30 research outputs found

    Classification of music genres using sparse representations in overcomplete dictionaries

    Get PDF
    This paper presents a simple, but efficient and robust, method for music genre classification that utilizes sparse representations in overcomplete dictionaries. The training step involves creating dictionaries, using the K-SVD algorithm, in which data corresponding to a particular music genre has a sparse representation. In the classification step, the Orthogonal Matching Pursuit (OMP) algorithm is used to separate feature vectors that consist only of Linear Predictive Coding (LPC) coefficients. The paper analyses in detail a popular case study from the literature, the ISMIR 2004 database. Using the presented method, the correct classification percentage of the 6 music genres is 85.59, result that is comparable with the best results published so far

    A Music Information Retrieval Approach Based on Power Laws

    Full text link

    Spectrogram classification using dissimilarity space

    Get PDF
    In this work, we combine a Siamese neural network and different clustering techniques to generate a dissimilarity space that is then used to train an SVM for automated animal audio classification. The animal audio datasets used are (i) birds and (ii) cat sounds, which are freely available. We exploit different clustering methods to reduce the spectrograms in the dataset to a number of centroids that are used to generate the dissimilarity space through the Siamese network. Once computed, we use the dissimilarity space to generate a vector space representation of each pattern, which is then fed into an support vector machine (SVM) to classify a spectrogram by its dissimilarity vector. Our study shows that the proposed approach based on dissimilarity space performs well on both classification problems without ad-hoc optimization of the clustering methods. Moreover, results show that the fusion of CNN-based approaches applied to the animal audio classification problem works better than the stand-alone CNNs
    corecore