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ABSTRACT
This paper investigates the classification of short user-genera
ted videos (UGVs) using the accompanied audio data since
short UGVs accounts for a great proportion of the Internet
UGVs and many short UGVs are accompanied by single-
category soundtracks. We define seven types of UGVs cor-
responding to seven audio categories respectively. We also
investigate three modeling approaches for audio feature rep-
resentation, namely, single Gaussian (1G), Gaussian mixture
(GMM) and Bag-of-Audio-Word (BoAW) models. Then us-
ing Support Vector Machine (SVM) with three different dis-
tance measurements corresponding to three feature repre-
sentations, classifiers are trained to categorize the UGVs.
The accompanying evaluation results show that these ap-
proaches are effective for categorizing the short UGVs based
on their audio track. Experimental results show that a
GMM representation with approximated Bhattacharyya dis-
tance (ABD) measurement produces the best performance,
and BoAW representation with χ2 kernel also reports com-
parable results.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: [Miscellaneous]

General Terms
Short User-generated Video Classification

Keywords
User-generated Video, MFCC, Video Classification

1. INTRODUCTION
As the proliferation of Web 2.0 applications, video is poised

to inundate the Internet. Recent statistics show that, on
the the primary video sharing website,YouTube, 48 hours of
video are uploaded every minute by users, and more video is
uploaded to YouTube in one month than the three major US

.

networks (ABC, CBS and NBC) have created in 60 years1.
In order to manage and retrieve such large amounts of data,
work has begun on methods of automatic video categoriza-
tion, which would make it easier for individuals to retrieve
video content matching their needs.

User-Generated Video (UGV) accounts for a major pro-
portion of all WWW video content. Here we define :

DEFINITION 1. (User-Generated Video).
Video that is recorded by an amateur without any profes-
sional video editing skills. Differing from professional video
material, UGV is often filmed using personal video captur-
ing devices such as mobile phones and digital cameras. This
type of video can often be found on content sharing website
such as YouTube.

A distinguished characteristic of UGVs is that they are
mostly comprised of short video clips. Wired Magazine refers
to this small-sized content pop culture as “bite-size bits for
high-speed munching” [9]. This is also validated in [3] and
statistics of the dataset from the NIST TRECVID 2011 Mul-
timedia Event Detection (MED) task [10]. Chen [3] found
that 97.9% of video lengths are less than 600 seconds, and
99.1% are shorter than 700 seconds in their crawled dataset
from YouTube. The MED dataset consists of publicly avail-
able UGVs posted to various Internet video hosting sites, in
total 32,061 clips. As shown in Fig. 1, we have found that
more than 47% (15,204) video lengths are less than 60 sec-
onds, nearly 66% are less than 100 seconds. This is mainly
due to two reasons. Firstly, common users are more likely to
capture short video clips using their own camera. Secondly
the video sharing websites generally limit the length of video
on regular user uploads, such as the limit of 10 minutes in
YouTube.

The UGVs are usually processed with less post-production
effort (example the addition of simple music backing) before
publishing to video sharing websites [6]. Therefore, com-
pared to long UGVs or professionally produced videos, a
large number of the short UGVs are accompanied by single-
category audio type (e.g. music). In this work, we propose a
new categorization framework for short UGVs (no more than
60 seconds in length) using the seven accompanied audio cat-
egories, namely, person speaking/talking, laughing/clapping
/cheering, music scene/background, outdoor urban, outdoor
rural, indoor noisy, and quiet. More, we also investigate the
techniques for classifying the UGVs into different categories
corresponding to different audio categories.

1http://www.youtube.com/t/press_statistics
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Figure 1: Statistics of duration distribution of UGVs
from the TRECVD 2011 MED task dataset

Much research work has attempted to automatically clas-
sify an entire video clip into one of several categories, such
as sports, news, cartoon, music. In general, the previous
methods can be categorized into four types: text-based ap-
proaches [1, 19], audio feature based approaches [11, 12,
13, 14], visual feature based approaches [5, 16, 18], and
those that used some combination of text, audio and visual
features[4, 5, 8]. In fact, most authors incorporated audio
and visual features into their approaches (we call it content-
based approaches); therefore in general, most approaches
employ more than one modality. Here we will give a re-
view about the audio feature and content-based approaches,
especially the methods using audio features. An extensive
review of these techniques can be found in [2].
Roach et al. [12] use the Mel Frequency Cepstral Coef-

ficient (MFCC), from video for genre classification. The
authors investigate how many of the coefficients to keep and
find that the best results occur with 10-12 coefficients. Clas-
sification is performed with a GMM because of its popular-
ity in speaker recognition. The genre studied are sports,
cartoons, news, commercials, and music. In [11], Dinh et
al. adopt a Daubechies 4 wavelet to seven subbands of
audio clips from TV shows. The features for representing
the audio clips utilize the wavelet coefficients from wavelet
transformation. Video genre classification was performed
using the C4.5 decision tree, kNN, and SVMs with linear
kernels. They found that the best performance results were
from using the kNN classifier. The genres in this study
were news, commercials, vocal music shows, concerts, mo-
tor racing sports, and cartoons. Beside low-level audio fea-
tures MFCC, Perceptual Linear Prediction, M. Rouvier et
al. [13] also combine high-level features, namely acoustic in-
stability, speaker interactivity, speech quality to classify the
video genres by SVM classifiers. Their experimental results
are conducted on a corpus composed from cartoons, movies,
news, commercials and music and they obtain an identifi-
cation rate of 91%. Furthermore, they further speed up the
video genre classification by only considering low-level audio
features in [14].
Content-based approaches are found much more often in

the video genre classification literature than audio-only ap-
proaches, and have attracted more research interest. The

combination of audio and visual low-level features attempts
to incorporate the audio and visual aspects of the viewing
process that these features represent and to complement
each other. Visual features in general include motion fea-
tures, static frame image features, cut (or shot) features,
identification of some simple objects, with research focussed
on how to combine these features. Some approaches com-
bined all features into a single feature vector while others
trained classifiers for each modality and then used another
classifier for making the final decision. In [4], beside au-
dio features, visual features including colour and texture
descriptors were used. R. Glasberg et al. also used a mo-
tion activity descriptor and shot transition descriptor in [5].
Similar features were also used in [8].

It should be noted that two evaluations strongly promoted
the research on Internet video genre classification. The first
one is set out by Google as an ACM Multimedia Grand Chal-
lenge task in 2009 (also in 2010) 2. Followed that was the
Genre Tagging Task in MediaEval 2011 3, which focused on
genre categorization of Internet video.

Ways of using these features investigated in existed work
include many of the standard classifiers because of the ubiq-
uitousness of them, such as Bayesian, SVM [11, 13], neural
networks and GMM [14]. SVM and GMMs methods pro-
duced relatively high performance and widely used in previ-
ous work.

Accompanied audio based UGV classification is helpful
for individuals to retrieve video content when using audio
category as filtering. Moreover, it can be also combined to
boost content-based video event detection, such as detec-
tion of events such as birthday party or wedding may gain
in pre-classified music-related videos. Our contributions in
this work are that 1) firstly, we investigate UGV classifi-
cation using accompanied audio categories; 2) we compare
and evaluate three techniques to address this problem. The
remaining parts are organized as follows. In section 2, we de-
scribe the annotated dataset used in this work, and propose
a short UGV classification framework using the accompa-
nied audio categories. Section 3 details our approaches for
classifying short UGVs into different categories using audio
features. The experimental results are presented and dis-
cussed in section 4. Finally, we give our conclusions and
outline future work in section 5.

2. DATASET AND UGVS CLASSIFICATION
USING AUDIO CATEGORIES

Here, we propose a new classification mode for short UGVs
using the audio data, which differs from the genres defined
in previous work. We annotated 3,000 videos, in total 26.2
hours, 8.61GB size, which randomly selected from the 15,204
Internet videos that are shorter than 60 seconds in the MED
task dataset. To this end, we defined seven audio categories,
which are listed and remarked in Table 1, and developed a
purpose-built annotation tool for manual annotation. These
seven categories are from the definition in previous work [15],
also based on our statistics of annotations.

In annotation, each video is divided into multiple 3-second
clips, and annotations are conducted at the 3-sec level. The
reasons for 3-sec level annotation are that, firstly it assures

2http://www.sigmm.org/archive/MM/mm09/MMGC.aspx.
htm
3http://www.multimediaeval.org/mediaeval2011/



Table 1: Audio categories defined in this work and
the amount of positive samples for each category in
the annotated dataset

Categories Remarks #
person speak- One or more person

ing/talking (PST) are speaking or talking 112
laughing/clapping They do not necessary
/cheering (LCC) occur simultaneously 88
music scene/back- Sound from live
ground (MSB) or background music 211
outdoor urban Sounds in the urban street,

from such as car, people 97
walking, talking and so on

outdoor rural Sounds in the outdoor rural,
from such as wind, water, 103
bird tweeting and so on

indoor noisy Sounds from indoor, from
such as when making food. 96

quiet No audible sound
in the video. 107

the audio to be recognizable, secondly, it is less possible
that too many different audio categories appear in one clip
(in our annotation, most of the clips were annotated 1 or
2 categories), furthermore, it is a compromise between the
annotation labor and clip length (actually we can also use
these 3-sec level annotation for other research. However in
this work, we only use the aggregated entire-video-level an-
notation). In total, we annotated 32,963 3-sec clips (some
are less than 3 seconds since a lot of videos are not inte-
gral multiples of 3) divided from 3,000 short UGVs from
the MED task dataset. Finally, we aggregate the results on
the entire video level. We select the videos accompanied by
only one of the defined seven audio categories in this work.
Totally, there are 814 videos only accompanied by one au-
dio category (the other UGVs are accompanied at least 2
audio categories). The following experiments are performed
on these 814 UGVs, and the number of positive samples for
each category is also listed in Table 1.

3. UGVS CLASSIFICATION ALGORITHM
USING AUDIO

3.1 Audio Feature Representation
Our fundamental frame-level feature is the MFCCs. MFCC

is commonly used in speech recognition and other acoustic
classification tasks. For computing the MFCCs, firstly, the
signal is sampled at 16kHz, then a short-time Fourier mag-
nitude spectrum is calculated over 25ms windows/frames
every 10ms. The spectrum of each window is warped to
the Mel frequency scale, and the log of these auditory spec-
tra is decorrelated into MFCCs via a discrete cosine trans-
form (DCT) which approximates the Karhunen-Loeve trans-
form (or equivalently Principal Components Analysis). The
“null” MFCC, which is proportional to the total energy in
the frame, is also included. Furthermore, the derivation
of MFCCs, exhibits the dynamic characteristic of the au-
dio content, which can boost the classification performance.
Here, we use the delta coefficients and acceleration coeffi-
cients, which estimate the first and second order derivation
of MFCCs respectively. In total, the extraction of MFCCs

results in a 39-dimensional feature vector for each frame.
Then, each video’s accompanied audio is represented as a
set of d = 39 dimensional MFCC feature vectors, where the
total number of frames from an entire video depends on its
duration.

After extracting the MFCC features, the audio of UGVs
can be can be represented by sets of MFCC feature descrip-
tors, but the sets vary in cardinality and lack meaningful or-
dering, which creates difficulties for learning methods (e.g.,
classifiers) that require feature vectors of fixed dimension as
input. To address this problem, a conventional method is
encoding MFCC features as a numerical video-level feature
vector. We experimented with three different techniques to
handle this: 1G, GMM, and BoAW modeling. These fixed-
size representations are then compared to one another by
several distance measures: the Kullback-Leibler divergence
(KLD), approximated Bhattacharyya distance (ABD) and
χ2 distance. The distances between all the video-level fea-
ture representations form the input to SVM classifiers.

3.2 SVM Classifiers
The SVM is a supervised learning method used for clas-

sification and regression that has many desirable properties
[19] and has proven to be a solid choice in several bench-
markings such as TRECVID. Data items are projected into
a high-dimensional feature space, and the SVM finds a sep-
arating hyperplane in that space that maximizes the margin
between sets of positive and negative training examples. In-
stead of working in the high-dimensional space directly, the
SVM requires only the matrix of inner products between all
training points in that space, also known as the kernel or
gram matrix. Here we use the generalized RBF kernels with
different distance measurements, i.e.:

K(p, q) = exp(−γ · d(p, q)) (1)

where d(p, q) is the KLD dKLD, or ABD dB , or χ
2 distance

dχ2 discussed in the following sections.
We use the so-called slack-SVM that allows a tradeoff be-

tween imperfect separation of training examples and smooth-
ness of the classification boundary, controlled by a penalty
constant c. For both tunable parameters c and γ, we vary
the parameters in a grid search area of [2−5, 27] × [2−7, 23]
and choose the ones that maximize classification accuracy
via five-fold cross validation. When testing, the resulting
distance-to-boundary is a real value that indicates how strong
ly the video is classified to the category. The test videos are
then ranked according to this value. Following conventions
in information retrieval, we evaluate classifiers by calculat-
ing their average precision (AP), since it not only considers
precision but also recall by taking into account rank posi-
tion.

3.3 Single Gaussian Modeling (1G)
The rationale of employing a 1G model is that different

types of sounds whose average spectral shape and variation,
as calculated by the cepstral feature statistics, should be
sufficient to discriminate categories. Specifically, to describe
a video’s MFCC features as a single feature vector, we ignore
the time dimension and treat the set of as a “bag of the
frames” in MFCC feature space, which we then model as a
single, full-covariance Gaussian distribution. This Gaussian
is parameterized by its 39-dimensional mean vector µ and
39× 39-dimensional covariance matrix Σ.



To calculate the distance between two Gaussians, as re-
quired for the gram-matrix input (or kernel matrix) for the
SVM, we adopt the KLD measures. If two videos p and q
are modeled by single Gaussians as:

p(x) = N(x;µp,Σp), q(x) ∼ N(x;µq,Σq) (2)

respectively, then the distance between two videos is taken
as the KLD between Gaussians p(x) and q(x) i.e:

dKL(p, q) = (µp − µq)
T (Σ−1

p +Σ−1
q )(µp − µq)+

trace(Σ−1
p Σq +Σ−1

q Σp)− 2d
(3)

where d = 39.

3.4 Gaussian Mixture Modeling (GMM)
The distribution of audio (especially, speech) features may

not be well fitted by a single Gaussian because of diver-
sity, and in previous work, they are typically modeled by
GMM. Here, we also experimented with using a mixture of
diagonal-covariance Gaussians, estimate via the expectation
maximization (EM) algorithm, to describe the frame-feature
distribution. Let the the distribution of two clips p(x) and
q(x) be represented by two different GMMs:

p(x) =
∑
a

ωaN(x;µa,Σa), q(x) =
∑
b

ωbN(x;µb,Σb) (4)

where ωa, µa, and Σa are the prior weight, mean, and covari-
ance of each Gaussian mixture component used to approxi-
mate clip p, and the b-subscripted values are for clip q. We
use the shorthand pa = N(x;µa,Σa) and qb = N(x;µb,Σb)
henceforth for simply notation. To compare the distance
of two GMMs, we adopted an approximation to the Bhat-
tacharyya distance that was shown to give good performance
in tasks requiring the comparison of GMMs [7]. The Bhat-
tacharyya similarity between two distributions p and q is:

B(p, q)
def
=

1

2

∫
√
pq =

1

2

∫ √
Σabωaωbpaqb ≥√

ΣabωaωbB2(pa, pb) = B̂vb(p, q)

(5)

where B(pa, qb) is the Bhattacharyya divergence between a
particular pair of single Gaussians, one from each mixture,
namely,

B(p̂, q̂) =
1

4
(µp − µq)

T (Σp +Σq)
−1(µp − µq)+

1

2
log|Σp +Σq

2
| − 1

4
log|ΣpΣq|

(6)

To preserve the identity property that B̂(p, q) = 1
2
if and

only if p = q. This can be enforced by re-normalizing using
the geometric mean of B(p, p) and B(q, q):

B̂norm(p, q) =
Bvb(p, q)√

Bvb(p, p)Bvb(q, q)
(7)

The normalized estimation was proved to be a better ap-
proximation to Bhattacharyya distance. With this approxi-
mation, the corresponding Bhattacharyya divergence is de-
fined as: dB(p, q) = −2log(B̂norm(p, q)). More details can
be referred in [7].

3.5 Bag-of-Audio-Word(BoAW)
Inspired by the successes of the popular Bag-of-Visual-

Words in computer vision application, we adopt a similar
process but on audio features, called BoAW representations.
The BoAW representation requires creating an audio vocab-
ulary. Here, we randomly sample 500,000 MFCC features
from an extra collection (in the rest of the 3,000 UGVs,
but not the 814 UGVs used in this work), and cluster them
into V clusters (i.e., “words”) using K -means clustering al-
gorithm. K -means may trap into local optimum. In order
to overcome this defect, we run it 10 times with different
initial centers, and select the one with the least variance.

For the representation, all features of a video’s soundtrack
are assigned to their closet (using Euclidean distance) audio
words (AWs). This produces histograms of AW occurrences
which are then used for classification.

For classification when using this BoAW feature represen-
tations, we use the χ2 kernel for SVM. The χ2 kernel has
been reported to outperforms the traditional Gaussian RBF
kernel in previous work [17]. The χ2 kernel is:

dχ2(p, q) = dχ2(Hp, Hq) =
1

2

V∑
i

(hp
i − hq

i )
2

hp
i + hq

i

(8)

where, Hp = {hp
i } and Hq = {hq

i } are the histograms of AW
occurrences for clip p and q respectively.

4. EVALUATION RESULTS AND DISCUS-
SION

We evaluate the three modeling approaches using five-fold
cross validation on the 814 videos, in which, each video only
contains one of seven audio categories. At each fold, SVM
classifiers for each audio category are trained on 50% of the
data, and then tested on the remaining 50%, selected at
random.

4.1 Results
The results of the 1G with the KLD measures are shown

in Fig. 2. The AP of category quiet achieves the best,
0.67, which is much higher than that of other categories.
The classification performance of music scene/background
(MSB) achieves the second best. However, the person-speaki
ng related category person speaking/talking (PST ) is also
reported comparable AP even it has much less annotated
samples in the dataset. This may attribute to the audio fea-
ture we used. Each step in the process of creating MFCC
features is motivated by perceptual or computational con-
siderations. It represents the speech amplitude spectrum in
a compact form, and models the speech sounds better than
the music or other sounds. Therefore, MFCC features are
more discriminative for person speaking related audio cat-
egories. Videos accompanied by location-related audio cat-
egories, outdoor rural and indoor noisy, are also classified
well by using this method. Overall, the mean average preci-
sion (MAP) achieves nearly 0.35 by using IG+KLD method.

Fig. 3 shows the results using GMM with the ABD mea-
sure. Performance changes are also reported when adopting
different numbers of Gaussian components between 3 to 12.
The performance for four categories increases steadily when
the number of components enlarges from 3 to 9. When in-
creasing to 12 components, the APs increase a bit or even
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Figure 2: Classification APs using 1G and KLD.
Bars and error-bars indicate the mean and standard
deviation over five-fold cross-validation testing re-
spectively. MAP is also shown

worsen. On the whole, the MAP of 9-GMM outperforms
that of 12-GMM marginally. Therefore, 9-GMM is a good
compromise based on the MAP, and ability to discriminate
all the audio categories better.
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Figure 3: Classification APs using GMM with 3, 6,
9, 12 components and ABD. MAPs are also shown

The performance of BoAWmodeling and χ2 distance mea-
sure is shown in Fig. 4. Since the number of AWs plays a
important role in the model, we test four various audio vo-
cabulary sizes, namely, 500, 1,000, 2,000 and 4,000. When
increasing the vocabulary size from 500 to 2,000, the APs
values for four of the seven audio categories increase sig-
nificantly. Thereafter, the performance gains limitedly or
even worsens when increasing the vocabulary size to 4,000.
Therefore, audio vocabularies of size 2,000 provides a com-
promise between computation cost and classification perfor-
mance.

4.2 Discussion
In Fig. 5, we show the best results from the three mod-

eling approaches. Here we still use the AP as the measure-
ment. Firstly, it should be noted that the classification per-
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Figure 4: Classification APs using BoAW with 500,
1 000, 2 000, 4 000 AWs and χ2 distance. MAPs are
also shown

formance of category quiet reaches much higher than other
categories when using any one of the three approaches. Cat-
egory quiet is inherently different from the other categories
since no audible sounds in the video, which makes the fea-
ture representation of this category be more separable with
that of other categories.
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Figure 5: The best APs from three approaches.
MAPs are also shown

Our second observation is that the variation of classifi-
cation performance for different categories. The APs for
different categories vary when using the same modeling ap-
proach. We deem that the amounts of training data as well
as the discrimination of the features affect the performance
a lot. Indeed, for category MSB, the performance is better
than other categories except quiet for each modeling method
since it has nearly two times of training samples than any of
the other categories. However, for category PST, it achieves
the third best performance, even comparable with category
MSB, which can be attributed to the more discriminative
power of MFCC features for speech audio.

Another observation is that GMM method reports better
AP than 1G for all the categories, which means these audio
categories are more successful modeled by GMM than by a



single Gaussian. Actually, the audio categories we defined
in this work are combinations of multiple subclasses, such as
outdoor rural may include sound of wind, water, bird tweet-
ing and so on. This implies that 1G models the specific and
more consistent subclasses better, whereas GMM is better
for mixed and inconsistent audio categories.
Finally, the GMMmethod outperforms the method BoAW

method, but very marginally. For categories PST,MSB, out-
door urban and quiet, the GMM reports better APs than
BoAW, but conversely for the other three audio categories.
Overall, the MAP difference reported from these two meth-
ods is less than 0.01. This may be explained by the similarity
between the BoAW model and the GMM. Such as they usu-
ally use an iterative refinement approach to converge to a
local optimum, and they both use cluster centers to model
the data. The K -means clustering tends to find cluster of
comparable spatial extent, while the EM mechanism allows
clusters to have different shapes. However, when adopting
the appropriate size of BoAW model, it is capable of pro-
ducing the comparable results as GMM. Therefore, BoAW
model may be a efficient option since the iteration in K -
means is less complicated.

5. CONCLUSION
In this work, we have investigated the classification of

short UGVs that are accompanied by only one single au-
dio category. We define seven types of UGVs corresponding
to seven audio categories. We also investigate three mod-
eling approaches for feature representation: 1G, GMM and
BoAW. SVM classifiers are trained with three different dis-
tance measurements corresponding to three feature repre-
sentations respectively for kernel learning. Experimental
results show that these approaches are effective for cate-
gorizing the short UGVs using their accompanied audio. In
addition, GMM representation with ABD measurement pro-
duces the best performance, and BoAW representation with
χ2 kernel also reports comparable results. Future work will
focus on improving the classification performance of short
UGVs, testing on larger-scale datasets, and extending to
UGVs without duration limitation, finally leading to UGV
retrieval based on the accompanied audio categories and
multimedia event detection by combining accompanied au-
dio category features.
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