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Annals of Economic and S(>cial Measurement. 3/4. 1974

ESTIMATION AND INFERENCE IN NONLINEAR STRUCTURAL

MOUELS*

BY E. K. BERNDT, B. H. HALL, R. E. HALL. AND.I. A. HAUSMAN

Maximum likelihood o1nd minimum distance estimators are specified for nonlinear structural econometric
models. A lheorem is prOt'en which il1sures conrergence to a local maximum of the respect ire likelihood
function and distallef function. Techniques of inference are dereloped for both estimators. The maximum
likelihood theorem and algorithm are ba.\t'd on the fundamental stati.stical relation that the covariance
matrix of the estimator is equal to the corariance matrix of tile gradient of the likelihood function. The
algorithm requires much less computation tlll1l1 prerious algorithms Wid, unlike prel'ious algorithms. is
guarallteed to co/llwge.

Econometric methods of structural estimation general1y assume linearity of the
model in both variables and parameters. On the other hand, many contemporary
models of economic behavior are both nonlinear and simultaneous. Modern
demand analysis. for example, starts from a rich specification of individual tastes
for a variety of goods and deals with the structural relation it implies among prices.
quantities, and income. This relation is nonlinear in both variables and parameters
in al1 but the simplest cases. Similariy, models of production with many factors
are invariably nonlinear in their variables, and are frequently nonlinear in their
parameters as wel1, especial1y when trends in productivity are present. In this paper
we deal with the practical issues that arise in estimating nonlinear structural
models. We review the statistical theory of estimation in these models and draw
attention to some important recent advances. We also summarize some useful
results from the theory of maximization. Our main contribution is a set of algo
rithms for estimation and inference in nonlinear struct ural models. These carry out
statistical procedures with known desirable properties, embody modem numerical
techniques, and are organized to comeI've both computation and storage.

I. MODEL AND STATISTICAL THEORY

Throughout we are concerned with estimation and inference in the multi
variate structural model.

(1.1 ) F,IY" fJ) = ~:,.

Here .v, is a I x M row vector of jointly dependent variables. F, is a twice-differ
entiable function whose value is a I x M vector. and 1::, is a I x M vector of random
disturbances. assumed to be distributed according to the multivariate normal
probability law. with expectation zero and variance-covariance matrix "E. The
model may involve exogenous variables as wel1. but these are subsumed under

• The authors are grateful to J. E. Dennis and D. W. Jorgenson for helpful suggesllons at several
points in this research. Proofs of theorems are omitted due to space constraints but are available from
the authors upon request. The authors' affiliations, in the order in which their names art listed above.
are as follows: University of British Columbia, Harvard Universily. Massachusetts Institute oiTech
nology. and MassaChusetts Institute of Technology.
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the dependence of r; on the time index, I. The model contains (\ K x I vector of
unknown parameters, 11. We make no assumptions abollt the assignment of
parameters to the M elemcnts of F" so, for example, the same parameter may
appear in more than one equation. We assume that If is identifiable; see Fisher
(1966), Chapter 5, for a discussion of identification problems in nonlinear strul:tural
models.

We discuss two estimators of {f: maximum likelihood and minimum distance.
Problems ofestimation and inference are well understood for maximum likelihood
but the estimator has received little use in econometric work because of th~
apparent complexity of the cah:ulations it requires. Previous discussions of
maximum likelihood (Eisenpress and Greenstadt (19661 and Chow (1973H do not
employ a numerical method of m(~ximization that guarantees converge!1ce.
Further. their use of Newton's method requires the formation and calculation of
an enormous number of third derivatives of the model. c1Tec!ively restricting their
method to smaIi models. We show in this paper that the third derivatives are both
unnecessary and dangerous. By eliminating them we bring about a great simpli
fication of the computations and at the same tin1c al:hie\e a method whose con·
vergence is guaranteed.

Minimum distance methods have formed the basis of most practical work to
date on simultaneous estimation of linear structural models. Three-stage least
squares is a minimum distance estimator. Recently Amemiya (1974) has extended
the theo~y of minimum distance to nonlinear models. We discuss the application
of his method in simultaneous estimation. The minimum distance estimator is
substantially easier to compute than is maximum likelihood, but is not generally
statistically efficient. However, the estimates are consistent and asymptoticallv
normal, so the method can form the basis for a complete approach to estimatio~
and inference in nonlinear structural models.

2. GRADIENT METHODS FOR MAXIMIZATION

In this section we review results on numerical methods of maximization that
are familiar to applied mathematicians but have been overlooked in most statistical
work. Our essential point is that methods are available whose wnvergence to at
least a L'ritical point is guaranteed in theory. A seriolls defect of many applica
tions of the method of scoring and other statistical maximization procedures is
their failure to use methods with assured convergence.

In general we deal with the maximization of the scalar function V(x) of the
vector x of length K. We assume that Vis twice continuously differentiable and has
compact upper contour sets. The starting point for our analysis is the

Gradient Theorem

Consider the gradient of Vat x, g = cV(x)!cx. Then any vectoL d, in the same
halfspace as g (that is, with d'g > 0) is a direction of increase of V(x), in the
sense that V(x + i.d) is an increasing function of the scalar i .. at least for small
enough i..
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This classical result in maximization theory is proved. for example, in Jacoby et al.,
(1972), p. 97.

A slH.:cessful method chooses a direction at each iteration that lies in the
halfspacc defined by the gradient. in general, eal:h iteration l:Onsists in 1:1I1llpuliug
the gradient, g, deriving from it a direction, d, and then finding a vallie of i, that
maximizes V(x + i.d). Any method following this prol:edure is assured of con
vergence.

The set of directions, d, that are in the gradient halfspace consists prel:isely of
those that can be derived from the gradient by multiplying it by a positive definite
matrix, say Q. Alternative gradient methods are specified succinctly by providing
rules for forming Q at each iteration. In general, convergence is speeded by a choice
of Q that is close to the inverse of the Hessian matrix of second derivatives of V(x).

especially in the neighborhood of the optimum where the use of the Hessian
makes final convergence quadratic. If V(x) is concave, then the inverse of the
Hessian matrix itself can serve as Q, and we have Newton's method. Even in that
case, <.:onvergenl:e is guaranteed only if a suitable method is employed for search
ing for I. at each iteration. In most statistical applications, however, the objective
function V(xl cannot be relied upon to be conl:ave, and Newton's method is
unsuitable. Dependence on Newton's method is a shortcommg of the work of
Eisenpress and Greenstadt (1966) and of Chow (1973) on nonlinear structural
estimation.

In statistical work, it is usually convenient to choose Q in a way that makes
it approximate the variance-covariance matrix of the estimates. Since the latter is
necessarily positive definite, it is eligible as a choice of Q. Later in the paper we
will derive easily computed Q's that serve as well as variance-covariance matrices
for the maximum likelihood and minimum distance cases. It is necessary, however,
to rule out the possibility that Q approaches a singular matrix as the process
iterates. For this purpose we state the

Restriction on Q

Let IJ. be a prescribed positive constant less than one. At each iteration we
reqUIre

(2.1)
d'g.

r = d'd > ~.

If r drops below ~ on a particular iteration, we should replace Q by a matrix with
larger diagonal elements. Note that the restriction can always be satisfied by
Q = 1. which is an admissible choice.

All gradient methods require a "J.·search" after del.;:rmining the direction. d.
The choice ofmethod for selecting;. involves some subtle issues-not every method
yields guaranteed convergence. For example, trying out decreasing values of i.
until one is found that gives a higher value of V(x + i.d) is inadequate; it can
generate an infinite sequence of iterations that do not converge to a point where
g is zero. However, a choice of ). that maximizes V(x + Ml, while guaranteeing
convergence, often imposes an unacceptable computational burden (Powell,
1971). Convergence is assured in the class of problems we consider under the
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Criterion for Choice of A

Let,) be a prescribed constant in the interval (0, ~). Define

. V(X + ).el) - V(x)
(2.2) y(x, I.) = ---- i.(I'R----·

If }'(x, I) c 0, take i. = I. Otherwise, choose ). to satisfy

(2.3) 0 :::; y(xJ) :::; I - o.
Under our assumptions about V(x), a ), satisfying this criterion will always exist.

Now we can state the

Convergence Theorem

Assume V(x) is twice continuously differentiable and is defined over a com
pact upper contour set.

Consider the sequence x(1), X(2), ••• , where

(2.4)

(2.5)

and Q(i) obeys the restriction (2.\) and Am satisfies the criterion (2.3). Then
lim gW = 0.

The proof of this theorem follows Goldstein (1967), page 31, generalized along the
lines he suggests on page 36.

Not ewry critical point of V(x) is a local maximum. If the iterative process
chooses a value of x where V(x) has a local minimum or a saddle point, the iterative
process will stall, as g =°at such points. Since the process moves intentionally
toward a critical point only if it is a local maximum, stalling elsewhere is only
a very remote possibility. The safeguard against this possibility is precisely the
same as against convergence to a local maximum that is not a global maximum:
choose several initial values of x. If they do not all lead to convergence to the
same point, investigate the actual shape of the function with care until the global
maximum is located.

3. ESTIMATION AND INFERENCE PY MAXIMUM LIKELIHOOD

Maximum likelihood estimates are known to be statistically eilicient: see,
for example, Rao (1965), pp. 299-302, and Hausman (1975), who discusses regularity
conditions for the structural model. Further, the likelihood ratio test provides a
powerful and general method of inference. In structural estimation, however,
maximum likelihood has seen little practical use to date because of the apparent
complexity of the computations necessary to find the maximum of the likelihood
function. Until Hausman's recent work (1974,1975), maximum likelihood seemed
impractical even for linear structural models. Hausman demonstrates that
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iteration of an instrumental variables estimator with suitably chosen instruments
converges to maximum likelihood if it converges at all. However, he does not
establish that his method converges. I Further, it is still unclear how his method
could be extended to models that are nOJ1lincar in both parameter!\ and variables.

In this section we develop a practical approach to maximum likelihood
within the framework of gradient methods. Our approach has two substantial
advantages over the application of Newton's method advocated by Eisenpress
and Greenstadt (1966) and Chow (1973). First, its convergence is assured. Newton's
method uses a Q matrix that may not be positive definite and thus fails to confine
the direction vector to the gradient halfspace. Second, our method requires the
evaluation of derivatives of the model up to second order only, while Newton's
method requires certain third derivatives. The sheer number of third derivatives
makes Newton's method suitable only for small structural models. We eliminate
the third derivatives by taking advantage of a fundamental statistical relation:
the asymptotic variance-covariance matrix of a maximum likelihood estimator is
equal to the variance·covariance matrix of the gradielll of the likelihood function
(Kendall and Stuart (1967), Vol. II, p. 9). As we remarked earlier, it is natural and
convenient to use a variance-covariance matrix as the Q matrix in a gradient
method. The relevance of this statistical relation to numerical maximization of
likelihood functions in econometric applications has apparently not been pointed
out before.

We need to maximize the concentrated log-likelihood function of the co
efficients, p:

(3.1) L(fJ) == k + L logldet J,! - ~Iog det F' F.,

(3.2)

Here k is an inessential constant, and J, is the Jacobian matrix ofthe transformation
from the underlying disturbances to the observed random variables, Yl'

J == of,(yl' fJ)
'oy, .

The gradient is

(3.3)
oL a I c
- == L -Iogldet J,I- - ~fllog det L F;F, == p - q.
c(J ,o(J 2 up ,

The variance-covariance matrix of the gradient is

(3.4) E[{~~) (~~)] == E((p - q)(p - q)").

Our strategy is to replace the expectation by a statistic with equal expectation.

I However, the use of an appropriate I.-search guarantees convergence of Hausman's procedure
in the case of linear structural models. His method is related to ours, but he is able to simplify the
expression for the gradient by using the linearity of the model.
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The natural choice is the sample varialIce-covariance matrix of the gradient. We

define

(3.5)

and

(3.6)

i"'
P =" ~ logldet J,l

I £'Ii

= (~.F,) ('\ F'F )-I r'.if, '. Ii L. f r Ie,l r

Then we define Rr as the sample covariance matrix of the gradient multiplied
by '[1:

(3.7) RT = T L (P, - £},)(p, - q,)'.

It is not hard to show that

(3.8) plim ;2 RT = y~. E( ~(P - q)(p - qr).
Thus Ri 1 is a suitable choice for Q in a gradient method. We summarize our
proposed approach in a

Theorem on Computation of Maximum Likelihood Estimators lind Their
Covariance Matrices

Consider the following iteration:

(3.9) IJ(i+ II = Il(i) + i.(i)(R~I)-l(pfO _ q(i))

where).(i) is computed by the method of Section 2, R~I from equation (3.7), and pli)

and qlil from equation (3.3). Then

(i) the method converges to a stationary point of the likelihood function as
i -+ 00,

(ii) the method is close to Newton's method in that Rr converges to the
Hessian matrix of the likelihood funnion as T -> x, and

(iii) (l/T)Ri 1 is a consistent estimate of the variance-covariance matrix of
the estimated parameters.

Note that the assumptions on Vix) place no important restrictions on the
likelihood functions encountered with nonlinear structural models.

The following application of the theorem yields the maximum likelihood
estimate and a consistent estimate of the associated variance-covariance matrix:

Maximum Likelihood Algorithm

1. Compute the variance-covariance matrix of the residuals from equation
(U) using the estimated parameter values from the previous iteration.
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For the first iteration, arbitrary initial values may be llsed.
2. Over each observation, compute the Jacobian term, PI' and the "sum of

squares" term, (],. Update R, r, and If.
3. Calculate the new direction vector, d = R-1(p - q).

4. Check for convergence, defined as

Ieli! .
max --(-I-(J- < prescnbed tolerance

I max .1 il)

5. Search for;' and update fJ using equation (3.1) and equation (3.9). Return
to step I.

6. Report {f and its estimated variancc-<:ovariance matrix, (1 "f)R 1.

The maximum likelihood algorithm may be modified at Step 2by recalculating
R only after several iterations have been carried out. Convergence of the modified
algorithm is also assured, and the computational effort in forming R will be reduced.
In many cases, however, most of the effort will be consumed in forming PI and If,
at each iteration, so it is probably bettcr to use the best available approximation
to the curvature of the likelihood function.

Likelihood ratio tests are the natural method of inference when maximum
likelihood estimates are available. These tests are known to have many desirable
properties (Kendall and Stuart, 1967. Vol. II, pp. 224.247). Briefly, if L* is the
maximum of the likelihood function of a structural model which is nested in a
larger structural model with maximized likelihood L. then the statistic

(3.10) - 200g L* - log L)

is distributed asymptotically as /, with degrees offreedom equal to the difference
in the numbers of parameters in the two models.

We conclude our discussion of maximum likelihood with the remark that
iteration of our algorithm is not required to achieve any of the known desirable
properties of the resulting estimator, provided that the initial parameter values
are consistent estimates. The asymptotic equivalence of maximum likelihood
estimates and estimates obtained from one iteration of Newton's method is well
known. 2 Since the matrix R in our procedure converges to the matrix of second
derivatives, it follows that one step of our method is asymptotically equivalent to
maximum likelihood as well. The step requires much less computation than one
step of Newton's method. This justifies the

One-Step Efficient Estimation Algorithm

I. Use the minimum distance algorithm of Section 4 to obtain consistent
parameter estimates. fJMD. Use these to evaluate p, and q, and thus to form
R, p, and l/.

") Calculate the direction vector, d = R - 1(p - q).

2 See, for example, Zacks (1971), pp. 250-251. The equivalence was pointed OUI by Rothenberg
and Leenders (1964) for the linear structural model.
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3. Calculate the efficient estimates,

(3.11) fJ = liMO + d

Note that;' is taken as one.
4. Calculate the variancc-l:Ovariancc matrix (I/TlR - 1 lIsing fJ, and, if needcd

for inference, the value of the likelihood functions.
Inference is again based on likelihood ratio tests as described earlier.

4. ESTIMATION AND INFERENCE BY THE MINIMUM DISTANCE METHOD

The maximum likelihood method discussed in Section 3 yields efficient
estimates and powerful tests. These properties are achieved at the computational
cost of evaluating second derivatives of the structural model arising from the
presence of the Jacobian matrix in the likelihood function. In an important recent
paper, Amemiya (1974) has developed a class of estimators for nonlinear structural
models that requires the minimization of a quadratic distance function. The
distance function contains instrumental variables but no explicit Jacobian matrix.
In the linear case, Hausman (1975) shows that a particular set of instruments
substitutes exactly for the Jacobian and thus he provides an interpretation of
maximum likelihood in terms of instrumental variables. The relation between
Amemiya's instrumental variables estimator and maximum likelihood is less clear
in the nonlinear case. Amemiya demonstrates only that for arbitrarily chosen
instruments, the minimum distance estimator is consistent and asymptotically
normal.

It is easiest to deal with Amemiya's prodedure in a "stacked" version of the
model:

(4.1) flY, /1) = c

where J, y, and care T· M x I vectors. His estimator minimizes the distance,

(4.2)

where D is defined as 3

Ii(P) = ¥f(y, f1))'Df(}', f1)

(4.3)

S is an arbitrary M x M symmetric positive definite matrix, and H is an MT x N
matrix of instrumental variables. Amemiya proves that the value of Pthat mini·
mizes the distance is a consistent and asymptotically normal estimator ofthe true P,
provided the instruments, H, are independent of the structural disturbances, c. It
is not, in general, an efficient estimator. Iffis linear in both y and fJ, if S is a con
sistent estimator of the structural variance-covariance matrix L, and if H consists
ofall of the exogenous variables in the model (all of the derivatives ofjwith respect
to f1 that do not involve Y), then the minimum distance estimator is three-stage
least squares and is known to be asymptotically efficient. No precise information
about efficiency is available whenfis nonlinear.4 Presumably S should be as close

3 Amemiya deals with the univariate case where D has a simpler form. We Slart from an obviolls
multivariate generalization of his results.

4 Hausman (1975) does prove efficiency of his instrumental variables estimator in the case of a
model that is nonlinear in parameters but linear in variables.
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as possible to E and the instruments should resemble the derivatives of f with
respect to (J.

The gradient of the distance function is

(4.4) g = G'Df

where G is the matrix of derivatives off with respect to p. Again, we seek a point
where g = O. Amemiya demonstrates that the asymptotic variance-covariance
matrix of the minimum distance estimator is {G'DGf '. As. before, this is a suitable
choice for the Qmatrix in a gradient method: it is positive definite, and its compu
tation is necessary in any case at the conclusIon to provide an indication of the
sampling dispersion of the estimates. It is possible to show that G'DG converges in
probability to the Hessian matrix of the distance function, so its use gives a Newton
like method. We summarize our conclusions about the minimum distance esti
mator in a

Theorem on Computation of the Minimum Distance Estimator and Its
Variance-Covariance Matrix

Consider the following iteration:

(4.5)

where ,.1Yi is computed by the method of Section 2 and G. D, and g are as defined
above. Then

(i) the method converges to a stationary point of the distance function as
i -+ 00,

(ii) the method is close to Newton's method in that G'DG converges to the
Hessian matrix of the distance function as T ~ 00, and

(iii) [G'DGr I is a consistent estimate of the variance-covariance matrix of
the estimated parameters.

Practical application of the minimum distance estimator for models of any
size requires careful organization of the computations. It is desirable to avoid
recomputing the distance function after the calculations begin, but the matrix D
as defined in equation (4.3) is much too large to store in memory. Our approach
is based on two preliminary transformations. We premultiply the instruments by
the matrix square root of S-' 0 I and postmultiply by the matrix square root of
H'(S- I (g) I)H (the second transformation has the effect of orthonormalizing the
instruments). Then at each iteration we perform the first of these transformations
on the derivatives of the model and on the residuals. This process is described
more precisely in the

Minimum Distance Algorithm

1. Calculate a consistent estimate of ~, S. Calculate the square root or
Choleski factorization of S- I, W:

(4.6) S-I =WW'.
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2. Form H'(S- 1 ® l)H and calculate the Choleski factorization: (H'(S- I is)

l)H)- 1 = 1/1/'. Form transformed instruments.

(4.7) H = (W' @ /jHV

3. At each iteration. form the matrix G of val lies of the derivative ofr
4. Form the transformed derivatives and residuals as

(4.8)

(4.9)

5, Calculate the direction.

(4.10)

G= (W' ® l)G

1=(W'@l)j

d = (G'JUi'Gr 1 G'flfJl

6. Check for convergence.
7. Search for i. update If. and return to Step 3.

The reader should have no trouble verifying that the expression for d in terms of
transformed G, H, and! is the same as that specified in the theorem in equation (4.5).

Inference for minimum distance estimators is based on the asymptotic
normality of the estimates. We consider the following rather general class of non
linear null hypotheses'.

(4.11)

Here pm is a vector of length 11 and p(ll is a vector of the remaining K - /I param
eters. We assume that <I> is an analytic function: often it will be linear or even
constant. The statistic in the sample corresponding to equation (4.11) is

(4.12)

which will be close to a zero vector if the null hypothesis is true. The statistic is
asymptotically normal (Malinvaud, 1970, Chapter 9). with variance-cov~,riance

matrix

(4.13)

where VU.
j

) are the blocks of the asymptotic variance-covariance matrix of h.
Then inference is based on the quadratic form,

(4.14)

which is distributed asymptotically as /(11) under the null hypothesis.
Computation of the test statistic appears a formidable task. but in fact a

method exists for computing it as simply as the likelihood ratio statistic for maxi·
mum likelihood. F is equal to twice the increase in the distance function when the
null hypothesis is imposed as a constraint on the parameters in the way described
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in the algorithm below. This method is familiar to econometricians in the linear
regression model, especially in the form of the "Chow test", but its appli::ability 10

c;imultaneous estimation apparently has not been noted previously.

Algorithm for Computing the 1..7. Test Statistic from the Minimum Distance
Estimator

I. Estimate the parameters of the unconstrained model corresponding to the
maintained hypothesis by the minimum distance algorithm. Let !'J. be the
value of the distance function at the minimum.

2. Substitute the constraint be) = cIJ(bl II) into the model.
3. Starting from the value of ,.~(l. from Step I and, using the same variance

covariance matrix S as in Skp 1, take one additional iteration. Set i. = I.
4. Let!'J.* be the value of the linearized distance function:

(4.15)

wherejare the residuals around the linearized model:

( f- - f . b (Of of C<I>) b*O) b(l)4.16) - (J, ) + ah(\) + alP) ab(l) ( - )

and band b* are the estimates from Steps I and 3, respectively.
5. Calculate F as 2(!'J.* - !'J.).

Inference by this method requires no additional computations beyond those
of estimation except for the calculation of the linearized distance.

It is difficult to compare the power of this test relative to the corresponding
likelihood ratio test. Since the minimum distance estimator is not generally
efficient, the test based on it is probably usually less powerful than the likelihood
ratio test. However, the minimum distance estimates are consistent, so the X2 test
is consistent as well-the probability of rejecting null hypothesis approaches one
as the sample becomes large.

5. ApPLICATION TO NONLINEAR MULTIVARIATE REGRESSION

Multivariate regression is an important special case of the general structural
model. In the case of regression, the derivatives of the model with respect to the
parameters do not depend on the endogenous variables, y. This has two implica
tions for our methods. First, and most important, the Jacobian determinant 1, in
the likelihood function of equation (3.1) equals unity and the troublesome term
k log Idet 1:1 disappears from the equation. The gradient of the log-likelihood
function is just

(5.1 )

It is not hard to show that

(5.2)

I c? " '- q = - - -:;- log det L- F,F,.
2 ell t

(if) .
q = ~~ (k- 1 0/)!
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The true (not sample) variance-covariance matrix of the gradient is then

(5.3) R = EIlJi/') = F[ (i1J(L -i @ lJ.ll'lt - I ® 1)0J
The sel:ond implication of the nonstochastil: nature of af/i"/J is that we c. . . . an pass
the expectatIOn orer~tor through to the middle of this expression:

(5.4)

Since this call be computed exactly, while the alternative R1· of equation (17) is
only an estimate, it appears a better choice of the Q matrix in a gradient method
and a better estimate of the variance-covariance matrix of the maximum likelihood
estimator. This choice of Q is well known in univariate nonlinear regression as the
Gauss-Newton method. For multivariate regression. the theorem on maximum
likelihood estimators and the maximum likelihood algorithm in Section 3continue
to apply if R is substituted for RJ".

When the minimum distance estimator is applied in the (ase of multivariate
regression, the matrix of instrumental variables, H, is superfluous and the distance
matrix should be taken as

(5.5) D = 5- 1 @ 1.

Malinvaud (1970, Chapter 9) has studied the minimum distance estimator in
considerable detail. He has shown that for an arbitrary positive definite S the
estimator is consistent and asymptotically normal, and further, that if S is any
consistent estimator of E, the minimum distance estimator is asymptotically
efficient.

With the redefinition of D given above, the theorem on the computation of
minimum distance estimators and the minimum distance algorithm of Section 4
apply without change.

Although the maximum likelihood and minimum distance approaches yield
asymptotically equivalent estimators, they are not generally numerically identical
in finite samples. Maximum likelihood updates the estimate on:: at each iteration,
while minimum distance holds 5 constant. At the conclusion of maximum likeli
hood, L is exactly the sample variance-covariance matrix of the residuais, but
minimum distance lacks this consistency between 5 and the residuals. If the mini
mum distance algorithm is modified to update S at each iteration, it becomes
precisely the same as the maximum likelihood algorithm.

The one-step efficient method, using R from equation (5.4), proceeds as before.
An initial consistent estimate can be obtained by applying univariate regression
separately to each equation. or by minimum distance. 5 Then a single iteration

S If there are no parameter constraints across equations. minimum dislanl"e with S = I is exactl}'
the same as univariate regression applied sep'lralely.
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with i = I provides estimates that are asymptotically equivalent to full maximum
likelihood.

Finally, inference in multivariate regression follows the rules set out at the
ends of Sections 3 and 4. For maximum likelihood, the likelihood ratio is

(5.6)
I I

-2(1ogL -logL*) = detyU*'U* - detyU'U.

For minimum distance, the difference between the linearized constrained distance
and the unconstrained distance is again ./ with /I degrees of freedom under the
null hypothesis. Asymptotically the two methods of inference arc equivalent, but
will differ in finite samples because S will not be the sample variance-covariance
matrix of the residuals in the minimum distance casco

REFERENCES

[I] Amemiya, T., "The Nonlinear Two-stage Least-squares Estimator,"' lOl/mal of Econometrics,
July 1974, pp. 105-1 \0,

[2] Chow, G., "On the Computation of Full-Information Maximum Likelihood Estimates for Non
linear Equation Systems," Review of Economics and Statistics, February 1973, pp. 104·109.

(3J Daniel, J. W., "Convergent Step-Sizes for Gradient-Like Feasible Direction Algorithms for
Constrained Optimization," in J. B. Rosen, O. L. Mangasarian, and K. Riller (cds.), Nonlinear
Programming, Academic Pres$. New York, 1970, pp 245-274.

[4] Eisenpress, H. and J. Greenstadt, • The Estimation of Nonlinear Econometric Systems," Econo-
metrica, October 1966, pp. 851-861.

[5] Fisher, F., The Identification Problem in Econometrics, McGraw-Hill, New York, 1966.
(6] Goldstein, A., Construct ire Real Analysis, Harper & Row, New York, 1967.
[7] Hausman, 1. A., "An Instrumental Variable Approach to Full-Information Estimators for Linear

and Certain Non-Linear Econometric Models," forthcoming in Econometrica, 1975.
[8] Hausman, J. A., "Full Information Instrumental Variable Estimation of Simultaneous Equation

Mode!s." this issue, 1974.
[9] Jacoby, S. L. S., J. S. Kowalik, and 1. T. Pizzo, Iteratit'e Me/hods for Nonlinear Optimization

Problems, Prentice-Hall, Englewood Cliffs, New Jersey, 1972.
[10] Kendall, M. G. and A. Stuan, Adt'anced Theory l!f Statistics, Griffin, London, 1967.
[II] Malinvaud, E., Statistical MethodsofEconoml'trics. seconded., North-Holland, Amsterdam, 1970.
(12] Powell, M. J. D., "Recent Advances in Unconstrained Optimization," Mathematical Program-

ming, Vol. I, pp. 26---57, October 1971.
[13] Rao, C. R., Linear Statistical inference and its Appliwtions, Wiley, New York, 1965.
[!4] Rothenberg, T., and C. Leenders, "Efficient Estimation of Simultaneous Equation Systems,"

Econometrica, January 1964, pp. 57-76.
[15] Zacks, S., The Theory of Statistiml Inference. Wiley, New York, 1971.

665






