5,494 research outputs found

    InShopnito: an advanced yet privacy-friendly mobile shopping application

    Get PDF
    Mobile Shopping Applications (MSAs) are rapidly gaining popularity. They enhance the shopping experience, by offering customized recommendations or incorporating customer loyalty programs. Although MSAs are quite effective at attracting new customers and binding existing ones to a retailer's services, existing MSAs have several shortcomings. The data collection practices involved in MSAs and the lack of transparency thereof are important concerns for many customers. This paper presents inShopnito, a privacy-preserving mobile shopping application. All transactions made in inShopnito are unlinkable and anonymous. However, the system still offers the expected features from a modern MSA. Customers can take part in loyalty programs and earn or spend loyalty points and electronic vouchers. Furthermore, the MSA can suggest personalized recommendations even though the retailer cannot construct rich customer profiles. These profiles are managed on the smartphone and can be partially disclosed in order to get better, customized recommendations. Finally, we present an implementation called inShopnito, of which the security and performance is analyzed. In doing so, we show that it is possible to have a privacy-preserving MSA without having to sacrifice practicality

    Privacy Preserving Cryptographic Protocols for Secure Heterogeneous Networks

    Get PDF
    DisertačnĂ­ prĂĄce se zabĂœvĂĄ kryptografickĂœmi protokoly poskytujĂ­cĂ­ ochranu soukromĂ­, kterĂ© jsou určeny pro zabezpečenĂ­ komunikačnĂ­ch a informačnĂ­ch systĂ©mĆŻ tvoƙícĂ­ch heterogennĂ­ sĂ­tě. PrĂĄce se zaměƙuje pƙedevĆĄĂ­m na moĆŸnosti vyuĆŸitĂ­ nekonvenčnĂ­ch kryptografickĂœch prostƙedkĆŻ, kterĂ© poskytujĂ­ rozơíƙenĂ© bezpečnostnĂ­ poĆŸadavky, jako je napƙíklad ochrana soukromĂ­ uĆŸivatelĆŻ komunikačnĂ­ho systĂ©mu. V prĂĄci je stanovena vĂœpočetnĂ­ nĂĄročnost kryptografickĂœch a matematickĂœch primitiv na rĆŻznĂœch zaƙízenĂ­ch, kterĂ© se podĂ­lĂ­ na zabezpečenĂ­ heterogennĂ­ sĂ­tě. HlavnĂ­ cĂ­le prĂĄce se zaměƙujĂ­ na nĂĄvrh pokročilĂœch kryptografickĂœch protokolĆŻ poskytujĂ­cĂ­ch ochranu soukromĂ­. V prĂĄci jsou navrĆŸeny celkově tƙi protokoly, kterĂ© vyuĆŸĂ­vajĂ­ skupinovĂœch podpisĆŻ zaloĆŸenĂœch na bilineĂĄrnĂ­m pĂĄrovĂĄnĂ­ pro zajiĆĄtěnĂ­ ochrany soukromĂ­ uĆŸivatelĆŻ. Tyto navrĆŸenĂ© protokoly zajiĆĄĆ„ujĂ­ ochranu soukromĂ­ a nepopiratelnost po celou dobu datovĂ© komunikace spolu s autentizacĂ­ a integritou pƙenĂĄĆĄenĂœch zprĂĄv. Pro navĂœĆĄenĂ­ vĂœkonnosti navrĆŸenĂœch protokolĆŻ je vyuĆŸito optimalizačnĂ­ch technik, napƙ. dĂĄvkovĂ©ho ověƙovĂĄnĂ­, tak aby protokoly byly praktickĂ© i pro heterogennĂ­ sĂ­tě.The dissertation thesis deals with privacy-preserving cryptographic protocols for secure communication and information systems forming heterogeneous networks. The thesis focuses on the possibilities of using non-conventional cryptographic primitives that provide enhanced security features, such as the protection of user privacy in communication systems. In the dissertation, the performance of cryptographic and mathematic primitives on various devices that participate in the security of heterogeneous networks is evaluated. The main objectives of the thesis focus on the design of advanced privacy-preserving cryptographic protocols. There are three designed protocols which use pairing-based group signatures to ensure user privacy. These proposals ensure the protection of user privacy together with the authentication, integrity and non-repudiation of transmitted messages during communication. The protocols employ the optimization techniques such as batch verification to increase their performance and become more practical in heterogeneous networks.

    A Decentralised Digital Identity Architecture

    Get PDF
    Current architectures to validate, certify, and manage identity are based on centralised, top-down approaches that rely on trusted authorities and third-party operators. We approach the problem of digital identity starting from a human rights perspective, with a primary focus on identity systems in the developed world. We assert that individual persons must be allowed to manage their personal information in a multitude of different ways in different contexts and that to do so, each individual must be able to create multiple unrelated identities. Therefore, we first define a set of fundamental constraints that digital identity systems must satisfy to preserve and promote privacy as required for individual autonomy. With these constraints in mind, we then propose a decentralised, standards-based approach, using a combination of distributed ledger technology and thoughtful regulation, to facilitate many-to-many relationships among providers of key services. Our proposal for digital identity differs from others in its approach to trust in that we do not seek to bind credentials to each other or to a mutually trusted authority to achieve strong non-transferability. Because the system does not implicitly encourage its users to maintain a single aggregated identity that can potentially be constrained or reconstructed against their interests, individuals and organisations are free to embrace the system and share in its benefits.Comment: 30 pages, 10 figures, 3 table
    • 

    corecore