sr) 85.7 95.5 7,012,202
Sindhi (sd) 80.7 92.1 33,990
Sinhala (si) 80.1 89.9 90,866
Slovak (sk) 88.0 96.3 4,014,344



A.1. GENRE examples 177

Slovenian (sl) 87.0 95.4 3,754,135
Somali (so) 84.5 92.2 53,132
Spanish (es) 86.5 92.3 37,749,593
Sundanese (su) 93.6 96.8 598,878
Swahili (sw) 91.9 97.2 693,049
Swati (ss) 81.2 91.2 4,344
Swedish (sv) 90.9 97.5 39,409,278
Tagalog (tl) 83.4 89.9 562,526
Tamil (ta) 84.2 93.8 1,110,037
Telugu (te) 89.2 95.4 841,549
Thai (th) 92.3 95.2 2,190,249
Tigrinya (ti) 57.8 79.0 696
Tswana (tn) 89.5 90.6 4,896
Turkish (tr) 89.0 93.9 5,657,757
Ukrainian (uk) 85.8 94.3 16,360,016
Urdu (ur) 91.0 96.3 1,142,953
Uzbek (uz) 73.8 98.4 764,566
Vietnamese (vi) 91.8 95.8 10,015,209
Welsh (cy) 94.4 96.4 1,254,901
Wolof (wo) 78.0 91.9 7,257
Xhosa (xh) 73.9 92.6 14,163
Yoruba (yo) 75.6 87.9 88,032

micro-avg 86.5 93.8 -
macro-avg 86.6 93.9 -
total - - 777,210,183

Table A.2: Accuracy of mGENRE and alias table on the 105 languages in our
Wikipedia validation set. The support indicates how many datapoints where
used to train where validation is done on 1,000 examples per language (less for
Tigrinya and Fulah since we have less than a thousand hyperlinks).
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Samenvatting

Entiteiten staan centraal in hoe we kennis representeren en aggregeren. In ency-
clopedieën zoals Wikipedia is informatie bijvoorbeeld gegroepeerd op basis van
entiteiten (één entiteit per artikel). Hoewel hedendaagse natuurlijke taalverwerk-
ingstechnologie (NLP) bijzonder succesvol is geworden in het beantwoorden van
vragen, ondervinden moderne neurale netwerken nog steeds moeilijkheden met
het integreren van gestructureerde informatie over entiteiten in hun beslissingspro-
ces. In dit proefschrift, "Entiteit-gecentreerde neurale modellen voor natuurlijke
taalverwerking", onderzoeken we hoe we effectievere neurale netwerken kunnen
bouwen die informatie over entiteiten benutten om natuurlijke taal te begrijpen.
We richten ons voornamelijk op drie onderzoeksvragen:

Hoe kunnen we entiteiten gebruiken om taken met betrekking tot natu-
urlijke taalverwerking effectiever aan te pakken? We introduceren een
neuraal netwerk dat redeneringen integreert die gebaseerd zijn op informatiesprei-
ding binnen een enkel document en over meerdere documenten (Hoofdstuk 3).
We kaderen dit als een inferentieprobleem op een graaf. Vermeldingen van en-
titeiten zijn knopen (nodes) in deze graaf, terwijl de zijden (edges) relaties tussen
verschillende vermeldingen representeren (bijv. coreferenties binnen en tussen
documenten). Convolutionele neurale netwerken voor grafen (GCN’s) worden op
deze grafen toegepast en getraind om redeneringen over meerdere stappen uit
te voeren. Onze Entiteit-GCN-methode is schaalbaar en compact en behaalde,
ten tijde van schrijven (d.w.z. 2018), state-of-the-art resultaten op WikiHop, een
populaire dataset voor het automatisch beantwoorden van vragen met meerdere
documenten.

Hoe kunnen we grote, vooraf getrainde taalmodellen gebruiken om en-
titeiten in de tekst te identificeren en te disambigueren? Het eerste
systeem dat wij voorstellen, vraagt entiteiten op door hun unieke namen te
genereren, van links naar rechts, token voor token op een autoregressieve manier
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(Hoofdstuk 4). Ons model vermindert beperkingen van de gevestigde “two-tower
dot-product” -modellen die mogelijk gedetailleerde interacties tussen tekst en en-
titeiten in een kennisbank missen. Bovendien verminderen we het geheugengebruik
van huidige modellen aanzienlijk (tot 15 keer). Dit komt doordat de parameters
van onze encoder-decoder architectuur schalen met de grootte van het vocabulaire,
in plaats van met het aantal entiteiten. We breiden onze aanpak ook uit naar een
grote, meertalige setting met meer dan 100 talen (Hoofdstuk 5). In deze setting
matchen we met entiteitsnamen van zo veel mogelijk talen, waardoor we connecties
tussen de invoerbrontaal en de doelnaam kunnen benutten. Tot slot introduceren
we een zeer efficiënte methode die autoregressieve linking paralleliseert over alle
potentiële vermeldingen. Deze methodegebruikt een ondiepe en efficiënte decoder,
wat het model tot 70 keer sneller maakt, zonder prestatieverlies (Hoofdstuk 6).

Hoe kunnen we de interne kennis van een model over entiteiten inter-
preteren en beheersen? We presenteren een nieuwe techniek voor post-hoc
interpretatie in Hoofdstuk 7. Deze techniek isbedoeld om te onderzoeken hoe
beslissingen tot stand komen in verschillende lagen van neurale netwerken. Ons sys-
teem leert subsets van vectoren te maskeren met behoud van differentieerbaarheid.
Dit stelt ons in staat omattributie-heatmaps te visualiseren en te analyseren hoe
beslissingen worden gevormd in de verschillende lagen van het neurale netwerk.
We gebruiken dit systeem om BERT-modellen te bestuderen op sentiment classifi-
catie en het automatisch beantwoorden van vragen. We laten bovendien zien dat
deze techniek toepasbaar is op het convolutionele neurale netwerk voor grafen„
gepresenteerd in Hoofdstuk 3. Ten slotte introduceren we een methode die kan
worden gebruikt om deze feitelijke kennis over entiteiten te bewerken. Dit maakt
het mogelijk om ’bugs’ of onverwachte voorspellingen te herstellen zonder dat
dure “hertraining” of “finetuning” nodig is (Hoofdstuk 8).



Abstract

Entities are at the center of how we represent and aggregate knowledge. For
instance, in Encyclopedias such as Wikipedia information is grouped accord-
ing to entities (e.g., one entity per article). However, although contemporary
NLP technology has become remarkably successful in machine-driven question
answering, modern neural network models struggle to incorporate structured
information about entities into their decision process. In this thesis, "Entity
Centric Neural Models for Natural Language Processing", we investigate how to
build effective neural network models exploiting entity information for natural
language understanding. We mainly consider three research questions:

How can we exploit entities to tackle Natural Language Understand-
ing tasks? We introduce a neural model that integrates reasons relying on
information spread within and across multiple documents (chapter 3). We frame
it as an inference problem on a graph. Mentions of entities are nodes of this
graph, while edges encode relations between different mentions (e.g., within- and
cross-document co-reference). Graph convolutional networks (GCNs) are applied
to these graphs and trained to perform multi-step reasoning. Our Entity-GCN
method is scalable and compact, and it achieved state-of-the-art results at the time
of writing (i.e., 2018) on WikiHop, a popular multi-document question-answering
dataset.

How can we exploit large pre-trained language models to identify and
disambiguate entities in the text? We propose the first system that retrieves
entities by generating their unique names, left to right, token-by-token in an
autoregressive fashion (chapter 4). Our model mitigates the limitations of well-
established two-tower dot-product-based models that potentially miss fine-grained
interactions between text and entities in a Knowledge Base. Additionally, we
significantly reduced the memory footprint of current systems (up to 15 times)
because the parameters of our encoder-decoder architecture scale with vocabulary
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size, not the entity count. We also extend our approach to a large multilingual
setting with more than 100 languages (chapter 5). In this setting, we match
against entity names of as many languages as possible, which allows exploiting
language connections between source input and target name. Finally, we also
propose a very efficient approach that parallelizes autoregressive linking across all
potential mentions and relies on a shallow and efficient decoder which allows a
>70 faster model with no performance drop (chapter 6).

How can we interpret and control a model’s internal knowledge about
entities? We introduce a novel post-hoc interpretation technique for inspecting
how decisions emerge across layers in neural models in chapter 7. Our system
learns to mask-out subsets of vectors while maintaining differentiability. This lets
us not only plot attribution heatmaps but also analyze how decisions are formed
across network layers. We use this system to study BERT models on sentiment
classification and question answering additionally showing that this technique
can be applied to the graph-based model presented in chapter 3. Finally, we also
propose a method that can be used to edit this factual knowledge about entities
and, thus, fix ’bugs’ or unexpected predictions without the need for expensive
re-training or fine-tuning (chapter 8).
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