1,211 research outputs found

    Stable Infrastructure-based Routing for Intelligent Transportation Systems

    Get PDF
    Intelligent Transportation Systems (ITSs) have been instrumental in reshaping transportation towards safer roads, seamless logistics, and digital business-oriented services under the umbrella of smart city platforms. Undoubtedly, ITS applications will demand stable routing protocols that not only focus on Inter-Vehicle Communications but also on providing a fast, reliable and secure interface to the infrastructure. In this paper, we propose a novel stable infrastructure- based routing protocol for urban VANETs. It enables vehicles proactively to maintain fresh routes towards Road-Side Units (RSUs) while reactively discovering routes to nearby vehicles. It builds routes from highly stable connected intersections using a selection policy which uses a new intersection stability metric. Simulation experiments performed with accurate mobility and propagation models have confirmed the efficiency of the new protocol and its adaptability to continuously changing network status in the urban environment

    The Smart Highway to Babel: the coexistence of different generations of Intelligent Transport Systems

    Full text link
    The gap between technology readiness level in Cooperative Intelligent Transport Systems (C-ITS) and its adoption and deployment has caused a phenomenon where at least two types of network access technologies have to coexist. Furthermore, for the case of ETSI Intelligent Transport Systems protocols, work is being completed in Release 2 of the specification while Release 1 deployments are still underway. This, coupled with industry and consumer trends in the vehicle industry, is bound to cause a scenario where fully C-ITS-enabled vehicles have to coexist with non-C-ITS road users and, at the very least, with different versions of C-ITS. In this paper, we analyze the performance in terms of efficiency and safety of two releases of the ETSI GeoNetworking protocol, as well as a discussion on possible paths to tackle the upcoming compatibility and coexistence problems.Comment: Accepted version to Vehicular 202

    Survey on decentralized congestion control methods for vehicular communication

    Get PDF
    Vehicular communications have grown in interest over the years and are nowadays recognized as a pillar for the Intelligent Transportation Systems (ITSs) in order to ensure an efficient management of the road traffic and to achieve a reduction in the number of traffic accidents. To support the safety applications, both the ETSI ITS-G5 and IEEE 1609 standard families require each vehicle to deliver periodic awareness messages throughout the neighborhood. As the vehicles density grows, the scenario dynamics may require a high message exchange that can easily lead to a radio channel congestion issue and then to a degradation on safety critical services. ETSI has defined a Decentralized Congestion Control (DCC) mechanism to mitigate the channel congestion acting on the transmission parameters (i.e., message rate, transmit power and data-rate) with performances that vary according to the specific algorithm. In this paper, a review of the DCC standardization activities is proposed as well as an analysis of the existing methods and algorithms for the congestion mitigation. Also, some applied machine learning techniques for DCC are addressed

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    A Framework for Dynamic Traffic Monitoring Using Vehicular Ad-Hoc Networks

    Get PDF
    Traffic management centers (TMCs) need high-quality data regarding the status of roadways for monitoring and delivering up-to-date traffic conditions to the traveling public. Currently this data is measured at static points on the roadway using technologies that have significant maintenance requirements. To obtain an accurate picture of traffic on any road section at any time requires a real-time probe of vehicles traveling in that section. We envision a near-term future where network communication devices are commonly included in new vehicles. These devices will allow vehicles to form vehicular networks allowing communication among themselves, other vehicles, and roadside units (RSUs) to improve driver safety, provide enhanced monitoring to TMCs, and deliver real-time traffic conditions to drivers. In this dissertation, we contribute and develop a framework for dynamic trafficmonitoring (DTMon) using vehicular networks. We introduce RSUs called task organizers (TOs) that can communicate with equipped vehicles and with a TMC. These TOs can be programmed by the TMC to task vehicles with performing traffic measurements over various sections of the roadway. Measurement points for TOs, or virtual strips, can be changed dynamically, placed anywhere within several kilometers of the TO, and used to measure wide areas of the roadway network. This is a vast improvement over current technology. We analyze the ability of a TO, or multiple TOs, to monitor high-quality traffic datain various traffic conditions (e.g., free flow traffic, transient flow traffic, traffic with congestion, etc.). We show that DTMon can accurately monitor speed and travel times in both free-flow and traffic with transient congestion. For some types of data, the percentage of equipped vehicles, or the market penetration rate, affects the quality of data gathered. Thus, we investigate methods for mitigating the effects of low penetration rate as well as low traffic density on data quality using DTMon. This includes studying the deployment of multiple TOs in a region and the use of oncoming traffic to help bridge gaps in connectivity. We show that DTMon can have a large impact on traffic monitoring. Traffic engineers can take advantage of the programmability of TOs, giving them the ability to measure traffic at any point within several km of a TO. Most real-time traffic maps measure traffic at midpoint of roads between interchanges and the use of this framework would allow for virtual strips to be placed at various locations in between interchanges, providing fine-grained measurements to TMCs. In addition, the measurement points can be adjusted as traffic conditions change. An important application of this is end-of-queue management. Traffic engineers are very interested in deliver timely information to drivers approaching congestion endpoints to improve safety. We show the ability of DTMon in detecting the end of the queue during congestion
    • …
    corecore