8,491 research outputs found

    Optimization of Bi-Directional V2G Behavior With Active Battery Anti-Aging Scheduling

    Get PDF

    Distributional Analysis for Model Predictive Deferrable Load Control

    Get PDF
    Deferrable load control is essential for handling the uncertainties associated with the increasing penetration of renewable generation. Model predictive control has emerged as an effective approach for deferrable load control, and has received considerable attention. In particular, previous work has analyzed the average-case performance of model predictive deferrable load control. However, to this point, distributional analysis of model predictive deferrable load control has been elusive. In this paper, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance.Comment: 12 pages, technical report for CDC 201

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid

    Agent-based homeostatic control for green energy in the smart grid

    No full text
    With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs

    Integrated Generation Management for Maximizing Renewable Resource Utilization

    Get PDF
    Two proposed methods to reduce the effective intermittency and improve the efficiency of wind power generation in the grid are spatial smoothing of wind generation and utilization of short term electrical storage to deal with lulls in production. In this thesis, based on a concept called integrated generation management (IGM), we explore the impact of spatial smoothing and the use of emerging plug-in hybrid electric vehicles (PHEVs) as a potential storage resource to the smart-grid. IGM combines nuclear, slow load-following coal, fast load-following natural gas, and renewable wind generation with an optimal control method to maximize the renewable generation and minimize the fossil generation. With the increasing penetration of PHEVs, the power grid is seeing new opportunities to make itself smarter than ever by utilizing those relatively large batteries. Based on current projections of PHEV market penetration and various wind generation scenarios, we demonstrate the potential for efficient wind integration at levels of approaching 30% of the aver- age electrical load with utilization efficiency exceeding 65%. At lower levels of integration (e.g. 15%), efficiencies are possible exceeding 85%

    Optimal Fully Electric Vehicle load balancing with an ADMM algorithm in Smartgrids

    Full text link
    In this paper we present a system architecture and a suitable control methodology for the load balancing of Fully Electric Vehicles at Charging Station (CS). Within the proposed architecture, control methodologies allow to adapt Distributed Energy Resources (DER) generation profiles and active loads to ensure economic benefits to each actor. The key aspect is the organization in two levels of control: at local level a Load Area Controller (LAC) optimally calculates the FEVs charging sessions, while at higher level a Macro Load Area Aggregator (MLAA) provides DER with energy production profiles, and LACs with energy withdrawal profiles. Proposed control methodologies involve the solution of a Walrasian market equilibrium and the design of a distributed algorithm.Comment: This paper has been accepted for the 21st Mediterranean Conference on Control and Automation, therefore it is subjected to IEEE Copyrights. See IEEE copyright notice at http://www.ieee.org/documents/ieeecopyrightform.pd

    Probabilistic Approaches to Energy Systems

    Get PDF

    Engineering User-Centric Smart Charging Systems

    Get PDF
    Die Integration erneuerbarer Energiequellen und die Sektorenkopplung erhöhen den Bedarf an Flexibilität im Elektrizitätssystem. Elektrofahrzeuge koordiniert zu Laden bietet die Chance solche Flexibilität bereitzustellen. Allerdings hängt das Flexibilitätspotential von Elektrofahrzeugen davon ab in welchem Umfang sich die Nutzer der Fahrzeuge dazu entschließen intelligentes Laden zu nutzen. Ziel dieser Dissertation ist es Lösungen für intelligente Ladesysteme zu entwickeln, welche die Nutzer zu flexiblerem Laden anreizen und diese dabei zu unterstützen. Anhand eines Literaturüberblicks und einer Expertenbefragung werden zunächst Ziele identifiziert, welche Nutzer zu einer flexiblen Ladung motivieren können. Die Ergebnisse zeigen, dass neben finanziellen Anreizen auch die Integration erneuer-barer Energien und die Vermeidung von Netzengpässen einen Anreiz für das flexible La-den darstellen können. In der Folge wird untersucht, ob das Framing der Ladesituation hinsichtlich dieser Ziele die Ladeflexibilität von Elektrofahrzeugnutzern beeinflussen kann. Hierzu wird ein Online-Experiment mit Elektrofahrzeugnutzern evaluiert. Das sich ein Teil der Nutzer bei einem Umwelt-Framing flexibler verhält, macht Feedback darüber, wie die CO2-Emissionen von der bereitgestellten Flexibilität abhängen zu einem vielversprechenden Anreiz intelligentes Laden zu nutzen. Um solches Feedback zu er-möglichen werden als Nächstes die CO2-Einsparpotenziale eines optimierten Ladens im Vergleich zu unkontrolliertem Laden untersucht. Dazu werden die marginalen Emissions-faktoren im deutschen Stromnetz mithilfe eines regressionsbasierten Ansatzes ermittelt. Um Echtzeit-Feedback in realen Systemen zu ermöglichen wird darauf aufbauend eine Prognosemethode für Emissionsfaktoren entwickelt. Die Zielerreichung intelligenten Ladens hängt hauptsächlich von der zeitlichen und energetischen Flexibilität der Elektrofahrzeuge ab. Damit Nutzer diese Ladeeinstellungen nicht bei jeder Ankunft an der Ladestation von Hand eingeben zu müssen, könnten sie durch intelligente Assistenten unterstützt werden. Hierfür werden probabilistische Prognosen für die Flexibilität einzelner Ladevorgänge basierend auf historischen Ladevorgängen und Mobilitätsmustern entwickelt. Darüber hinaus zeigt eine Fallstudie, dass probabilistische Prognosen besser als Punktprognosen dazu geeignet sind die Ladung mehrerer Elektrofahrzeuge zu koordinieren

    Uncertainty Quantification And Economic Dispatch Models For The Power Grid

    Get PDF
    The modern power grid is constrained by several challenges, such as increased penetration of Distributed Energy Resources (DER), rising demand for Electric Vehicle (EV) integration, and the need to schedule resources in real-time accurately. To address the above challenges, this dissertation offers solutions through data-driven forecasting models, topology-aware economic dispatch models, and efficient optional power flow calculations for large scale grids. Particularly, in chapter 2, a novel microgrid decomposition scheme is proposed to divide the large scale power grids into smaller microgrids. Here, a two-stage Nearest-Generator Girvan-Newman (NGGN) algorithm, a graphicalclustering-based approach, followed by a distributed economic dispatch model, is deployed to yield a 12.64% cost savings. In chapter 3, a deep-learning-based scheduling scheme is intended for the EVs in a household community that uses forecasted demand, consumer preferences and Time-of-use (TOU) pricing scheme to reduce electricity costs for the consumers and peak shaving for the utilities. In chapter 4, a hybrid machine learning model using GLM with other methods was designed to forecast wind generation data. Finally, in chapter 5, multiple formulations for Alternating Current Optimal Power Flow (ACOPF) were designed for large scale grids in a high-performance computing environment. The ACOPF formulations, namely, power balance polar, power balance Cartesian, and current balance Cartesian, are tested on bus systems ranging from a 9-bus to 25,000. The current balance Cartesian formulation had an average of 23% faster computational time than two other formulations on a 25,000 bus system
    corecore