28,116 research outputs found

    Federated and autonomic management of multimedia services

    Get PDF
    Over the years, the Internet has significantly evolved in size and complexity. Additionally, the modern multimedia services it offers have considerably more stringent Quality of Service (QoS) requirements than traditional static services. These factors contribute to the ever-increasing complexity and cost to manage the Internet and its services. In the dissertation, a novel network management architecture is proposed to overcome these problems. It supports QoS-guarantees of multimedia services across the Internet, by setting up end-to-end network federations. A network federation is defined as a persistent cross-organizational agreement that enables the cooperating networks to share capabilities. Additionally, the architecture incorporates aspects from autonomic network management to tackle the ever-growing management complexity of modern communications networks. Specifically, a hierarchical approach is presented, which guarantees scalable collaboration of huge amounts of self-governing autonomic management components

    Objective assessment of region of interest-aware adaptive multimedia streaming quality

    Get PDF
    Adaptive multimedia streaming relies on controlled adjustment of content bitrate and consequent video quality variation in order to meet the bandwidth constraints of the communication link used for content delivery to the end-user. The values of the easy to measure network-related Quality of Service metrics have no direct relationship with the way moving images are perceived by the human viewer. Consequently variations in the video stream bitrate are not clearly linked to similar variation in the user perceived quality. This is especially true if some human visual system-based adaptation techniques are employed. As research has shown, there are certain image regions in each frame of a video sequence on which the users are more interested than in the others. This paper presents the Region of Interest-based Adaptive Scheme (ROIAS) which adjusts differently the regions within each frame of the streamed multimedia content based on the user interest in them. ROIAS is presented and discussed in terms of the adjustment algorithms employed and their impact on the human perceived video quality. Comparisons with existing approaches, including a constant quality adaptation scheme across the whole frame area, are performed employing two objective metrics which estimate user perceived video quality

    Design of a middleware for QoS-aware distribution transparent content delivery

    Get PDF
    Developers of distributed multimedia applications face a diversity of multimedia formats, streaming platforms and streaming protocols. Furthermore, support for end-to-end quality-of-service (QoS) is a crucial factor for the development of future distributed multimedia systems. This paper discusses the architecture, design and implementation of a QoS-aware middleware platform for content delivery. The platform supports the development of distributed multimedia applications and can deliver content with QoS guarantees. QoS support is offered by means of an agent infrastructure for QoS negotiation and enforcement. Properties of content are represented using a generic content representation model described using the OMG Meta Object Facility (MOF) model. A content delivery framework manages stream paths for content delivery despite differences in streaming protocols and content encoding. The integration of the QoS support, content representation and content delivery framework results in a QoS-aware middleware that enables representation transparent and location transparent delivery of content

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    End-to-end QoE optimization through overlay network deployment

    Get PDF
    In this paper an overlay network for end-to-end QoE management is presented. The goal of this infrastructure is QoE optimization by routing around failures in the IP network and optimizing the bandwidth usage on the last mile to the client. The overlay network consists of components that are located both in the core and at the edge of the network. A number of overlay servers perform end-to-end QoS monitoring and maintain an overlay topology, allowing them to route around link failures and congestion. Overlay access components situated at the edge of the network are responsible for determining whether packets are sent to the overlay network, while proxy components manage the bandwidth on the last mile. This paper gives a detailed overview of the end-to-end architecture together with representative experimental results which comprehensively demonstrate the overlay network's ability to optimize the QoE
    corecore