13,089 research outputs found

    Tensor Monte Carlo: particle methods for the GPU era

    Get PDF
    Multi-sample, importance-weighted variational autoencoders (IWAE) give tighter bounds and more accurate uncertainty estimates than variational autoencoders (VAE) trained with a standard single-sample objective. However, IWAEs scale poorly: as the latent dimensionality grows, they require exponentially many samples to retain the benefits of importance weighting. While sequential Monte-Carlo (SMC) can address this problem, it is prohibitively slow because the resampling step imposes sequential structure which cannot be parallelised, and moreover, resampling is non-differentiable which is problematic when learning approximate posteriors. To address these issues, we developed tensor Monte-Carlo (TMC) which gives exponentially many importance samples by separately drawing KK samples for each of the nn latent variables, then averaging over all KnK^n possible combinations. While the sum over exponentially many terms might seem to be intractable, in many cases it can be computed efficiently as a series of tensor inner-products. We show that TMC is superior to IWAE on a generative model with multiple stochastic layers trained on the MNIST handwritten digit database, and we show that TMC can be combined with standard variance reduction techniques

    Optimality of the Maximum Likelihood estimator in Astrometry

    Full text link
    The problem of astrometry is revisited from the perspective of analyzing the attainability of well-known performance limits (the Cramer-Rao bound) for the estimation of the relative position of light-emitting (usually point-like) sources on a CCD-like detector using commonly adopted estimators such as the weighted least squares and the maximum likelihood. Novel technical results are presented to determine the performance of an estimator that corresponds to the solution of an optimization problem in the context of astrometry. Using these results we are able to place stringent bounds on the bias and the variance of the estimators in close form as a function of the data. We confirm these results through comparisons to numerical simulations under a broad range of realistic observing conditions. The maximum likelihood and the weighted least square estimators are analyzed. We confirm the sub-optimality of the weighted least squares scheme from medium to high signal-to-noise found in an earlier study for the (unweighted) least squares method. We find that the maximum likelihood estimator achieves optimal performance limits across a wide range of relevant observational conditions. Furthermore, from our results, we provide concrete insights for adopting an adaptive weighted least square estimator that can be regarded as a computationally efficient alternative to the optimal maximum likelihood solution. We provide, for the first time, close-form analytical expressions that bound the bias and the variance of the weighted least square and maximum likelihood implicit estimators for astrometry using a Poisson-driven detector. These expressions can be used to formally assess the precision attainable by these estimators in comparison with the minimum variance bound.Comment: 24 pages, 7 figures, 2 tables, 3 appendices. Accepted by Astronomy & Astrophysic

    Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields

    Full text link
    Gibbs random fields play an important role in statistics, however, the resulting likelihood is typically unavailable due to an intractable normalizing constant. Composite likelihoods offer a principled means to construct useful approximations. This paper provides a mean to calibrate the posterior distribution resulting from using a composite likelihood and illustrate its performance in several examples.Comment: JMLR Workshop and Conference Proceedings, 18th International Conference on Artificial Intelligence and Statistics (AISTATS), San Diego, California, USA, 9-12 May 2015 (Vol. 38, pp. 921-929). arXiv admin note: substantial text overlap with arXiv:1207.575
    corecore