5 research outputs found

    Contention in multicore hardware shared resources: Understanding of the state of the art

    Get PDF
    The real-time systems community has over the years devoted considerable attention to the impact on execution timing that arises from contention on access to hardware shared resources. The relevance of this problem has been accentuated with the arrival of multicore processors. From the state of the art on the subject, there appears to be considerable diversity in the understanding of the problem and in the “approach” to solve it. This sparseness makes it difficult for any reader to form a coherent picture of the problem and solution space. This paper draws a tentative taxonomy in which each known approach to the problem can be categorised based on its specific goals and assumptions.Postprint (published version

    Timing Predictability in Future Multi-Core Avionics Systems

    Full text link

    Evaluation of resource arbitration methods for multi-core real-time systems

    Get PDF
    Multi-core systems have become prevalent in the last years, because of their favorable properties in terms of energy consumption, computing power and design complexity. First attempts have been made to devise WCET analyses for multi-core processors, which have to deal with the problem that the cores may experience interferences during accesses to shared resources. To limit these interferences, the vast amount of previous work is proposing a strict TDMA (time division multiple access) schedule for arbitrating shared resources. Though this type of arbitration yields a high predictability, this advantage is paid for with a poor resource utilization. In this work, we compare different arbitration methods with respect to their predictability and average case performance. We show how known WCET analysis techniques can be extended to work with the presented arbitration strategies and perform an evaluation of the resulting ACETs and WCETs on an extensive set of realworld benchmarks. Results show that there are cases when TDMA is not the best strategy, especially when predictability and performance are equally important

    On static execution-time analysis

    Get PDF
    Proving timeliness is an integral part of the verification of safety-critical real-time systems. To this end, timing analysis computes upper bounds on the execution times of programs that execute on a given hardware platform. Modern hardware platforms commonly exhibit counter-intuitive timing behaviour: a locally slower execution can lead to a faster overall execution. Such behaviour challenges efficient timing analysis. In this work, we present and discuss a hardware design, the strictly in-order pipeline, that behaves monotonically w.r.t. the progress of a program's execution. Based on monotonicity, we prove the absence of the aforementioned counter-intuitive behaviour. At least since multi-core processors have emerged, timing analysis separates concerns by analysing different aspects of the system's timing behaviour individually. In this work, we validate the underlying assumption that a timing bound can be soundly composed from individual contributions. We show that even simple processors exhibit counter-intuitive behaviour - a locally slow execution can lead to an even slower overall execution - that impedes the soundness of the composition. We present the compositional base bound analysis that accounts for any such amplifying effects within its timing contribution. This enables a sound compositional analysis even for complex processors. Furthermore, we discuss hardware modifications that enable efficient compositional analyses.Echtzeitsysteme müssen unter allen Umständen beweisbar pünktlich arbeiten. Zum Beweis errechnet die Zeitanalyse obere Schranken der für die Ausführung von Programmen auf einer Hardware-Plattform benötigten Zeit. Moderne Hardware-Plattformen sind bekannt für unerwartetes Zeitverhalten bei dem eine lokale Verzögerung in einer global schnelleren Ausführung resultiert. Solches Zeitverhalten erschwert eine effiziente Analyse. Im Rahmen dieser Arbeit diskutieren wir das Design eines Prozessors mit eingeschränkter Fließbandverarbeitung (strictly in-order pipeline), der sich bzgl. des Fortschritts einer Programmausführung monoton verhält. Wir beweisen, dass Monotonie das oben genannte unerwartete Zeitverhalten verhindert. Spätestens seit dem Einsatz von Mehrkernprozessoren besteht die Zeitanalyse aus einzelnen Teilanalysen welche nur bestimmte Aspekte des Zeitverhaltens betrachten. Eine zentrale Annahme ist hierbei, dass sich die Teilergebnisse zu einer korrekten Zeitschranke zusammensetzen lassen. Im Rahmen dieser Arbeit zeigen wir, dass diese Annahme selbst für einfache Prozessoren ungültig ist, da eine lokale Verzögerung zu einer noch größeren globalen Verzögerung führen kann. Für bestehende Prozessoren entwickeln wir eine neuartige Teilanalyse, die solche verstärkenden Effekte berücksichtigt und somit eine korrekte Komposition von Teilergebnissen erlaubt. Für zukünftige Prozessoren beschreiben wir Modifikationen, die eine deutlich effizientere Zeitanalyse ermöglichen
    corecore