19,732 research outputs found

    Technical and Fundamental Features Analysis for Stock Market Prediction with Data Mining Methods

    Get PDF
    Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.Predicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.154 - Katedra financívyhově

    A semantic Bayesian network for automated share evaluation on the JSE

    Get PDF
    Advances in information technology have presented the potential to automate investment decision making processes. This will alleviate the need for manual analysis and reduce the subjective nature of investment decision making. However, there are different investment approaches and perspectives for investing which makes acquiring and representing expert knowledge for share evaluation challenging. Current decision models often do not reflect the real investment decision making process used by the broader investment community or may not be well-grounded in established investment theory. This research investigates the efficacy of using ontologies and Bayesian networks for automating share evaluation on the JSE. The knowledge acquired from an analysis of the investment domain and the decision-making process for a value investing approach was represented in an ontology. A Bayesian network was constructed based on the concepts outlined in the ontology for automatic share evaluation. The Bayesian network allows decision makers to predict future share performance and provides an investment recommendation for a specific share. The decision model was designed, refined and evaluated through an analysis of the literature on value investing theory and consultation with expert investment professionals. The performance of the decision model was validated through back testing and measured using return and risk-adjusted return measures. The model was found to provide superior returns and risk-adjusted returns for the evaluation period from 2012 to 2018 when compared to selected benchmark indices of the JSE. The result is a concrete share evaluation model grounded in investing theory and validated by investment experts that may be employed, with small modifications, in the field of value investing to identify shares with a higher probability of positive risk-adjusted returns

    Fisheries and Coastal Resources Co-management in Asia: Selected Results from a Regional Research Project

    Get PDF
    Coastal fisheries, Fishery management, Resource management

    Simulating the implementation of technological innovations in construction

    Get PDF
    Introducing new technologies or innovative processes can enhance construction efficiency and enable organisations to achieve objectives of lowering costs, continuous improvement and competitive advantage. New ideas have to show significant benefits before they are accepted. Despite of the differences between the construction and manufacturing industries, opportunities are still available to leam from manufacturing approaches to innovation. A fundamental challenge facing construction innovation is the way that construction organisations plan and control the implementation of innovation where many projects do not fulfil their time and cost objectives. Management should not only improve techniques for planning and scheduling but also allow managers to assess and simulate the anticipated performance resulting from innovation .. According to this assessment, managers would be more able and perhaps more ready to accept new processes/products or iterate the implementation process until a satisfactory level of performance has been achieved. Intangible benefits offered by advanced construction technologies are hard to quantify using traditional economic analysis techniques. This could result in the rejection of a potentially profitable idea. Benefits to be gained from improvements in operational efficiency are measured by cost and time-savings and increasing productivity. These benefits, in addition to intangible benefits, need to be measured and quantified. Simulating the implementation process of innovation has not been addressed, although many models have been developed to describe the innovation process in construction which considered implementation as a sequential process incorporating iterations. [Continues.

    Bayesian participatory-based decision analysis : an evolutionary, adaptive formalism for integrated analysis of complex challenges to social-ecological system sustainability

    Get PDF
    Includes bibliographical references (pages. 379-400).This dissertation responds to the need for integration between researchers and decision-makers who are dealing with complex social-ecological system sustainability and decision-making challenges. To this end, we propose a new approach, called Bayesian Participatory-based Decision Analysis (BPDA), which makes use of graphical causal maps and Bayesian networks to facilitate integration at the appropriate scales and levels of descriptions. The BPDA approach is not a predictive approach, but rather, caters for a wide range of future scenarios in anticipation of the need to adapt to unforeseeable changes as they occur. We argue that the graphical causal models and Bayesian networks constitute an evolutionary, adaptive formalism for integrating research and decision-making for sustainable development. The approach was implemented in a number of different interdisciplinary case studies that were concerned with social-ecological system scale challenges and problems, culminating in a study where the approach was implemented with decision-makers in Government. This dissertation introduces the BPDA approach, and shows how the approach helps identify critical cross-scale and cross-sector linkages and sensitivities, and addresses critical requirements for understanding system resilience and adaptive capacity

    A Guide to Evaluating Marine Spatial Plans

    Get PDF
    Marine spatial plans are being developed in over 40 countries around the world, to distribute human activities in marine areas more sustainably and achieve ecological, social, and economic objectives. Monitoring and evaluation are often considered only after a plan has been developed. This guide will help marine planners and managers, monitor and evaluate the success of marine plans in achieving real results and outcomes. This report emphasizes the importance of early integration of monitoring and evaluation in the planning process, the importance of measurable and specific objectives, clear management actions, relevant indicators and targets, and involvement of stakeholders throughout the planning process.

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers
    corecore