1,142 research outputs found

    Speaker segmentation and clustering

    Get PDF
    This survey focuses on two challenging speech processing topics, namely: speaker segmentation and speaker clustering. Speaker segmentation aims at finding speaker change points in an audio stream, whereas speaker clustering aims at grouping speech segments based on speaker characteristics. Model-based, metric-based, and hybrid speaker segmentation algorithms are reviewed. Concerning speaker clustering, deterministic and probabilistic algorithms are examined. A comparative assessment of the reviewed algorithms is undertaken, the algorithm advantages and disadvantages are indicated, insight to the algorithms is offered, and deductions as well as recommendations are given. Rich transcription and movie analysis are candidate applications that benefit from combined speaker segmentation and clustering. © 2007 Elsevier B.V. All rights reserved

    Enhancing timbre model using MFCC and its time derivatives for music similarity estimation

    No full text
    One of the popular methods for content-based music similarity estimation is to model timbre with MFCC as a single multivariate Gaussian with full covariance matrix, then use symmetric Kullback-Leibler divergence. From the field of speech recognition, we propose to use the same approach on the MFCCs’ time derivatives to enhance the timbre model. The Gaussian models for the delta and acceleration coefficients are used to create their respective distance matrix. The distance matrices are then combined linearly to form a full distance matrix for music similarity estimation. In our experiments on two datasets, our novel approach performs better than using MFCC alone.Moreover, performing genre classification using k-NN showed that the accuracies obtained are already close to the state-of-the-art

    An Empirical Evaluation of Zero Resource Acoustic Unit Discovery

    Full text link
    Acoustic unit discovery (AUD) is a process of automatically identifying a categorical acoustic unit inventory from speech and producing corresponding acoustic unit tokenizations. AUD provides an important avenue for unsupervised acoustic model training in a zero resource setting where expert-provided linguistic knowledge and transcribed speech are unavailable. Therefore, to further facilitate zero-resource AUD process, in this paper, we demonstrate acoustic feature representations can be significantly improved by (i) performing linear discriminant analysis (LDA) in an unsupervised self-trained fashion, and (ii) leveraging resources of other languages through building a multilingual bottleneck (BN) feature extractor to give effective cross-lingual generalization. Moreover, we perform comprehensive evaluations of AUD efficacy on multiple downstream speech applications, and their correlated performance suggests that AUD evaluations are feasible using different alternative language resources when only a subset of these evaluation resources can be available in typical zero resource applications.Comment: 5 pages, 1 figure; Accepted for publication at ICASSP 201

    Towards efficient music genre classification using FastMap

    No full text
    Automatic genre classification aims to correctly categorize an unknown recording with a music genre. Recent studies use the Kullback-Leibler (KL) divergence to estimate music similarity then perform classification using k-nearest neighbours (k-NN). However, this approach is not practical for large databases. We propose an efficient genre classifier that addresses the scalability problem. It uses a combination of modified FastMap algorithm and KL divergence to return the nearest neighbours then use 1- NN for classification. Our experiments showed that high accuracies are obtained while performing classification in less than 1/20 second per track

    Short user-generated videos classification using accompanied audio categories

    Get PDF
    This paper investigates the classification of short user-generated videos (UGVs) using the accompanied audio data since short UGVs accounts for a great proportion of the Internet UGVs and many short UGVs are accompanied by singlecategory soundtracks. We define seven types of UGVs corresponding to seven audio categories respectively. We also investigate three modeling approaches for audio feature representation, namely, single Gaussian (1G), Gaussian mixture (GMM) and Bag-of-Audio-Word (BoAW) models. Then using Support Vector Machine (SVM) with three different distance measurements corresponding to three feature representations, classifiers are trained to categorize the UGVs. The accompanying evaluation results show that these approaches are effective for categorizing the short UGVs based on their audio track. Experimental results show that a GMM representation with approximated Bhattacharyya distance (ABD) measurement produces the best performance, and BoAW representation with chi-square kernel also reports comparable results

    Fingerprinting Smart Devices Through Embedded Acoustic Components

    Full text link
    The widespread use of smart devices gives rise to both security and privacy concerns. Fingerprinting smart devices can assist in authenticating physical devices, but it can also jeopardize privacy by allowing remote identification without user awareness. We propose a novel fingerprinting approach that uses the microphones and speakers of smart phones to uniquely identify an individual device. During fabrication, subtle imperfections arise in device microphones and speakers which induce anomalies in produced and received sounds. We exploit this observation to fingerprint smart devices through playback and recording of audio samples. We use audio-metric tools to analyze and explore different acoustic features and analyze their ability to successfully fingerprint smart devices. Our experiments show that it is even possible to fingerprint devices that have the same vendor and model; we were able to accurately distinguish over 93% of all recorded audio clips from 15 different units of the same model. Our study identifies the prominent acoustic features capable of fingerprinting devices with high success rate and examines the effect of background noise and other variables on fingerprinting accuracy
    corecore