75 research outputs found

    Recurrent Neural Networks for Online Video Popularity Prediction

    Full text link
    In this paper, we address the problem of popularity prediction of online videos shared in social media. We prove that this challenging task can be approached using recently proposed deep neural network architectures. We cast the popularity prediction problem as a classification task and we aim to solve it using only visual cues extracted from videos. To that end, we propose a new method based on a Long-term Recurrent Convolutional Network (LRCN) that incorporates the sequentiality of the information in the model. Results obtained on a dataset of over 37'000 videos published on Facebook show that using our method leads to over 30% improvement in prediction performance over the traditional shallow approaches and can provide valuable insights for content creators

    What Makes a Place? Building Bespoke Place Dependent Object Detectors for Robotics

    Full text link
    This paper is about enabling robots to improve their perceptual performance through repeated use in their operating environment, creating local expert detectors fitted to the places through which a robot moves. We leverage the concept of 'experiences' in visual perception for robotics, accounting for bias in the data a robot sees by fitting object detector models to a particular place. The key question we seek to answer in this paper is simply: how do we define a place? We build bespoke pedestrian detector models for autonomous driving, highlighting the necessary trade off between generalisation and model capacity as we vary the extent of the place we fit to. We demonstrate a sizeable performance gain over a current state-of-the-art detector when using computationally lightweight bespoke place-fitted detector models.Comment: IROS 201

    Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval

    Full text link
    This paper presents a new state-of-the-art for document image classification and retrieval, using features learned by deep convolutional neural networks (CNNs). In object and scene analysis, deep neural nets are capable of learning a hierarchical chain of abstraction from pixel inputs to concise and descriptive representations. The current work explores this capacity in the realm of document analysis, and confirms that this representation strategy is superior to a variety of popular hand-crafted alternatives. Experiments also show that (i) features extracted from CNNs are robust to compression, (ii) CNNs trained on non-document images transfer well to document analysis tasks, and (iii) enforcing region-specific feature-learning is unnecessary given sufficient training data. This work also makes available a new labelled subset of the IIT-CDIP collection, containing 400,000 document images across 16 categories, useful for training new CNNs for document analysis

    Orientation covariant aggregation of local descriptors with embeddings

    Get PDF
    Image search systems based on local descriptors typically achieve orientation invariance by aligning the patches on their dominant orientations. Albeit successful, this choice introduces too much invariance because it does not guarantee that the patches are rotated consistently. This paper introduces an aggregation strategy of local descriptors that achieves this covariance property by jointly encoding the angle in the aggregation stage in a continuous manner. It is combined with an efficient monomial embedding to provide a codebook-free method to aggregate local descriptors into a single vector representation. Our strategy is also compatible and employed with several popular encoding methods, in particular bag-of-words, VLAD and the Fisher vector. Our geometric-aware aggregation strategy is effective for image search, as shown by experiments performed on standard benchmarks for image and particular object retrieval, namely Holidays and Oxford buildings.Comment: European Conference on Computer Vision (2014

    Leveraging Image based Prior for Visual Place Recognition

    Full text link
    In this study, we propose a novel scene descriptor for visual place recognition. Unlike popular bag-of-words scene descriptors which rely on a library of vector quantized visual features, our proposed descriptor is based on a library of raw image data, such as publicly available photo collections from Google StreetView and Flickr. The library images need not to be associated with spatial information regarding the viewpoint and orientation of the scene. As a result, these images are cheaper than the database images; in addition, they are readily available. Our proposed descriptor directly mines the image library to discover landmarks (i.e., image patches) that suitably match an input query/database image. The discovered landmarks are then compactly described by their pose and shape (i.e., library image ID, bounding boxes) and used as a compact discriminative scene descriptor for the input image. We evaluate the effectiveness of our scene description framework by comparing its performance to that of previous approaches.Comment: 8 pages, 6 figures, preprint. Accepted for publication in MVA2015 (oral presentation
    • …
    corecore