43 research outputs found

    Biometric Spoofing: A JRC Case Study in 3D Face Recognition

    Get PDF
    Based on newly available and affordable off-the-shelf 3D sensing, processing and printing technologies, the JRC has conducted a comprehensive study on the feasibility of spoofing 3D and 2.5D face recognition systems with low-cost self-manufactured models and presents in this report a systematic and rigorous evaluation of the real risk posed by such attacking approach which has been complemented by a test campaign. The work accomplished and presented in this report, covers theories, methodologies, state of the art techniques, evaluation databases and also aims at providing an outlook into the future of this extremely active field of research.JRC.G.6-Digital Citizen Securit

    Anti-spoofing in action: joint operation with a verification system

    Get PDF
    Besides the recognition task, today's biometric systems need to cope with additional problem: spoofing attacks. Up to date, academic research considers spoofing as a binary classification problem: systems are trained to discriminate between real accesses and attacks. However, spoofing counter-measures are not designated to operate stand-alone, but as a part of a recognition system they will protect. In this paper, we study techniques for decision-level and score-level fusion to integrate a recognition and anti-spoofing systems, using an open-source framework that handles the ternary classification problem (clients, impostors and attacks) transparently. By doing so, we are able to report the impact of different spoofing counter-measures, fusion techniques and thresholding on the overall performance of the final recognition system. For a specific use-case covering face verification, experiments show to what extent simple fusion improves the trustworthiness of the system when exposed to spoofing attacks

    Fusion of fingerprint presentation attacks detection and matching: a real approach from the LivDet perspective

    Get PDF
    The liveness detection ability is explicitly required for current personal verification systems in many security applications. As a matter of fact, the project of any biometric verification system cannot ignore the vulnerability to spoofing or presentation attacks (PAs), which must be addressed by effective countermeasures from the beginning of the design process. However, despite significant improvements, especially by adopting deep learning approaches to fingerprint Presentation Attack Detectors (PADs), current research did not state much about their effectiveness when embedded in fingerprint verification systems. We believe that the lack of works is explained by the lack of instruments to investigate the problem, that is, modelling the cause-effect relationships when two systems (spoof detection and matching) with non-zero error rates are integrated. To solve this lack of investigations in the literature, we present in this PhD thesis a novel performance simulation model based on the probabilistic relationships between the Receiver Operating Characteristics (ROC) of the two systems when implemented sequentially. As a matter of fact, this is the most straightforward, flexible, and widespread approach. We carry out simulations on the PAD algorithms’ ROCs submitted to the editions of LivDet 2017-2019, the NIST Bozorth3, and the top-level VeriFinger 12.0 matchers. With the help of this simulator, the overall system performance can be predicted before actual implementation, thus simplifying the process of setting the best trade-off among error rates. In the second part of this thesis, we exploit this model to define a practical evaluation criterion to assess whether operational points of the PAD exist that do not alter the expected or previous performance given by the verification system alone. Experimental simulations coupled with the theoretical expectations confirm that this trade-off allows a complete view of the sequential embedding potentials worthy of being extended to other integration approaches

    Curvelet and Ridgelet-based Multimodal Biometric Recognition System using Weighted Similarity Approach

    Get PDF
    Biometric security artifacts for establishing the identity of a person with high confidence have evoked enormous interest in security and access control applications for the past few years. Biometric systems based solely on unimodal biometrics often suffer from problems such as noise, intra-class variations and spoof attacks. This paper presents a novel multimodal biometric recognition system by integrating three biometric traits namely iris, fingerprint and face using weighted similarity approach. In this work, the multi-resolution features are extracted independently from query images using curvelet and ridgelet transforms, and are then compared to the enrolled templates stored in the database containing features of each biometric trait. The final decision is made by normalizing the feature vectors, assigning different weights to the modalities and fusing the computed scores using score combination techniques. This system is tested with the public unimodal databases such as CASIA–Iris-V3-Interval, FVC2004, ORL and self-built multimodal databases. Experimental results obtained shows that the designed system achieves an excellent recognition rate of 98.75 per cent and 100 per cent for the public and self-built databases respectively and provides ultra high security than unimodal biometric systems.Defence Science Journal, 2014, 64(2), pp. 106-114. DOI: http://dx.doi.org/10.14429/dsj.64.346

    Securing Cloud Storage by Transparent Biometric Cryptography

    Get PDF
    With the capability of storing huge volumes of data over the Internet, cloud storage has become a popular and desirable service for individuals and enterprises. The security issues, nevertheless, have been the intense debate within the cloud community. Significant attacks can be taken place, the most common being guessing the (poor) passwords. Given weaknesses with verification credentials, malicious attacks have happened across a variety of well-known storage services (i.e. Dropbox and Google Drive) – resulting in loss the privacy and confidentiality of files. Whilst today's use of third-party cryptographic applications can independently encrypt data, it arguably places a significant burden upon the user in terms of manually ciphering/deciphering each file and administering numerous keys in addition to the login password. The field of biometric cryptography applies biometric modalities within cryptography to produce robust bio-crypto keys without having to remember them. There are, nonetheless, still specific flaws associated with the security of the established bio-crypto key and its usability. Users currently should present their biometric modalities intrusively each time a file needs to be encrypted/decrypted – thus leading to cumbersomeness and inconvenience while throughout usage. Transparent biometrics seeks to eliminate the explicit interaction for verification and thereby remove the user inconvenience. However, the application of transparent biometric within bio-cryptography can increase the variability of the biometric sample leading to further challenges on reproducing the bio-crypto key. An innovative bio-cryptographic approach is developed to non-intrusively encrypt/decrypt data by a bio-crypto key established from transparent biometrics on the fly without storing it somewhere using a backpropagation neural network. This approach seeks to handle the shortcomings of the password login, and concurrently removes the usability issues of the third-party cryptographic applications – thus enabling a more secure and usable user-oriented level of encryption to reinforce the security controls within cloud-based storage. The challenge represents the ability of the innovative bio-cryptographic approach to generate a reproducible bio-crypto key by selective transparent biometric modalities including fingerprint, face and keystrokes which are inherently noisier than their traditional counterparts. Accordingly, sets of experiments using functional and practical datasets reflecting a transparent and unconstrained sample collection are conducted to determine the reliability of creating a non-intrusive and repeatable bio-crypto key of a 256-bit length. With numerous samples being acquired in a non-intrusive fashion, the system would be spontaneously able to capture 6 samples within minute window of time. There is a possibility then to trade-off the false rejection against the false acceptance to tackle the high error, as long as the correct key can be generated via at least one successful sample. As such, the experiments demonstrate that a correct key can be generated to the genuine user once a minute and the average FAR was 0.9%, 0.06%, and 0.06% for fingerprint, face, and keystrokes respectively. For further reinforcing the effectiveness of the key generation approach, other sets of experiments are also implemented to determine what impact the multibiometric approach would have upon the performance at the feature phase versus the matching phase. Holistically, the multibiometric key generation approach demonstrates the superiority in generating the bio-crypto key of a 256-bit in comparison with the single biometric approach. In particular, the feature-level fusion outperforms the matching-level fusion at producing the valid correct key with limited illegitimacy attempts in compromising it – 0.02% FAR rate overall. Accordingly, the thesis proposes an innovative bio-cryptosystem architecture by which cloud-independent encryption is provided to protect the users' personal data in a more reliable and usable fashion using non-intrusive multimodal biometrics.Higher Committee of Education Development in Iraq (HCED

    BioSecure: white paper for research in biometrics beyond BioSecure

    Get PDF
    This report is the output of a consultation process of various major stakeholders in the biometric community to identify the future biometrical research issues, an activity which employed not only researchers but representatives from the entire biometrical community, consisting of governments, industry, citizens and academia. It is one of the main efforts of the BioSecure Network of Excellence to define the agenda for future biometrical research, including systems and applications scenarios
    corecore