809 research outputs found

    Evaluation of pooling operations in convolutional architectures for drug-drug interaction extraction

    Get PDF
    Background: Deep Neural Networks (DNN), in particular, Convolutional Neural Networks (CNN), has recently achieved state-of-art results for the task of Drug-Drug Interaction (DDI) extraction. Most CNN architectures incorporate a pooling layer to reduce the dimensionality of the convolution layer output, preserving relevant features and removing irrelevant details. All the previous CNN based systems for DDI extraction used max-pooling layers. Results: In this paper, we evaluate the performance of various pooling methods (in particular max-pooling, average-pooling and attentive pooling), as well as their combination, for the task of DDI extraction. Our experiments show that max-pooling exhibits a higher performance in F1-score (64.56%) than attentive pooling (59.92%) and than average-pooling (58.35%). Conclusions: Max-pooling outperforms the others alternatives because is the only one which is invariant to the special pad tokens that are appending to the shorter sentences known as padding. Actually, the combination of max-pooling and attentive pooling does not improve the performance as compared with the single max-pooling technique.Publication of this article was supported by the Research Program of the Ministry of Economy and Competitiveness - Government of Spain, (DeepEMR project TIN2017-87548-C2-1-R) and the TEAM project (Erasmus Mundus Action 2-Strand 2 Programme) funded by the European Commission

    Regularized Optimal Transport Layers for Generalized Global Pooling Operations

    Full text link
    Global pooling is one of the most significant operations in many machine learning models and tasks, which works for information fusion and structured data (like sets and graphs) representation. However, without solid mathematical fundamentals, its practical implementations often depend on empirical mechanisms and thus lead to sub-optimal, even unsatisfactory performance. In this work, we develop a novel and generalized global pooling framework through the lens of optimal transport. The proposed framework is interpretable from the perspective of expectation-maximization. Essentially, it aims at learning an optimal transport across sample indices and feature dimensions, making the corresponding pooling operation maximize the conditional expectation of input data. We demonstrate that most existing pooling methods are equivalent to solving a regularized optimal transport (ROT) problem with different specializations, and more sophisticated pooling operations can be implemented by hierarchically solving multiple ROT problems. Making the parameters of the ROT problem learnable, we develop a family of regularized optimal transport pooling (ROTP) layers. We implement the ROTP layers as a new kind of deep implicit layer. Their model architectures correspond to different optimization algorithms. We test our ROTP layers in several representative set-level machine learning scenarios, including multi-instance learning (MIL), graph classification, graph set representation, and image classification. Experimental results show that applying our ROTP layers can reduce the difficulty of the design and selection of global pooling -- our ROTP layers may either imitate some existing global pooling methods or lead to some new pooling layers fitting data better. The code is available at \url{https://github.com/SDS-Lab/ROT-Pooling}

    A Comprehensive Survey on Deep Graph Representation Learning

    Full text link
    Graph representation learning aims to effectively encode high-dimensional sparse graph-structured data into low-dimensional dense vectors, which is a fundamental task that has been widely studied in a range of fields, including machine learning and data mining. Classic graph embedding methods follow the basic idea that the embedding vectors of interconnected nodes in the graph can still maintain a relatively close distance, thereby preserving the structural information between the nodes in the graph. However, this is sub-optimal due to: (i) traditional methods have limited model capacity which limits the learning performance; (ii) existing techniques typically rely on unsupervised learning strategies and fail to couple with the latest learning paradigms; (iii) representation learning and downstream tasks are dependent on each other which should be jointly enhanced. With the remarkable success of deep learning, deep graph representation learning has shown great potential and advantages over shallow (traditional) methods, there exist a large number of deep graph representation learning techniques have been proposed in the past decade, especially graph neural networks. In this survey, we conduct a comprehensive survey on current deep graph representation learning algorithms by proposing a new taxonomy of existing state-of-the-art literature. Specifically, we systematically summarize the essential components of graph representation learning and categorize existing approaches by the ways of graph neural network architectures and the most recent advanced learning paradigms. Moreover, this survey also provides the practical and promising applications of deep graph representation learning. Last but not least, we state new perspectives and suggest challenging directions which deserve further investigations in the future

    Knowledge Elicitation in Deep Learning Models

    Get PDF
    Embora o aprendizado profundo (mais conhecido como deep learning) tenha se tornado uma ferramenta popular na solução de problemas modernos em vários domínios, ele apresenta um desafio significativo - a interpretabilidade. Esta tese percorre um cenário de elicitação de conhecimento em modelos de deep learning, lançando luz sobre a visualização de características, mapas de saliência e técnicas de destilação. Estas técnicas foram aplicadas a duas arquiteturas: redes neurais convolucionais (CNNs) e um modelo de pacote (Google Vision). A nossa investigação forneceu informações valiosas sobre a sua eficácia na elicitação e interpretação do conhecimento codificado. Embora tenham demonstrado potencial, também foram observadas limitações, sugerindo espaço para mais desenvolvimento neste campo. Este trabalho não só realça a necessidade de modelos de deep learning mais transparentes e explicáveis, como também impulsiona o desenvolvimento de técnicas para extrair conhecimento. Trata-se de garantir uma implementação responsável e enfatizar a importância da transparência e compreensão no aprendizado de máquina. Além de avaliar os métodos existentes, esta tese explora também o potencial de combinar múltiplas técnicas para melhorar a interpretabilidade dos modelos de deep learning. Uma mistura de visualização de características, mapas de saliência e técnicas de destilação de modelos foi usada de uma maneira complementar para extrair e interpretar o conhecimento das arquiteturas escolhidas. Os resultados experimentais destacam a utilidade desta abordagem combinada, revelando uma compreensão mais abrangente dos processos de tomada de decisão dos modelos. Além disso, propomos um novo modelo para a elicitação sistemática de conhecimento em deep learning, que integra de forma coesa estes métodos. Este quadro demonstra o valor de uma abordagem holística para a interpretabilidade do modelo, em vez de se basear num único método. Por fim, discutimos as implicações éticas do nosso trabalho. À medida que os modelos de deep learning continuam a permear vários setores, desde a saúde até às finanças, garantir que as suas decisões são explicáveis e justificadas torna-se cada vez mais crucial. A nossa investigação sublinha esta importância, preparando o terreno para a criação de sistemas de inteligência artificial mais transparentes e responsáveis no futuro.Though a buzzword in modern problem-solving across various domains, deep learning presents a significant challenge - interpretability. This thesis journeys through a landscape of knowledge elicitation in deep learning models, shedding light on feature visualization, saliency maps, and model distillation techniques. These techniques were applied to two deep learning architectures: convolutional neural networks (CNNs) and a black box package model (Google Vision). Our investigation provided valuable insights into their effectiveness in eliciting and interpreting the encoded knowledge. While they demonstrated potential, limitations were also observed, suggesting room for further development in this field. This work does not just highlight the need for more transparent, more explainable deep learning models, it gives a gentle nudge to developing innovative techniques to extract knowledge. It is all about ensuring responsible deployment and emphasizing the importance of transparency and comprehension in machine learning. In addition to evaluating existing methods, this thesis also explores the potential for combining multiple techniques to enhance the interpretability of deep learning models. A blend of feature visualization, saliency maps, and model distillation techniques was used in a complementary manner to extract and interpret the knowledge from our chosen architectures. Experimental results highlight the utility of this combined approach, revealing a more comprehensive understanding of the models' decision-making processes. Furthermore, we propose a novel framework for systematic knowledge elicitation in deep learning, which cohesively integrates these methods. This framework showcases the value of a holistic approach toward model interpretability rather than relying on a single method. Lastly, we discuss the ethical implications of our work. As deep learning models continue to permeate various sectors, from healthcare to finance, ensuring their decisions are explainable and justified becomes increasingly crucial. Our research underscores this importance, laying the groundwork for creating more transparent, accountable AI systems in the future

    Deep Neural Architectures for End-to-End Relation Extraction

    Get PDF
    The rapid pace of scientific and technological advancements has led to a meteoric growth in knowledge, as evidenced by a sharp increase in the number of scholarly publications in recent years. PubMed, for example, archives more than 30 million biomedical articles across various domains and covers a wide range of topics including medicine, pharmacy, biology, and healthcare. Social media and digital journalism have similarly experienced their own accelerated growth in the age of big data. Hence, there is a compelling need for ways to organize and distill the vast, fragmented body of information (often unstructured in the form of natural human language) so that it can be assimilated, reasoned about, and ultimately harnessed. Relation extraction is an important natural language task toward that end. In relation extraction, semantic relationships are extracted from natural human language in the form of (subject, object, predicate) triples such that subject and object are mentions of discrete concepts and predicate indicates the type of relation between them. The difficulty of relation extraction becomes clear when we consider the myriad of ways the same relation can be expressed in natural language. Much of the current works in relation extraction assume that entities are known at extraction time, thus treating entity recognition as an entirely separate and independent task. However, recent studies have shown that entity recognition and relation extraction, when modeled together as interdependent tasks, can lead to overall improvements in extraction accuracy. When modeled in such a manner, the task is referred to as end-to-end relation extraction. In this work, we present four studies that introduce incrementally sophisticated architectures designed to tackle the task of end-to-end relation extraction. In the first study, we present a pipeline approach for extracting protein-protein interactions as affected by particular mutations. The pipeline system makes use of recurrent neural networks for protein detection, lexicons for gene normalization, and convolutional neural networks for relation extraction. In the second study, we show that a multi-task learning framework, with parameter sharing, can achieve state-of-the-art results for drug-drug interaction extraction. At its core, the model uses graph convolutions, with a novel attention-gating mechanism, over dependency parse trees. In the third study, we present a more efficient and general-purpose end-to-end neural architecture designed around the idea of the table-filling paradigm; for an input sentence of length n, all entities and relations are extracted in a single pass of the network in an indirect fashion by populating the cells of a corresponding n by n table using metric-based features. We show that this approach excels in both the general English and biomedical domains with extraction times that are up to an order of magnitude faster compared to the prior best. In the fourth and last study, we present an architecture for relation extraction that, in addition to being end-to-end, is able to handle cross-sentence and N-ary relations. Overall, our work contributes to the advancement of modern information extraction by exploring end-to-end solutions that are fast, accurate, and generalizable to many high-value domains
    corecore