74,249 research outputs found

    Evaluating the accuracy of size perception in real and virtual environments

    Get PDF
    ManuscriptAccurate perception of the size of 3D objects depicted on 2D desktop displays is important for many applications. Whether users perceive objects depicted on a display to be the same size as comparable real world objects is not well understood. We propose using affordances judgments as a way of measuring the perceived size of objects depicted in desktop virtual environments and the real world. The methodology involves indicating whether or not a particular action can be performed in a given environment, making it a flexible measure that can be used across different display technologies. In two studies, we test users' perceptions of size by asking them to make affordance judgments in both the real world and a geometrically matched desktop virtual environment. In the first study, users judge whether they can grasp an object and in the second study, they judge whether they can fit their hand through an opening. In both experiments we show that users perceive the size of objects in the desktop virtual environment to be smaller than in the real world

    Effects of virtual acoustics on dynamic auditory distance perception

    Get PDF
    Sound propagation encompasses various acoustic phenomena including reverberation. Current virtual acoustic methods, ranging from parametric filters to physically-accurate solvers, can simulate reverberation with varying degrees of fidelity. We investigate the effects of reverberant sounds generated using different propagation algorithms on acoustic distance perception, i.e., how faraway humans perceive a sound source. In particular, we evaluate two classes of methods for real-time sound propagation in dynamic scenes based on parametric filters and ray tracing. Our study shows that the more accurate method shows less distance compression as compared to the approximate, filter-based method. This suggests that accurate reverberation in VR results in a better reproduction of acoustic distances. We also quantify the levels of distance compression introduced by different propagation methods in a virtual environment.Comment: 8 Pages, 7 figure

    Visualisation techniques, human perception and the built environment

    Get PDF
    Historically, architecture has a wealth of visualisation techniques that have evolved throughout the period of structural design, with Virtual Reality (VR) being a relatively recent addition to the toolbox. To date the effectiveness of VR has been demonstrated from conceptualisation through to final stages and maintenance, however, its full potential has yet to be realised (Bouchlaghem et al, 2005). According to Dewey (1934), perceptual integration was predicted to be transformational; as the observer would be able to ‘engage’ with the virtual environment. However, environmental representations are predominately focused on the area of vision, regardless of evidence stating that the experience is multi sensory. In addition, there is a marked lack of research exploring the complex interaction of environmental design and the user, such as the role of attention or conceptual interpretation. This paper identifies the potential of VR models to aid communication for the Built Environment with specific reference to human perception issues

    Fidelity metrics for virtual environment simulations based on spatial memory awareness states

    Get PDF
    This paper describes a methodology based on human judgments of memory awareness states for assessing the simulation fidelity of a virtual environment (VE) in relation to its real scene counterpart. To demonstrate the distinction between task performance-based approaches and additional human evaluation of cognitive awareness states, a photorealistic VE was created. Resulting scenes displayed on a headmounted display (HMD) with or without head tracking and desktop monitor were then compared to the real-world task situation they represented, investigating spatial memory after exposure. Participants described how they completed their spatial recollections by selecting one of four choices of awareness states after retrieval in an initial test and a retention test a week after exposure to the environment. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection and also included guesses, even if informed. Experimental results revealed variations in the distribution of participants’ awareness states across conditions while, in certain cases, task performance failed to reveal any. Experimental conditions that incorporated head tracking were not associated with visually induced recollections. Generally, simulation of task performance does not necessarily lead to simulation of the awareness states involved when completing a memory task. The general premise of this research focuses on how tasks are achieved, rather than only on what is achieved. The extent to which judgments of human memory recall, memory awareness states, and presence in the physical and VE are similar provides a fidelity metric of the simulation in question

    Navigating large-scale ‘‘desk-top’’ virtual buildings: effects of orientation aids and familiarity

    Get PDF
    Two experiments investigated components of participants’ spatial knowledge when they navigated large-scale ‘‘virtual buildings’’ using ‘‘desk-top’’ (i.e., nonimmersive) virtual environments (VEs). Experiment 1 showed that participants could estimate directions with reasonable accuracy when they traveled along paths that contained one or two turns (changes of direction), but participants’ estimates were significantly less accurate when the paths contained three turns. In Experiment 2 participants repeatedly navigated two more complex virtual buildings, one with and the other without a compass. The accuracy of participants’ route-finding and their direction and relative straight-line distance estimates improved with experience, but there were no significant differences between the two compass conditions. However, participants did develop significantly more accurate spatial knowledge as they became more familiar with navigating VEs in general

    Prop-Based Haptic Interaction with Co-location and Immersion: an Automotive Application

    Get PDF
    Most research on 3D user interfaces aims at providing only a single sensory modality. One challenge is to integrate several sensory modalities into a seamless system while preserving each modality's immersion and performance factors. This paper concerns manipulation tasks and proposes a visuo-haptic system integrating immersive visualization, tactile force and tactile feedback with co-location. An industrial application is presented
    corecore