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Abstract: This paper presents a simple, but efficient and robust, method for music genre
classification that utilizes sparse representations in overcomplete dictionaries. The training step
involves creating dictionaries, using the K-SVD algorithm, in which data corresponding to a
particular music genre has a sparse representation. In the classification step, the Orthogonal
Matching Pursuit (OMP) algorithm is used to separate feature vectors that consist only of Linear
Predictive Coding (LPC) coefficients. The paper analyses in detail a popular case study from
the literature, the ISMIR 2004 database. Using the presented method, the correct classification
percentage of the 6 music genres is 85.59%, result that is comparable with the best results
published so far.
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1. INTRODUCTION

As digital music becomes more and more popular, demand
for new and old songs is increasing, so providers seek
to create large music databases that would facilitate the
user’s access to this content. But, the organization of
large music databases proves to be a real challenge. After
overcoming the first task of actually storing the data,
a natural question arises: is there a method to classify
the songs in order to improve the user’s experience when
searching a large music repository?

The first idea that comes to mind, and the one that is
the most natural, is to classify the songs by music genre.
There are two main issues with this approach. First, there
are no clear definitions for each music genre. Furthermore,
there is still debate about the actual number of music
genres. It is sufficient to say that the genres are not clearly
delimited and that they differ from user to user. Second,
the classification should use only the musical signal itself.
Although most songs have some tag that describes the
music genre, that tag could be wrong or empty. A robust
classifier must take this into consideration in order for the
end results to be relevant. Because of the need to correctly,
quickly and automatically manage large sets of songs by
using only the information from the audio signal itself
the problem of music genre classification is considered a
difficult one and it has received much attention in the past
years. See Li et al. (2003).
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Since the audio signal contains data revealing the music
genre (Scaringella et al. (2006) and Sukittanon et al.
(2004)), like in every classification problem, the first step
is to identify the features that will be extracted from
the audio signal and used in the separation process.
Because the audio signal varies a lot with time, the
features are computed for short chunks of the audio signal
called frames or windows. Some studies use only a single
feature and others extract from the signal multiple features
(this is the so-called bag-of-features approach). The most
popular features used in recent studies are: frequency and
spectral envelope information, timbre texture, rhythmic
and pitch content. These features can be used separately
or together in any combination. Other, simpler, features
like the length and the energy of the audio signal can
also be used to improve the feature set. Usually, all the
selected features are concatenated in a feature vector.
This study considers the Linear Predictive Coding (LPC)
coefficients and, separately, the Mel-frequency cepstral
(MFC) coefficients. See Rabiner et al. (1993) for further
details.

After the features are selected, a classification method
that clearly separates the features belonging to different
music genres is required. In this paper, in order to find a
good classification method, tools from the field of sparse
representations are introduced. Recent advances in this
field lead to the development of new classification methods.
The field deals with two basic problems. The first: given
an overcomplete dictionary A ∈ Rm×n with m ≤ n and a
vector b ∈ Rm, find the minimum (or a small fixed) number
of columns from A such that, by linear combination, they
give x or a good approximation of it; and the second
problem is the reverse: given a set of training vectors
{yi}Ni=1 ∈ Rm find an overcomplete dictionary A ∈ Rm×n



with m ≤ n (usually m� n) such that each vector in the
training set has a sparse representation in A. Overcomplete
dictionary means in this setting just a matrix with more
(or much more) columns than rows. There are many
solutions given for the first problem, algorithms like:
Matching Pursuit (MP) (Mallat et al. (1993)), Orthogonal
Matching Pursuit (OMP) (Temlyakov (1999)) and Basis
Pursuit (BP) (Chen et al. (1998)). Of course, the interest
is mainly in the solutions to the second problem. The
algorithm that is used in this study and that gives a
good approximation of the solution in the classification
procedure is called K-SVD (Aharon et al. (2006)).

This paper describes an efficient method for genre clas-
sification using sparse representations. After conducting
extensive simulations, the best results were obtained using
the LPC coefficients in the feature extraction step and the
K-SVD algorithm in the overcomplete dictionary learning
phase. The results obtained are very high (85.59% correct
classification), demonstrating the efficiency and the ro-
bustness of the proposed method. In Section 2, some basic
theoretical notions and algorithms regarding sparse rep-
resentation are presented, followed by feature extraction
algorithms. In Section 3 details are presented regarding
the way algorithms from the sparse representation field are
used in a classification problem context. In the end, the
results obtained by applying the method on the ISMIR
2004 database are described in detail and a comparison
with other studies on the same database is provided.

2. THEORETICAL FOUNDATIONS

2.1 Sparse representations

Consider a matrix A ∈ Rm×n with m < n and full rank m.
In this setting A is called overcomplete and, usually, n is
much greater than m. Define the underdetermined system
of linear equations Ax = b with x ∈ Rn and b ∈ Rm.
In general, this system has, because of the structure of
the matrix A, an infinite number of solutions. In order
to obtain a single, well defined, solution, an extra mini-
mization/maximization criterion is added. So, an objective
function is introduced that minimizes a criterion among
all the solutions of the system. The following optimization
problem is defined

(Pj) : minimize
x

J(x) subject to Ax = b (1)

Choosing an objective function J(x) strictly convex guar-
antees a unique solution to the underdetermined system,
solution that can be found using efficient methods. Most
of the time, the objective function is represented by the
square of the Euclidian norm ||x||22. This problem is labeled
as (P2). The explicit solution to this problem is

x = A+b = (ATA)−1AT b (2)

This paper considers a different objective function, the
sparsity of the solution x. An intuitive measure of the
sparsity of x is the number of non-zero elements it has.
A vector is called sparse if it has only a few (relative to
its size) non-zero elements in its composition. Thus, the l0
pseudo-norm of a vector x is defined to be

||x||0 = card(x) = #{i | xi 6= 0} (3)

Notice that ||x||0 is a pseudo-norm and not a norm because
it is not positive homogeneous (||αx||0 6= |α|||x||0 ∀α ∈ R

). Analogously, the (P0) problem is considered by setting
J(x) = ||x||0. The optimization problem for underdeter-
mined systems is

(P0) : minimize
x

||x||0 subject to Ax = b (4)

Although problems (P2) and (P0) look very similar they
are fundamentally different. The solution to problem (P2)
is unique and is given by (2). The (P0) problem is much
more difficult and it raises a lot of issues when trying to
solve it. This is because of the discrete, discontinuous and
non-convex nature of the l0 pseudo-norm.

In the general case, it has been shown that (P0) is
a combinatorial search problem: for a given A all the
subsystems ASxS = b need to be generate, where AS
represents the matrix obtained by picking the columns of
A that are in the set S and check if they can be solved.
Evidently, this approach is not practical in real world
applications since there are too many such subsystems to
check. Thus, the combinatorial optimization problem (P0)
is relaxed to a convex optimization problem that can be
solved in a reasonable amount of time. As an alternative,
heuristic search methods are used or greedy algorithms are
applied.

Most of the time, the (P0) problem is relaxed to the (P1)
optimization problem that is

(P1) : minimize
x

||x||1 subject to Ax = b (5)

where ||x||1 =
∑
i |xi| is the l1 norm of the vector x. This

is a convex optimization problem and it can be solved
efficiently with linear programming (LP) solvers. In this
context, of further interest are the conditions that need to
be imposed so that the solution of the original problem
(P0) and the solution of the relaxed problem (P1) are the
same.

The search techniques deployed in solving problem (P0)
are usually greedy methods. These methods try to directly
solve the original (P0) problem, unlike the (P1) approach.
Since these types of problems were the first studied, the
theoretical and experimental support is vastly superior.

This paper considers the greedy algorithm approach.

In a greedy strategy, the exhaustive search of the global
solution is abandoned in favor of an iterative process that
improves the current solution. The algorithm starts from
a solution x0 = 0 and it constructs a solution at step k
by maintaining a set of active column indices from the
dictionary (set which is initially empty) that grows with
one atom at each iteration (an atom represents one column
from the dictionary). Each step selects an atom index, that
is not in the active set, such that it minimizes the l2 norm
of the difference between the current residual rk and the
atom itself. After an atom index is selected, the l2 residual
is recalculated and the algorithm continues by selecting
a new atom index. Next, a standard approach to solving
the (P0) problem by a greedy strategy, the Orthogonal
Matching Pursuit (OMP) algorithm is described.

OMP Algorithm (Given: the dictionary A ∈ Rm×n and
vector b ∈ Rm. Return: xk ∈ Rn the approximate solution
of Ax = b with k0 non-zero elements.)

(1) Initialization
(a) initial solution x0 = 0



(b) initial residual r0 = b−Ax0 = b
(c) set S of active atom indices S0 = ∅

(2) Iteration : k = 1, . . . , k0
(a) compute ε(j) = min

zj
||ajzj − rk−1||22 for j =

1, . . . , n, j /∈ Sk−1; aj is the jth column of matrix
A

(b) find j0 = argmin
j

ε(j) and update Sk = Sk−1 ∪

{j0}
(c) compute xk = argmin

x
||Ax− b||22 on Sk

(d) update residual rk = b−Axk

The solution has k0 non-zero elements and the algorithm
has complexity O(k0mn). Evidently, the complexity of this
algorithm is much less than the complexity of a full exhaus-
tive search which is O(mnk0k20). The problem is that the
greedy strategy does not guarantee that the solution found
is the global minimum, whereas the exhaustive search
guarantees to find the optimum solution.

2.2 Dictionary training

A fundamental question that arises in the study of such
problems is the way in which the dictionary A is chosen.
One way of obtaining the dictionary is to create it as a
result of a training process applied to a set of input data.
Consider a set of available vectors {yi}Ni=1 ∈ Rm generated
by an unknown linear system. We note that m � N in
order to have a representative collection of vectors. The
goal is to estimate the matrix A, the upper limit of the
||x||0 pseudo-norm (k0) and the error (ε) such that the
training vectors have a sparse representation in A.

First, consider ε known and try to estimate A. This leads
to the following optimization problem

minimize
A

N∑
i=1

||xi||0 subject to ||yi−Axi||2 < ε, 1 ≤ i ≤ N

(6)
If this problem could be solved directly, the resulting
matrix A would have the sparsest representation possible
of all the N training vectors.

Now, consider the problem where A and k0 (the maximum
value of the ||x||0 pseudo-norm) are known and try to
estimate the vector x such that the reconstruction error
is minimized. The resulting optimization problem is

minimize
xi

N∑
i=1

||yi−Axi||22 subject to ||xi||0 < k0, 1 ≤ i ≤ N

(7)
This problem can be formulated in the context of matrix
factorization algorithms. Since the matrix Y ∈ Rm×N
is available (created by joining, columnwise, the training
vectors {yi}Ni=1) the problem is to write Y = AX where
X ∈ Rn×N is a sparse matrix of representations and A is
the dictionary.

Note that the dictionary must have a fixed size A ∈
Rm×n. This restriction is imposed because the goal is
to create dictionaries A that represent the data as well
as possible with far fewer atoms in the dictionary than
available training vectors (n � N) in order to keep the
computational and memory loads to a relatively moderate

level. Otherwise, if we accept for example n = N , a trivial
solution to the problem is to set A = Y and X to be the
identity matrix IN . This solution is unacceptable since it
leads to very slow manipulations with the dictionary A.

Coming back to our original approach, consider (6) and
(7) as a single optimization problem with an alternating
objective. Starting with an initial dictionary A0 compute
the sparse representations matrix X0 for our training
data using OMP and then compute A1 such that the
representations are even sparser. Then, iteratively repeat
this process K times.

For the computation of the sparse representations in X
the OMP algorithm is used and for the computation of A
there are two choices: use the least squares method (MOD
algorithm) or use the K-SVD algorithm.

The update formula for the MOD method is

Ak = argmin
A
||Y −AXk||2F = Y XT

k (XkX
T
k )−1 (8)

The update formula for the K-SVD algorithm is

argmin
A
||Y −AXk||2F = argmin

A
||Y −

n∑
j=1

ajx
T
j ||2F

= argmin
aj0 , x

T
j0

||(Y −
∑
j 6=j0

ajx
T
j )− aj0xTj0)||2F , ∀ j0

(9)

In both cases || · ||F is the Frobenius norm of the matrix
Y − AXk. As it can be seen from (8), MOD updates the
whole dictionary A directly and does not change in any
way X, while in (9) K-SVD performs an optimization step
for each column of A separately modifying in the process
also the sparse representations from X. Denote Ej0 = (Y −∑
j 6=j0 ajx

T
j ). In order to minimize expression (9) the

optimum values of aj0 and xTj0 are needed. Notice that this
is a rank 1 update (row-column vector product). So, the
problem becomes one of finding aj0 and xTj0 such that their
outer product is the best rank 1 approximation of Ej0 . The
two vectors are obtained by applying the Singular Value
Decomposition (SVD) on the matrix Ej0 = U∆V T and
keeping the vectors associated with the largest singular
value. At every step update both aj0 and xTj0 . Since the
SVD does not compute sparse vectors, the decomposition
is applied only on the set of columns of Ej0 that utilize
the atom aj0. The rest of the elements are considered 0.

The general structure of the MOD/K-SVD algorithm is
presented next.

MOD/K-SVD Algorithm (Given: Training vectors {yi}Ni=1 ∈
Rm, upper bound of the ||x||0 pseudo-norm k0 and the
error ε. Return: the trained dictionary A ∈ Rm×n and
X ∈ Rn×N containing the sparse representations of the
training vectors.)

(1) Initialization
(a) initialize the dictionary A0 randomly or by using

n training vectors
(b) normalize A0’s columns

(2) Iteration
(a) find a sparse representation for each training

vector

xi = argmin
x
||yi−Ak−1x||22 subject to ||x||0 ≤ k0 ∀i

(10)



Join columnwise the vectors xi to form the matrix
Xk.

(b) update the dictionary A using MOD or K-SVD
(i) MOD:

Ak = argmin
A
||Y−AXk||2F = Y XT

k (XkX
T
k )−1

(11)
(ii) K-SVD: for j0 = 1, 2, . . . , n

(A) select the training vectors which use
the atom aj0

Ωj0 = {i| 1 ≤ i ≤ N,Xk(j0, i) 6= 0}
(12)

(B) compute Ej0

Ej0 =

Y −∑
j 6=j0

ajx
T
j

 (13)

(C) extract from Ej0 the columns from set
ı̂n Ωj0 obtaining ERj0

(D) apply one step of the SVD algorithm
for ERj0 = U∆V T and update: aj0 = u1
and xRj0 = ∆[1, 1]v1

(c) check stop condition ||Y −AkXk||2F ≤ ε. Because
of the size of the dictionary and the optimization
procedures, this condition may never be satisfied.
So the algorithm is also restricted to run a
maximum number of iterations.

Evidently, because the SVD provides the best rank 1 ap-
proximation, the speed of convergence of K-SVD is higher
than that of MOD but the price paid is a larger running
time for K-SVD. Improvements in the running time of K-
SVD can be made, for example, by approximating the SVD
step using the power method (Journee et al. (2010)). All re-
sults presented in this paper were obtained using only the
K-SVD method since the training step in this case is not
time constrained. Experiments were also conducted using
the MOD algorithm but the results obtained are far below
those obtained with K-SVD and therefore will not be
described here. The reader should notice that the original
problem of training a dictionary for sparse representations
is not a convex optimization problem. Both MOD and K-
SVD provide an approximation of the solution and neither
can gurantee to reach the global minimum.

For details and further references regarding the sparse
representations topics the reader is advised to consult
Bruckstein et al. (2009).

2.3 Audio features extraction

This paper considers two of the most popular feature
extraction methods used for audio signals: Linear Pre-
dictive Coding (LPC) and Mel-frequency cepstral (MFC)
coefficients.

First, the features of the audio signal are extracted using
the Linear Predictive Coding tool. This is a very popular
and powerful tool in the field of audio signal processing and
it is used mostly for representing the spectral envelope of
a digital audio signal. The result is comprised of the set
of LPC coefficients for each defined frame of the signal.
LPC uses an AR model and it assumes that an element
of the discrete audio signal s(t) can be estimated by a

linear combination of the previous M elements. N is the
length of the signal s(t). For details regarding the types
of identification models that can be deployed in such
applications the reader should consult L. Ljung (1999).
Therefore, the approximation is

s̃(t) = d1s(t−1)+d2s(t−2)+· · ·+dMs(t−M) =

M∑
i=1

dis(t−i)

(14)
where the coefficients di ∈ R are called the coefficients of
the linear predictor of order M .
The model error (14) is expressed as

ε(t) = s(t)− s̃(t) = s(t)−
M∑
i=1

dis(t− i) (15)

Coefficients di minimize the square of the error defined in
(15) and they are the solution of the linear system

r(0) r(1) · · · r(M − 2) r(M − 1)
r(1) r(0) · · · r(M − 3) r(M − 2)

...
...

. . .
...

...
r(M − 2) r(M − 3) · · · r(0) r(1)
r(M − 1) r(M − 2) · · · r(1) r(0)

×


d1
d2
...

dM−1
dM

 =


r(1)
r(2)

...
r(M − 1)
r(M)

 (16)

written compactly Rd = r where

r(k) =
1

N − k

N−1−k∑
t=0

s(t)s(t+ k) (17)

Solving (16) as a general linear system takes O(M3)
operations but, in this case, taking into account the
symmetric Toeplitz structure of the matrix R it takes
only O(M2) operations by using the Levinson-Durbin
algorithm.

The MFC coefficients are used to represent the short-
term power spectrum of a discrete audio signal s(t) with
0 ≤ t ≤ N − 1. This tool is a very popular one because it
allows for a better representation of sounds by constructing
a good approximation of the way in which humans process
audio signals. In order to compute the coefficients the
following steps are executed:

(1) Define the Discrete Fourier Transform (DFT) of s(t)
as ŝ(t) = DFT{s(t)} and then the real cepstrum of
s(t) is defined to be

c(m) = DFT−1{log |ŝ(t)|} =
1√
N

N−1∑
t=0

log |ŝ(t)|e2iπtm/N

(18)
where i =

√
−1 and l = 0, 1, . . . , N/2 + 1. For the

above definition to work the Fourier transform of s(t)
must be non-zero everywhere.

(2) Apply now a Mel-frequency scaling so that we in-
troduce the energy in frequency bands that are
exponentially-spaced. The mapping is defined by

f(φ) = 700(eφ/1125 − 1), φ ≥ 0 (19)

In this fashion, ĥp with p = 1, . . . , P triangular filters
with equal area and center frequency the linearly



spaced Mels are constructed. The triangular filters
are P = 50 in number and span the bandwidth [0
11000] Hz. Each filter is given by

ĥp(t) =



0, 0 ≤ tFs/N < fc(p− 1)

ap
tFs/N − fc(p− 1)

fc(p)− fc(p− 1)
,

fc(p− 1) ≤ tFs/N < fc(p)

ap
tFs/N − fc(p+ 1)

fc(p)− fc(p+ 1)
,

fc(p) ≤ tFs/N < fc(p− 1)
0, fc(p+ 1) ≤ tFs/N ≤ Fs

(20)

where Fs is the Nyquist frequency, fc are the centers
of each frequency band and the band dependent
magnitude factors ap are given by

ap =

 0.0015, 1 ≤ p ≤ 14
2

fc(p+ 1)− fc(p− 1)
, 15 ≤ p ≤ 50 (21)

This warping is used because it closely approximates
the response of the human auditory system.

(3) The MFC coefficients are given by

cc(m) = βP (m)

P∑
p=1

log

(N−1∑
t=0

|ŝ(t)ĥp(t)|
)

(22)

× cos

[
mπ

P

(
p− 1

2

)]
where 0 ≤ m ≤ P and the scaling factor

βP (m) =


1√
P
, m = 0√

2

P
, m > 0

(23)

Additionally, one can compute the short time MFC
coefficients by

cc(m, j) = βP (m)

P∑
p=1

( J−1∑
t=0

log |ŝ(t, j)ĥp(t)|
)

(24)

× cos

(
mπ

P

(
p− 1

2

))
where 0 ≤ m ≤ P and where ŝ(t, j) is the DFT of
length J of s(t) localized over a small time region.

(4) Finally, compute the first and second derivatives of
the MFC coefficients using

∆(m, j) = cc(m, j)− cc(m, j − 1) (25)

∆∆(m, j) = ∆(m, j)−∆(m, j − 1) (26)
These two features describe the rate of change of the
coefficients from one window of the audio signal to
the next.

Usually in speech processing applications, only the first
13 coefficients are kept and in audio signal processing
applications the first 20 coefficients. In both cases, the first
coefficient (m = 0) is discarded because it contains only
information regarding the energy of the signal.

Experiments show that for the classification of music
genres LPC coefficients perform much better than MFC
coefficients. Because of this, the sections that are presented
next will contain only results using the LPC coefficients.

Another important observation is the fact that both LPC
and MFC coefficients are local features in the audio

signal. In both cases, the original audio signal is split
up into windows and the coefficients are computed for
each window separately (in some situations the windows
could actually be overlapping). Another approach to the
problem of feature selection from an audio signal is to
extract from the whole signal (or from relatively big
chunks of it) some global parameters that best describe the
signal. Features that fall into this category are based on
the MPEG-7 standard and usually include among others:
temporal centroid, spectral centroid information, audio
spectrum centroid, spread and envelope values for different
frequency bands, spectral flatness measure etc.

All conducted experiments considered only one type of
features, either LPC or MFC coefficients. Another possible
strategy in the feature selection stage is the so-called
bag-of-features approach. In this setting, several types of
features are extracted in order to improve the performance
of the classifier. For example, one might use both MFC and
LPC coefficients in the hope that both will better represent
the audio signals for classification. The problem that arises
in this case is deciding which combination of features from
the total available bag leads to the best results. This
approach is detailed in Scaringella et al. (2006).

For a detailed and complete analysis of the most important
methods of features extraction from digital audio signals,
the reader should consult Rabiner et al. (1993). Also, H.
G. Kim et al. (2005) contains a detailed discussion on the
MPEG-7 standard.

3. CLASSIFICATION OF MUSIC GENRES USING
SPARSE REPRESENTATIONS

Now that the main theoretical notions were presented,
a description of how sparse representations are used to
solve the classification problem is next. The main idea is
the following: after extracting the feature vectors from
the available songs, use the K-SVD algorithm to train
a dictionary of length L in Dg ∈ RM×L for each music
genre g = 1, . . . , G, separately using only the feature
vectors belonging to that particular genre. G represents
the number of music genres considered. At the end of the
training phase there will be G dictionaries each capable of
constructing sparse representation of a particular music
genre. The G dictionaries make up the classifier. Now,
when a test song is presented to the classifier, the following
steps occur. First, feature vectors are extracted from the
presented song by the same method that was used in
the training process and saved columnwise in the matrix
F test ∈ RM×q where M is the length of a feature vector
and q is the number of feature vectors extracted. Now
that F test was created, sparse representation are computed
for each feature vector in each available dictionary by
letting the OMP algorithm run just a few iterations
(in this paper only 5 iterations were considered). That
means that the OMP algorithm is applied qG times and
the results are saved in the matrices Xtest

g ∈ RL×q
(again, separately for each music genre g). Thus, the error
matrices for each music genre Eg = F test − DgX

test
g are

defined, where Eg ∈ RM×q. The test song is attributed
to the genre having the lowest Frobenius norm of the
error matrix. The Frobenius norm of the matrix Eg is

||Eg||F =
√∑M

i=1

∑q
j=1 e

2
ij . Only a few iterations of OMP



are used because experiments show that in the proper
dictionary a low residual magnitude is reached very quickly
when trying to represent a new vector. A large number of
iterations would generate low residuals magnitudes in each
dictionary making it much harder to separate the correct
dictionary from the rest.

Intuitively, the algorithm works like this: for each classifi-
cation group a dictionary Dg is created such that members
of that group have a sparse representation, which means
that the atoms in the dictionary extract the most impor-
tant characteristics of the group; the assumption that the
classifier makes is that the members of a group i with
dictionary Di do not have a good (low residual) sparse
approximation in the other dictionaries Dj , i 6= j. So, a
test input is labeled as belonging to class i if it has the low-
est residual magnitude of its sparse representation in the
trained dictionary Di. Next, follows a detailed description
of the training and classification phases.

3.1 Training

For the training process all the available mp3 songs in
the ISMIR 2004 training database are used. The following
training steps are applied

• convert the .mp3 files to .wav for easier access
• for each wav file

· read the full content of the files and cut the
first 10 seconds of the audio signal in order to
eliminate the intro sounds.
· all songs are recorded at 44 kHz so they are

decimated with the factor 4 to obtain a rate of
11 kHz. This step is necessary in order to reduce
the amount of data to be processed. In any case,
for the separation of music genre, high quality
audio signals are not really needed since details
of the signal are of no interest. In order to speed
up the running time, for the rest of the processing
steps only o portion of the original signal is kept.
Specifically, only about 30s (after the initial 10s
intro) of the audio signal is saved.
· the decimated signal is partitioned in windows

of length T = 3000 samples (about 250 ms)
with overlap K = 750 samples (about 60 ms).
The values for T and K were chosen taking
into account the recommendations presented in
other articles and studies. The high value of
T was chosen in order to capture a long term
characteristic in the signal and the value of K was
chosen to be a forth of that of T as studies suggest
this to be a good choice. Of course, different
values were also tested but it seems that this
combination works best for your case.
· for each separated window apply the Levinson-

Durbin algorithm to compute its LPC coefficients
of dimension M = 120. The computation yields a
large number of coefficients because of the large
window length T .
· assuming N vectors with LPC coefficients are

computed, they are concatenated columnwise in
the matrix Y ∈ RM×N . Again, in order to
improve the speed of the algorithm some of
the N feature vectors from the matrix Y could

be dropped. This is especially useful when the
processed song is lengthy. In this article the full
feature vectors are kept.

• apply the K-SVD algorithm on the obtained matrix Y
with the restrictionD ∈ RM×3M to obtain Y ≈ D×X
where the matrix X is sparse. The size of the matrix
D was chosen large enough such that the dictionary
is overcomplete but not large enough to slow down
the algorithm too much. Different dimensions were
checked and tests show that dictionaries three times
overcomplete suffice to obtain good results in a rea-
sonable amount of computing time.

At the end of the training process the dictionaries Dg, g =
1, . . . , G are available for each music genre separately.
This paper considers the number of music genres G = 6:
classical, electronic, jazz-blues, metal, rock-pop and world.
The number of songs in each category varies from 26 for
jazz-blues to 320 for classical. The world genre contains
songs that do not belong in any of the previous defined
genres.
The training algorithm needs an overnight run to finish
constructing the dictionaries for all 6 genres.

3.2 Classification

Now that the training phase is over the actual classification
phase begins. The set of test songs to be classified is com-
pletely different from the one that was used in the training
phase. For each music genre, the number of test songs
equals the number of training songs. The classification
steps are the following

• convert the .mp3 files to .wav for easier access
• for each wav file

· apply the same processing algorithm as in the
training phase: decimate with factor 4, split the
signals into windows with T = 3000 and K =
750, compute the LPC coefficients for each of
the N windows and construct Y ∈ RM×N by
concatenating columnwise the feature vectors. It
is important to stress that the audio signals need
to be processed in the same manner in which they
were processed in the training phase.
· compute the sparse representations matrix Xg in

the dictionary Dg for g = 1, . . . , G by applying
the OMP algorithm N times, for each column of
Y .
· compute the matrix Eg = Y − DgXg, for g =

1, . . . , G of remaining residuals.
· classify the test song as belonging to the cluster

indexed i, where i = argmin
g

||Eg||F with g =

1, . . . , G, and ||· ||F is the Frobenius norm.

The total number of test songs fed to the classifier is 729,
summing up to more than 49 hours of audio playback. The
number of test songs, clustered by their correct genre, is:
320 for classical, 115 for electronic, 26 for jazz-blues (j-b),
45 for metal, 101 for rock-pop (r-p) and 122 for world.
The running time of the current classification algorithm is
a little over 2 hours for all the 729 songs, on an Intel i3
2.13GHz processor with 4GB of RAM.



3.3 Results

For convenience, the results obtained are centralized in the
result matrix R

classical electronic j-b metal r-p world
classical 316 0 0 0 0 4
electronic 11 86 1 0 11 5
j-b 2 0 22 0 0 2
metal 3 0 0 27 15 0
r-p 6 4 0 1 90 1
world 20 9 0 0 10 83

(27)

where element r = R(i, j) reads as: r song of genre indexed
i have been clustered as belonging to genre indexed j.

The percentage of correct classification, per genre, is

correctclassical = 98.75%
correctelectronic = 82.78%
correctjazz-blues = 88.61%
correctmetal = 75.00%
correctrock-pop = 89.10%
correctworld = 79.03%

(28)

The genres that have the lowest correct classification
percentage are world and metal. These categories are
mistaken most often with genres classical and rock-pop.
In the case of the world genre, the relatively bad result
can be explained by the fact that the group is a mixture
of many types of songs with different characteristics. Thus,
this classifier cannot obtain a sparse representation of all
the characteristics that it encounters in this group.
On the other hand, the genre with the highest correct
classification percentage is classical. It is important to
mention that this category has by far the most training
songs of any genre.
The average correct classification percentage is

p =
1

|genres|
∑

g∈genres
correctg = 85.59% (29)

Since the number of test songs to be grouped in each genre
is different another metric is also introduced

pnormalized =
∑

g∈genres
pg × correctg = 82.30% (30)

where pg is the probability of appearance of each genre g
and correctg is the percentage of correctly identified songs
of genre g. So, this represents a normalized metric.

Both the training and the test databases are available on
the ISMIR 2004 web page. The best results for the ISMIR
2004 database obtained in recent studies are depicted in
Table 1.

Table 1. Best results obtained on the ISMIR
2004 database

Authors p

Y. Panagakis et al. (2010) 94.93%
our approach 85.59%
Holzapfel et al. (2008) 83.50%
Pampalk et al. (2005) 82.30%
Bergstra et al. (2006) 82.30%
I. Panagakis et al. (2008) 80.95%
Lidy et al. (2005) 79.70%

Only the results cited in Y. Panagakis et al. (2010) are
higher than the ones presented here, the main reason being

that this paper describes a whole framework for music
genre classification. Although the classification algorithms
in both cases rely on sparse representations, the difference
in the results comes from the fact that Y. Panagakis et al.
(2010) introduces a multilinear sub-space analysis method
that reduces the dimensionality of the music signal’s
representation. On the other hand, this paper describes
a method that uses a single, simple feature extracted from
the audio signal. An important observation regarding the
method presented here is that, even when the classification
is not the right one, the correct genre has a small residual,
even though it is not the smallest one. To illustrate this
fact, Table 2 describes the position of the classification
error associated with the true genre of the songs.

Table 2. Order of residual errors magnitudes

1 2 3 4 5 6

classical 316 3 0 1 0 0
electronic 86 20 6 3 0 0
jazz-blues 22 3 0 1 0 0
metal 27 11 4 0 2 1
rock-pop 90 4 4 2 0 1
world 83 25 11 3 0 0

For example, the last line of Table 2 reads: 83 songs
belonging to the world genre had the smallest classification
error in the world genre dictionary (i.e. they were correctly
classified), 25 world songs that were incorrectly classified
had the second smallest error in the world genre dictionary,
11 world songs that were incorrectly classified had the
third smallest error in the world genre dictionary, and so
on. As Table 2 depicts, the correct genre is in the top 3
smallest residuals in 98.07% of the cases.

4. CONCLUSIONS

This paper describes an efficient and robust solution
to the problem of classifying songs into music genres
using only information from the digital audio signal itself.
The presented approach uses as feature vectors the LPC
coefficients computed on the frames of the audio signal.
The feature vectors are then clustered using a sparse
representation technique, namely the K-SVD algorithm.
The presented method is applied on the ISMIR 2004
database and the average correct classification percentage
obtained is 85.59% which is comparable to the state-of-
the-art solutions that exist. Future work that improves
the results presented in this paper includes: feeding the
classifier additional features in order to improve the correct
classification accuracy, using less of the audio signal from
which to extract the features to speed up the method,
adding an extra classification step for the top 3 genres
with the smallest initial residuals and applying some fast
dimensionality reduction algorithm to reduce the size of
the original problem.
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