623 research outputs found

    Semivariogram calculation optimization for object-oriented image classification

    Full text link
    [EN] In this paper we propose and evaluate different mathematical parameters extracted from the experimental semivariogram for land use/land cover classification using high-resolution images and cadastral mapping limits for the definition of the objects of analysis. First, we describe the process of calculating the semivariogram from the gray level values in an image object. In order to optimize the computation time we present two pixel selection techniques that preserve the original shape of the semivariogram. Several parameters are then extracted from the semivariogram. Finally, we use various statistical techniques to select the most discriminant parameters. Last section shows the results obtained using aerial digital images of an agricultural area on the Mediterranean coast of Spain. The study of the practical application presented in this paper facilitates the understanding of the relationship between the behaviour of the experimental semivariogram and the variability of the intensity values in a digital image. In order to follow the development of this work, the reader should know some basis of classification methods and digital image processing techniques.[ES] En este trabajo se proponen y evalúan diferentes parámetros matemáticos extraídos del semivariograma experimental para la clasificación de los usos del suelo mediante imágenes de alta resolución, usando los límites catastrales para la definición de los objetos de análisis. En primer lugar, se describe el proceso de cálculo del semivariograma a partir de los valores de niveles de gris del objeto imagen. Con el fin de optimizar el tiempo de cálculo se presentan dos técnicas de selección de píxeles que conservan la forma original del semivariograma. A continuación se definen varios parámetros del semivariograma. Final- mente, se usan diferentes técnicas estadísticas para la selección de los parámetros más discriminantes. La última sección muestra los resultados obtenidos con las imágenes digitales aéreas de una zona agrícola en la costa mediterránea de España. El estudio de la aplicación práctica que se presenta facilita la comprensión de la relación entre el comportamiento del semivariograma experimental y la variabilidad de los valores de intensidad en una imagen digital. Con el fin de seguir el desarrollo de este trabajo, el lector debe conocer algunos métodos estadísticos de clasificación y algunas técnicas de procesamiento digital de imágenes.The authors appreciate the financial support provided by the Spanish Ministry of Science and Innovation and the FEDER in the framework of the Projects CGL2009-14220-C02-01 and CGL2010-19591/BTE.Balaguer-Beser, A.; Hermosilla, T.; Recio, J.; Ruiz, L. (2011). Semivariogram calculation optimization for object-oriented image classification. Modelling in Science Education and Learning. 4:91-104. https://doi.org/10.4995/msel.2011.3057SWORD911044Curran, P. J. (1988). The semivariogram in remote sensing: An introduction. Remote Sensing of Environment, 24(3), 493-507. doi:10.1016/0034-4257(88)90021-1J.P. Chilés, P. Delfinder, 1999, Geostatistics. Modeling Spatial Uncertainty, John Wiley and Sons, New York.P. Goovaerts, 1997, Geostatistics for Natural Resources Evaluation. Oxford University Press: New York.E.H. Isaaks, R.M. Srivastava, 1989, An introduction to applied geostatistics. Oxford. [10] D.K. McIver, M.A. Friedl, 2002, Using prior probabilities in decision tree classification of remotely sensed data. Remote Sensing of Environment 81, 253-261.M.J. Pyrcz, C.V. Deutsch, 2003, The Whole Story on the Hole Effect. In: Searston, S. (Eds.) Geostatistical Association of Australasia, Newsletter 18.J.R. Quinlan, 1993, C4.5: Programs For Machine Learning. Morgan Kaufmann, Los Altos.L.A. Ruiz, J.A. Recio, T. Hermosilla, 2007, Methods for automatic extraction of regularity patterns and its application to object-oriented image classification. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI, Munich, Germany, 117-121.M. Story, R. G. Congalton, 1986, Accuracy assessment: a user's perspective, Photogram- metric Engineering and Remote Sensing, 52(3), 397-399

    Spatial and spectral remote sensing features to detect deforestation in Brazilian Savannas

    Get PDF
    The Brazilian Savannas have been under increasing anthropic pressure for many years, and land-use/land-cover changes (LULCC) have been largely neglected. Remote sensing provides useful tools to detect changes, but previous studies have not attempted to separate the effects of phenology from deforestation, clearing or fires to improve the accuracy of change detection without a dense time series. The scientific questions addressed in this study were: how well can we differentiate seasonal changes from deforestation processes combining the spatial and spectral information of bi-temporal (normalized difference vegetation index) NDVI images? Which feature best contribute to increase the separability on classification assessment? We applied an object-based remote sensing method that is able to separate seasonal changes due to phenology effects from LULCC by combining spectral and the spatial context using traditional spectral features and semivariogram indices, exploring the full capability of NDVI image difference to train random forest (RF) algorithm. We found that the spatial variability of NDVI values is not affect by vegetation seasonality and, therefore, the combination of spectral features and semivariogram indices provided high global accuracy (97.73%) to separate seasonal changes and deforestation or fires. From the total of 13 features, 6 provided the best combination to increase the separability on classification assessment (4 spatial and 2 spectral features). How to accurately extract LULCC while disregarding the ones caused by phenological differences in Brazilian seasonal biomes undergoing rapid land-cover changes can be achieved by adding semivariogram indices in combination with spectral features as input data to train RF algorithm

    An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery

    Full text link
    [EN] Mapping forest structure variables provides important information for the estimation of forest biomass, carbon stocks, pasture suitability or for wildfire risk prevention and control. The optimization of the prediction models of these variables requires an adequate stratification of the forest landscape in order to create specific models for each structural type or strata. This paper aims to propose and validate the use of an object-oriented classification methodology based on low-density LiDAR data (0.5 m−2) available at national level, WorldView-2 and Sentinel-2 multispectral imagery to categorize Mediterranean forests in generic structural types. After preprocessing the data sets, the area was segmented using a multiresolution algorithm, features describing 3D vertical structure were extracted from LiDAR data and spectral and texture features from satellite images. Objects were classified after feature selection in the following structural classes: grasslands, shrubs, forest (without shrubs), mixed forest (trees and shrubs) and dense young forest. Four classification algorithms (C4.5 decision trees, random forest, k-nearest neighbour and support vector machine) were evaluated using cross-validation techniques. The results show that the integration of low-density LiDAR and multispectral imagery provide a set of complementary features that improve the results (90.75% overall accuracy), and the object-oriented classification techniques are efficient for stratification of Mediterranean forest areas in structural- and fuel-related categories. Further work will be focused on the creation and validation of a different prediction model adapted to the various strata.This work was supported by the Spanish Ministerio de Economia y Competitividad and FEDER under [grant number CGL2013-46387-C2-1-R]; Fondo de Garantia Juvenil under [contract number PEJ-2014-A-45358].Ruiz Fernández, LÁ.; Recio Recio, JA.; Crespo-Peremarch, P.; Sapena, M. (2018). An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery. Geocarto International. 33(5):443-457. https://doi.org/10.1080/10106049.2016.1265595S44345733

    Caracterizacão da heterogeneidade espacial da paisagem utilizando parâmetros do semivariograma derivados de imagens NDVI

    Full text link
    [EN] Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index) was generated in an area of Brazilian amazon tropical forest (1,000 km²). We selected samples (1 x 1 km) from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (¿²-overall spatial variability of the surface property) and range (¿-the length scale of the spatial structures of objects) parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA) approaches.[PT] Assumindo a existência de uma relação entre a heterogeneidade da paisagem e medidas de dependência espacial obtidas de dados de sensoriamento remoto, o objetivo deste estudo foi avaliar o potencial dos parâmetros do semivariograma derivados de imagens de satélite com diferentes resoluções espaciais, para caracterizar áreas cobertas por floresta e áreas sob ação antrópica. Para isso, o NDVI (Índice de Vegetação da Diferença Normalizada) de cada umas das imagens (SPOT 6, Landsat 8 e MODIS Terra) foi gerado em uma área de floresta tropical Amazônica (1.000 km²), onde foram selecionadas amostras (1 x 1 km) de áreas florestadas e áreas antrópicas. A partir destes dados, foram gerados os semivariogramas e extraídos os parâmetros patamar (¿²-variabilidade espacial total) e alcance (¿-distância dentro da qual as amostras apresentam-se estruturadas espacialmente). A análise revelou que a resolução espacial das imagens influencia os parâmetros ¿² e ¿, apresentando significativo aumento das áreas de florestas para as áreas sob ação antrópica. A maior variação entre estas classes foi obtida com as imagens Landsat 8, indicando estas imagens, com resolução espacial de 30 metros, a mais apropriada para a obtenção dos parâmetros do semivariograma objetivando a caracterização da heterogeneidade espacial da paisagem. Combinando o sensoriamento remoto e técnicas geostatisticas, demonstrou-se que os parâmetros do semivariograma derivados de imagens NDVI podem ser utilizados como um simples indicador de heterogeneidade da paisagem, gerando mapas que permitem aos pesquisadores delinearem com maior eficácia o regime de amostragem. Outras aplicações combinando estas duas técnicas devem ser investigadas, como por exemplo a detecção de mudanças na cobertura do solo e a classificação de imagens utilizando análises orientada a objetos (OBIA).The authors are grateful to the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Department of Forest Science of the Federal University of Lavras (UFLA) and the ONF Brazil group for supporting this work.De Oliveira Silveira, EM.; De Mello, JM.; Acerbi Junior, FW.; Dos Reis, AA.; Withey, KD.; Ruiz Fernández, LÁ. (2017). Characterizing Landscape Spatial Heterogeneity Using Semivariogram Parameters Derived from NDVI Images. Cerne. 23(4):413-422. https://doi.org/10.1590/01047760201723042370S41342223

    Quantifying slumness with remote sensing data

    Get PDF
    The presence of slums in a city is an indicator of poverty and its proper delimitation is a matter of interest for researchers and policy makers. Socio-economic data from surveys and censuses are the primary source of information to identify and quantify slumness within a city or a town. One problem of using survey data for quantifying slumness is that this type of data is usually collected every ten years and is an expensive and time consuming process. Based on the premise that the physical appearance of an urban settlement is a reflection of the society that created it and on the assumption that people living in urban areas with similar physical housing conditions will have similar social and demographic characteristics (Jain, 2008; Taubenb¨ock et al., 2009b); this paper uses data from Medellin City, Colombia, to estimate slum index using solely remote sensing data from an orthorectified, pan-sharpened, natural color Quickbird scene. For Medellin city, the percentage of clay roofs cover and the mean swimming pool density at the analytical region level can explain up to 59% of the variability in the slum index. Structure and texture measures are useful to characterize the differences in the homogeneity of the spatial pattern of the urban layout and they improve the explanatory power of the statistical models when taken into account. When no other information is used, they can explain up to 30% of the variability of the slum index. The results of this research are encouraging and many researchers, urban planners and policy makers could benefit from this rapid and low cost approach to characterize the intra-urban variations of slumness in cities with sparse data or no data at all

    Determination of the high water mark and its location along a coastline

    Get PDF
    The High Water Mark (HWM) is an important cadastral boundary that separates land and water. It is also used as a baseline to facilitate coastal hazard management, from which land and infrastructure development is offset to ensure the protection of property from storm surge and sea level rise. However, the location of the HWM is difficult to define accurately due to the ambulatory nature of water and coastal morphology variations. Contemporary research has failed to develop an accurate method for HWM determination because continual changes in tidal levels, together with unimpeded wave runup and the erosion and accretion of shorelines, make it difficult to determine a unique position of the HWM. While traditional surveying techniques are accurate, they selectively record data at a given point in time, and surveying is expensive, not readily repeatable and may not take into account all relevant variables such as erosion and accretion.In this research, a consistent and robust methodology is developed for the determination of the HWM over space and time. The methodology includes two main parts: determination of the HWM by integrating both water and land information, and assessment of HWM indicators in one evaluation system. It takes into account dynamic coastal processes, and the effect of swash or tide probability on the HWM. The methodology is validated using two coastal case study sites in Western Australia. These sites were selected to test the robustness of the methodology in two distinctly different coastal environments

    Using remote sensing to assess the relationship between crime and the urban layout

    Full text link
    [EN] The link between place and crime is at the base of social ecology theories of crime that focus in the relationship of the characteristics of geographical areas and crime rates. The broken windows theory states that visible cues of physical and social disorder in a neighborhood can lead to an increase in more serious crime. The crime prevention through environmental design (CPTED) planning approach seeks to deter criminal behavior by creating defensible spaces. Based on the premise that a settlement's appearance is a reflection of the society, we ask whether a neighborhood's design has a quantifiable imprint when seen from space using urban fabric descriptors computed from very high spatial-resolution imagery. We tested which land cover, structure and texture descriptors were significantly related to intra-urban homicide rates in Medellin, Colombia, while controlling for socioeconomic confounders. The percentage of impervious surfaces other than clay roofs, the fraction of clay roofs to impervious surfaces, two structure descriptors related to the homogeneity of the urban layout, and the uniformity texture descriptor were all statistically significant. Areas with higher homicide rates tended to have higher local variation and less general homogeneity; that is, the urban layouts were more crowded and cluttered, with small dwellings with different roofing materials located in close proximity to one another, and these regions often lacked other homogeneous surfaces such as open green spaces, wide roads, or large facilities. These results seem to be in agreement with the broken windows theory and CPTED in the sense that more heterogeneous and disordered urban layouts are associated with higher homicide rates.This research was made possible by funding from EAFIT University (EAFIT-435-000060) and the Medellin City Hall EnlazaMundos program. The authors thank the anonymous reviewers and Hermilson Velazquez, Andr es Ramírez Hassan and Gustavo Canavire for their insightful observations and suggestions during the different stages of this projectPatiño Quinchía, JE.; Duque, JC.; Pardo Pascual, JE.; Ruiz Fernández, LÁ. (2014). Using remote sensing to assess the relationship between crime and the urban layout. Applied Geography. 55:48-60. https://doi.org/10.1016/j.apgeog.2014.08.016S48605

    Using Monte Carlo simulation to improve the performance of semivariograms for choosing the remote sensing imagery resolution for natural resource surveys: Case study on three counties in East, Central, and West China

    Get PDF
    © 2018 by the author. Semivariograms have been widely used in research to obtain optimal resolutions for ground features. To obtain the semivariogram curve and its attributes (range and sill), parameters including sample size (SS), maximum distance (MD), and group number (GN) have to be defined, as well as a mathematic model for fitting the curve. However, a clear guide on parameter setting and model selection is currently not available. In this study, a Monte Carlo simulation-based approach (MCS) is proposed to enhance the performance of semivariograms by optimizing the parameters, and case studies in three regions are conducted to determine the optimal resolution for natural resource surveys. Those parameters are optimized one by one through several rounds of MCS. The result shows that exponential model is better than sphere model; sample size has a positive relationship with R2, while the group number has a negative one; increasing the simulation number could improve the accuracy of estimation; and eventually the optimized parameters improved the performance of semivariogram. In case study, the average sizes for three general ground features (grassland, farmland, and forest) of three counties (Ansai, Changdu, and Taihe) in different geophysical locations of China were acquired and compared, and imagery with an appropriate resolution is recommended. The results show that the ground feature sizes acquired by means of MCS and optimized parameters in this study match well with real land cover patterns

    Analysis of tomographic images

    Get PDF
    corecore