516 research outputs found

    Towards Learning Terminological Concept Systems from Multilingual Natural Language Text

    Get PDF
    Terminological Concept Systems (TCS) provide a means of organizing, structuring and representing domain-specific multilingual information and are important to ensure terminological consistency in many tasks, such as translation and cross-border communication. While several approaches to (semi-)automatic term extraction exist, learning their interrelations is vastly underexplored. We propose an automated method to extract terms and relations across natural languages and specialized domains. To this end, we adapt pretrained multilingual neural language models, which we evaluate on term extraction standard datasets with best performing results and a combination of relation extraction standard datasets with competitive results. Code and dataset are publicly available

    Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond

    Full text link
    We introduce an architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different language families and written in 28 different scripts. Our system uses a single BiLSTM encoder with a shared BPE vocabulary for all languages, which is coupled with an auxiliary decoder and trained on publicly available parallel corpora. This enables us to learn a classifier on top of the resulting sentence embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification. Our approach sets a new state-of-the-art on zero-shot cross-lingual natural language inference for all the 14 languages in the XNLI dataset but one. We also achieve very competitive results in cross-lingual document classification (MLDoc dataset). Our sentence embeddings are also strong at parallel corpus mining, establishing a new state-of-the-art in the BUCC shared task for 3 of its 4 language pairs. Finally, we introduce a new test set of aligned sentences in 122 languages based on the Tatoeba corpus, and show that our sentence embeddings obtain strong results in multilingual similarity search even for low-resource languages. Our PyTorch implementation, pre-trained encoder and the multilingual test set will be freely available

    State-of-the-art generalisation research in NLP: a taxonomy and review

    Get PDF
    The ability to generalise well is one of the primary desiderata of natural language processing (NLP). Yet, what `good generalisation' entails and how it should be evaluated is not well understood, nor are there any common standards to evaluate it. In this paper, we aim to lay the ground-work to improve both of these issues. We present a taxonomy for characterising and understanding generalisation research in NLP, we use that taxonomy to present a comprehensive map of published generalisation studies, and we make recommendations for which areas might deserve attention in the future. Our taxonomy is based on an extensive literature review of generalisation research, and contains five axes along which studies can differ: their main motivation, the type of generalisation they aim to solve, the type of data shift they consider, the source by which this data shift is obtained, and the locus of the shift within the modelling pipeline. We use our taxonomy to classify over 400 previous papers that test generalisation, for a total of more than 600 individual experiments. Considering the results of this review, we present an in-depth analysis of the current state of generalisation research in NLP, and make recommendations for the future. Along with this paper, we release a webpage where the results of our review can be dynamically explored, and which we intend to up-date as new NLP generalisation studies are published. With this work, we aim to make steps towards making state-of-the-art generalisation testing the new status quo in NLP.Comment: 35 pages of content + 53 pages of reference

    SERENGETI: Massively Multilingual Language Models for Africa

    Full text link
    Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\footnote{\href{https://github.com/UBC-NLP/serengeti}{https://github.com/UBC-NLP/serengeti}}Comment: To appear in Findings of ACL 202

    A study of conceptual language similarity: comparison and evaluation

    Full text link
    An interesting line of research in natural language processing (NLP) aims to incorporate linguistic typology to bridge linguistic diversity and assist the research of low-resource languages. While most works construct linguistic similarity measures based on lexical or typological features, such as word order and verbal inflection, recent work has introduced a novel approach to defining language similarity based on how they represent basic concepts, which is complementary to existing similarity measures. In this work, we study the conceptual similarity in detail and evaluate it extensively on a binary classification task
    corecore