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Abstract

Most of the world’s languages suffer from the paucity of annotated data. This curbs the
effectiveness of supervised learning, the most widespread approach to modelling language.
Instead, an alternative paradigm could take inspiration from the propensity of children
to acquire language from limited stimuli, in order to enable machines to learn any new
language from few examples. The abstract mechanisms underpinning this ability include
1) a set of in-born inductive biases and 2) the deep entrenchment of language in other
perceptual and cognitive faculties, combined with the ability to transfer and recombine
knowledge across these domains. The main contribution of my thesis is giving concrete
form to both these intuitions.

Firstly, I argue that endowing a neural network with the correct inductive biases
is equivalent to constructing a prior distribution over its weights and its architecture
(including connectivity patterns and non-linear activations). This prior is inferred by
‘reverse-engineering’ a representative set of observed languages and harnessing typological
features documented by linguists. Thus, I provide a unified framework for cross-lingual
transfer and architecture search by recasting them as hierarchical Bayesian neural models.

Secondly, the skills relevant for different language varieties and different tasks in
natural language processing are deeply intertwined. Hence, the neural weights modelling
the data for each of their combinations can be imagined as lying in a structured space.
I introduce a Bayesian generative model of this space, which is factorised into latent
variables representing each language and each task. By virtue of this modular design,
predictions can generalise to unseen combinations by extrapolating from the data of
observed combinations.

The proposed models are empirically validated on a spectrum of language-related tasks
(character-level language modelling, part-of-speech tagging, named entity recognition, and
common-sense reasoning) and a typologically diverse sample of about a hundred languages.
Compared to a series of competitive baselines, they achieve better performances in new
languages in zero-shot and few-shot learning settings. In general, they hold promise to
extend state-of-the-art language technology to under-resourced languages by means of
sample efficiency and robustness to the cross-lingual variation.
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Introduction

1.1 Motivation

Current machine learning models rely on abundant data and often assume that training
and evaluation data are i.i.d. Consequently, they struggle in natural language processing
tasks, as most languages suffer from a dearth of training examples and the typological
variation makes each language differently distributed (Linzen et al., 2016; Yogatama
et al., 2019). In this thesis, I argue that these difficulties can be overcome by taking
inspiration from how humans learn and use language. In Section 1.1.1, I first draw a
comparison with language acquisition in children, which is characterised by limited stimuli
and the entrenchment of the language faculty inside the human perceptual, cognitive,
and communicative system. This contrasts with machine learning models, which tend
to be learned from scratch and in isolation. Afterwards, in Section 1.1.2 I argue that
the above-mentioned limitations arise from this misalignment; however, they can be
mitigated by constructing an adequate inductive bias and a mechanism to disentangle
and recombine knowledge. To do so, in Section 1.1.3 I propose a unified Bayesian neural
framework that attains several desirable properties, including sample efficiency, resilience
to catastrophic forgetting, compositional generalisation to new domains, and robustness
to uncertainty. Finally, in Section 1.1.4 I show how the proposed approach not only
facilitates natural language processing applications, but has also the potential to shed
light on several scientific challenges of linguistic typology.



2 Introduction

1.1.1 Two Alternative Paradigms

The languages spoken and signed around the world vary remarkably in their structures
and lexicon. Yet, human children can master any of them swiftly based on a limited
amount of stimuli (Chomsky, 1980). Such ‘language instinct’ cannot be hard-wired into
the human genome, as this would not account for the learners’ flexibility in the face
of synchronic variation and diachronic change. In fact, the notion of innate inviolable
constraints on possible language structures has been disavowed (Perfors et al., 2011)
because of the exceptions to any proposed universal rule (Evans and Levinson, 2009).

On the other hand, it would be hard to reconcile the sample efficiency of learning
with a purely empirical process. Hence, one must posit an inborn inductive bias that
expedites language acquisition from experience (Zador, 2019). This idea is corroborated
by the fact that cross-lingual variation does not behave randomly, but rather follows
precise universal tendencies (Comrie, 1989). These are partly attributed to the embodied
nature of language (Majid et al., 2007). For example, the neuro-physiology of vision
constrains possible patterns in the lexical field of colours (Kay and McDaniel, 1978)
as much as the shape of the oral cavity determines plausible inventories of vowels in
phonology (Lindblom, 1986). Hence, language is uniquely intertwined with systems of
perception, cognition, and communication that humans evolved. Children draw on these
to acquire and use a language.

Unfortunately, models of language based on machine learning are hardly as flexible,
efficient, and well-integrated. Admittedly, artificial neural networks achieve state-of-the-
art (and sometimes super-human) performance on most benchmarks for natural language
processing (LeCun et al., 2015; Wang et al., 2019). Nevertheless, this success is limited to
a handful of tasks and language varieties, since it is predicated on a series of conditions
that are generally impossible to meet. In particular, deep learning models require massive
amounts of labelled data for supervised training. Since their parameters are usually
initialised randomly, the burden of learning falls entirely on experience. In practice, this
approach raises insurmountable difficulties: most of the world’s languages lack labelled
data, whose creation is expensive, and often even digital texts (Kornai, 2013). As a
result, sample-efficient learning from limited evidence, known as zero-shot and few-shot
learning, is paramount to enhancing the outreach of machine learning to under-resourced
languages.

Besides, models are usually dedicated to the solution of an individual task, which
demands only a fraction of the skills necessary to engage in language as a whole. Often, this
is equivalent to assuming a stationary data distribution between training and evaluation.
According to Linzen (2020), this fosters the selection of neural architectures that are low-
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bias and become over-sensitive to the idiosyncratic features of a particular dataset. When
a shift occurs in the distribution of evaluation data, reliance on training data artefacts
can lead to dramatic drops in performance (Niven and Kao, 2019). Instead, general
linguistic intelligence should allow for generalising in unseen situations by abstracting
from previously gained knowledge (Yogatama et al., 2019), while preventing ‘catastrophic
forgetting’ when adapting to novel evidence (French, 1999). In other words, if a neural
model is optimised for a sequence of tasks, it should not only retain previous information,
but also exploit it to have a head-start on novel tasks.

An attractive solution to the limitations of data paucity and task fragmentation is
knowledge transfer across language varieties, tasks, and modalities (such as vision, speech,
and motion) (Caruana, 1997; Ruder et al., 2019b), which reflects the synergy of different
linguistic skills and takes advantage of similarities among language varieties. Contextu-
alised word embeddings are a recent successful example of cross-task transfer (Devlin
et al., 2019; Peters et al., 2018; Raffel et al., 2019). In particular, these representations are
pre-trained on unlabelled texts through language modelling and subsequently fine-tuned
on annotated data from supervised learning tasks. Cross-lingual transfer instead leverages
data from resource-rich languages to perform inference in resource-lean languages through
annotation projection, multilingual representation learning, or translation (Conneau et al.,
2018; Hwa et al., 2005; Tiedemann, 2015; Yarowsky et al., 2001; Zeman and Resnik,
2008, inter alia). Transfer can be carried out simultaneously across both languages and
tasks for zero-shot predictions on languages that have raw texts available but no labelled
examples (Conneau and Lample, 2019; Pires et al., 2019).

Knowledge transfer alone, however, often yields unsatisfactory results, as it does not
guarantee sample efficiency nor forestall generalisation errors. In fact, effective fine-tuning
still hinges upon the availability of a significant amount of in-domain examples (Ravi
and Larochelle, 2017; Vinyals et al., 2016), and state-of-the-art pre-training encoders are
especially prone to over-fit to training data (Niven and Kao, 2019).

1.1.2 Sample Efficiency and Generalisation

In this thesis, I argue that these challenges in multilingual natural language processing
can be addressed by taking inspiration from traits of language acquisition in humans,
thus narrowing the chasm between these two paradigms. In particular, is it possible
to individuate a bulk of universal linguistic knowledge that can be re-elaborated and
preserved for a model to become competent in new languages quickly? This corresponds
exactly to the idea of imbuing models with the correct inductive bias; rather than evolving



4 Introduction

it through natural selection, however, this artificial counterpart should be distilled by
‘reverse-engineering’ data from other language varieties.

To the acquainted reader, this idea is certainly reminiscent of the intuitions behind
meta-learning and continuous learning within the scope of cross-task transfer: neural
meta-learning, or ‘learning to learn’ (Finn et al., 2017), aims at achieving sample efficiency
by finding model parameter values optimised for generalisation, i.e. for which local optima
of any new task are found just a few steps of gradient descent away. The equal and
symmetric problem of remembering old knowledge while incorporating original one instead
is tackled by continuous learning through elastic weight consolidation (Kirkpatrick et al.,
2017), model compression (Schwarz et al., 2018), or memory blocks (Grave et al., 2017).
In addition to accommodating this set of ideas to the peculiarities of cross-lingual transfer,
in a realistic setting the coarse-grained features of the target language to be learned
should also blend into the inductive bias for language as side information. In fact, we
are never completely in the dark regarding such features, as they are often documented
by linguists in typological resources based on the comparison of the world’s languages
(Dryer and Haspelmath, 2013; Littell et al., 2017).

Moreover, the parallel established with the innate component of natural languages
helps to take the formulation of inductive bias a step further. This component is informed
by our genome, which steers the brain connectivity patterns rather than connectivity
strengths (Zador, 2019). From a modelling perspective, focusing exclusively on weight
initialisation is only part of the story. In fact, each deep neural network defines a class
of non-linear functions (MacKay, 2003, ch. 45). Making assumptions about a model
architecture (activation functions, layer size and depth) through fixed hyper-parameters
narrows down the choices for learnable functions, possibly excluding those most suitable
for fast adaptation. While a toolbox of techniques known as neural architecture search
allows for gradient-based joint inference over weights and architectures (Liu et al., 2019;
Xie et al., 2019), it remains unclear how to deploy them onto a few-shot learning setting,
in order to equip a model with an inductive bias encompassing the model architecture.

Finally, to achieve satisfactory generalisation capabilities, an ideal model should mirror
the integrated but modular system in which language is deep-seated. In fact, neural
networks benefit from sharing the same architecture across tasks, language varieties,
and modalities, which enables weight sharing (McCann et al., 2018; Raffel et al., 2019).
Reserving a set of ‘private’ weights for each specific task–language–modality combination
does not allow for borrowing strength from the others and leads to a proliferation of
the number of parameters. On the other hand, it is unreasonable to lump together
all linguistic knowledge into a single, monolithic set of parameters. Instead, only the
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relevant knowledge for a specific combination should be ideally accessed, generating
parameters ‘on-demand’. For instance, given training data for named entity recognition
(NER) in Vietnamese and for part-of-speech (POS) tagging in Wolof, a model should
perform accurate predictions for NER in Wolof. Similarly, when transferring knowledge
from textual question answering to visual question answering, a model should retain the
information associated with the task variable, while dispensing with the information
about the current modality.

Overall, the desiderata for neural models of language can be summarised as follows:

D1: Sample efficiency to learn from few examples by virtue of an inductive bias,
especially in light of the data paucity in most of the world’s languages;
D2: Avoiding catastrophic forgetting in order to preserve acquired knowledge and
enable continuous learning.
D3: Ability to disentangle and recombine knowledge from past experience when
facing unprecedented combinations of languages, tasks, and modalities;
D4: Robustness to data distribution shifts between training and evaluation, ‘failing
loudly’ whenever uncertainty prevents any reasonable prediction.

1.1.3 A Unified Bayesian Neural Framework

This thesis adopts a Bayesian perspective towards modelling and inference in neural
networks (Blundell et al., 2015; Kingma and Welling, 2014), as this satisfies all the above-
listed desiderata inside a unified framework. Ingrained in it, in fact, is the requirement
to explicate priors, which can be taken to represent inductive biases. In this thesis, I
argue for inferring a posterior over weights and model architectures through Laplace
approximations (MacKay, 1992) or variational approximations (Wainwright and Jordan,
2008) from observed language. This distribution can subsequently serve as a prior for
maximum-a-posteriori inference or model averaging when the model is exposed to few
examples of a held-out language.

Results from the following chapters in character-level language modelling on a sample
of 77 languages demonstrate the superiority of an expressive prior on neural weights
over uninformative priors and unnormalisable priors (i.e., the widespread ‘fine-tuning’
approach) in both zero-shot and few-shot settings. A suitable prior is not only superior
to learning from scratch in terms of performance and sample efficiency, but also prevents
catastrophic forgetting compared to maximum likelihood estimates by virtue of Bayesian
updating. The constructed prior will be shown to capture both universal and language-
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specific phonotactic knowledge for modelling character sequences. Similarly, an informed
prior over neural architectures and weights imbued with world knowledge improves
common-sense reasoning on a sample of 12 languages.

A second advantage of the Bayesian approach is explicitly controlling for the variables
at play and their pairwise (in)dependence in the form of a graph. In this thesis, I
maintain that the space of neural parameters is inherently structured as a tensor where
each cell is a possible combination of tasks, languages, and modalities. Each dimension
instead represents an autonomous aspect of linguistic knowledge. Hence, I propose a
generative Bayesian model of such a space that factorises into distinct latent variables for
each task and language. Since some of their combinations are observed, the knowledge
relevant to each of them can be distilled and stored. Subsequently, the aspects relevant to
unobserved combinations can be accessed and recombined appropriately. Results over a
range of tasks (such as part-of-speech tagging and named entity recognition) demonstrate
that this supplies a mechanism to achieve better generalisation than established methods
for cross-lingual and cross-task transfer.

Thirdly, Bayesian models yield smoother predictive distributions, which better reflect
the model uncertainty during prediction. Indeed, a notable limitation of point estimate
methods is their tendency to assign most of the probability mass to a single class even in
scenarios with high uncertainty. Zero-shot transfer is one such scenario, especially when it
involves drastic distribution shifts in the data (Rabanser et al., 2019). The ability to ‘fail
loudly’ in such cases makes the prediction more robust. In this thesis, I take advantage
of one of the most prominent features of Bayesian inference, namely model averaging, to
show how low entropy in the (approximated) predictive distributions correlates almost
perfectly with high performance. This introduces the possibility to refrain from making
predictions in domains where the model confidence is insufficient.

Overall, this unified neural Bayesian framework provides the following solutions to
the desiderata individuated in Section 1.1.2:
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S1: Constructing a prior distribution over neural parameter weights and archi-
tectures from observed languages and side information from typological features
ameliorates sample efficiency in learning a new language from few examples.
S2: If the prior acts as a regulariser, it averts the possibility that the information
about observed languages is overridden via catastrophic forgetting.
S3: A mechanism enabling generalisation is brought about via a modular design,
by factorising the neural parameter space into variables accounting for specific
aspects of linguistic knowledge, whose dependencies are articulated via a graph.
S4: Uncertainty in a domain is mirrored by the entropy of the predictive distribu-
tions obtained through model averaging. This makes predictions more robust than
maximum likelihood estimates.

1.1.4 Data-driven Linguistic Typology

In addition to improving sample-efficient language learning in neural networks, the
proposed approach ushers in new possibilities for theoretical linguistics. In particular,
it allows for simulating aspects of language acquisition and cross-lingual variation in a
data-driven fashion. Traditional studies classify languages into ‘types’, a sort of language
taxonomy. Principles of human cognition (such as economy and iconicity) are sought
through the analysis of the cross-lingual patterns of these types (Croft, 2002). How-
ever, types are often coarse-grained and partly arbitrary, possibly distorting subsequent
analyses. Moreover, they need to be manually documented, which creates a bottleneck
reducing the coverage of language samples. Instead, the process of typological analysis
could be automatised and grounded empirically without an intermediate taxonomic level,
by inferring the correct set of inductive biases that explains the cross-lingual variation
directly from textual data (or even non-linguistic data such as vision and communication
between artificial agents). Hence, probing the constructed priors holds promise to unveil
cognitive dynamics in language learning.

1.2 Thesis Outline

This thesis is organised into 6 chapters. After the introduction in Chapter 1 and
background in Chapter 2, the question of constructing neural networks inductively biased
towards language is contemplated for weights in Chapter 3 and for architectures in
Chapter 4. Chapter 5 concerns the implementation of neural networks with a modular
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design through parameter factorisation. Finally, I draw some conclusions about the
success of these undertakings in Chapter 6. This thesis contains the following original
contributions, ordered by chapter:

2 I overview the connection between language variation and acquisition, to substan-
tiate the claim that both stem from principles of human perception, cognition,
and communication. Afterwards, I argue that the same principles should inspire
modelling and inference in natural language processing. To this aim, I lay the
foundations for a unified framework of knowledge transfer, neural architecture
search, and parameter factorisation through Bayesian neural networks.

3 This chapter focuses on character-level, open-vocabulary language modelling, bench-
marking models on the largest sample of typologically diverse languages (77) to
date. In particular, I adapt elastic weight consolidation (Kirkpatrick et al., 2017)
to cross-lingual transfer for the first time, outperforming the established method of
‘fine-tuning’ in zero-shot and few-shot learning settings. Moreover, I devise several
methods to condition parameters on typological features to integrate linguistic side
information seamlessly. In particular, I assess the viability of feature concatenation
and hyper-networks for parameter generation. Finally, I probe the learned posterior
over weights to show that it is imbued with universal phonotactic knowledge.

4 In this chapter, I explore the idea of inductively biased learning via a prior over
architectures. To do so, I recast differentiable neural architecture search (NAS)
as hierarchical Bayes, whereby weights are generated based on samples from a
categorical distribution over layer connections and non-linear activations. Moreover,
by virtue of this interpretation, I show how the architecture prior facilitates zero-
shot and few-shot learning in a novel challenging benchmark. In particular, I create
Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse
multilingual dataset for causal commonsense reasoning in 11 languages.

5 In this chapter, I consider the space of neural parameters as inherently structured,
as it results from the possible combinations of specific tasks (POS tagging and NER)
and languages (33). Hence, I propose a Bayesian generative model where such space
is factorised into latent variables for each language and each task. By performing
variational inference from data in observed combinations, I report gains in zero-shot
sequence classification on held-out combinations at prediction time. Finally, I show
how the entropy of the (approximate) predictive distributions anti-correlates with
performance metrics.
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6 I review the main experimental results, and examine to which extent they corrobo-
rate the core idea of this thesis, namely that inductive bias and modular design
draw machine learning models closer to the above-mentioned desiderata of sample
efficiency, resilience to catastrophic forgetting, generalisation, and robustness to
uncertainty. Finally, I conjecture about future work, for instance: i) to construct
priors from artificial languages emerging from multi-agent communication rather
than other natural languages; ii) to broaden parameter factorisation to multiple
modalities (such as vision and speech) as well as to other neural components (such
as Adapter layers).

1.3 Publications

I ran all the experiments reported in this thesis, with the following exceptions. Daniela
Gerz evaluated n-gram and neural language models on a sample of 40 languages, whereas
I carried out the analysis on top of these results. Goran Glavaš implemented the baseline
models for the XCOPA dataset. I am indebted to all co-authors for their help. This
thesis features content from the following papers (ordered by chapter of appearance):

• Modeling Language Variation and Universals: A Survey on Typological
Linguistics for Natural Language Processing. Ponti, Edoardo Maria, Helen
O’Horan, Yevgeni Berzak, Ivan Vulić, Roi Reichart, Thierry Poibeau, Ekaterina
Shutova, and Anna Korhonen. 2019. Computational Linguistics 45(3):559–601.
✍ Chapter 2

• Isomorphic Transfer of Syntactic Structures in Cross-lingual NLP. Ponti,
Edoardo Maria, Roi Reichart, Anna Korhonen, and Ivan Vulić. 2018. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics, pages
1531–1542.
✍ Chapter 2

• Towards Zero-shot Language Modeling. Ponti, Edoardo Maria, Ivan Vulić,
Ryan Cotterell, Roi Reichart, and Anna Korhonen. 2019. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 2893–2903.
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✍ Chapter 3

• XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning.
Ponti, Edoardo Maria, Goran Glavaš, Olga Majewska, Qianchu Liu, Ivan Vulić,
and Anna Korhonen. 2020. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 2362-2376.
✍ Chapter 4

• Parameter Space Factorization for Zero-Shot Learning across Tasks and
Languages. Ponti, Edoardo Maria, Ivan Vulić, Ryan Cotterell, Marinela Parovic,
Roi Reichart, and Anna Korhonen. 2021. Transactions of the Association for
Computational Linguistics.
✍ Chapter 5
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Background

2.1 Language Variation and Acquisition

The world is blessed with a wealth of languages, although it is far from straightforward
to estimate how many. In fact, drawing boundaries between language varieties is based
on their mutual intelligibility, which is gradient rather than clear-cut. As a result, the
total number of languages falls somewhere between 7117 (Lewis et al., 2016) and 7604
(Hammarström et al., 2020).1 At first sight, the differences across languages are striking;
however, upon closer inspection, deep connections can be unveiled. For instance, while
wandering around the linguistically diverse region of the Caucasus, one may overhear
sentence 2.1 in Lezgian (Haspelmath, 1993, p. 148), or sentence 2.2 in Georgian (Boeder,
2000, pp. 285–286):2

(2.1) Qe
today

sobranie
meeting

že-da-lda.
be-fut-quot

‘Apparently, there will be a meeting today.’

(2.2) Tovl-i
snow-nom

mosula.
come.perf

‘It must have snowed.’

Although the forms of the linguistic units in these examples are entirely different because
of the arbitrariness of the lexical sign (Saussure, 1916), some of them fulfil the same

1These counts include only languages traditionally spoken by a community as their principal means
of communication, and exclude unattested, pidgin, whistled, and sign languages.

2All examples are glossed according to the Leipzig rules (Comrie et al., 2008).
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function. Namely, both the quotative suffix -lda on the main verb in sentence 2.1 and the
perfect tense form of the verb mosula in sentence 2.2 convey evidentiality. Evidentiality
indicates the source of information for a statement: in this case, it is indirect, such as
hearsay or circumstantial inference by the speaker (de Haan, 2013). By broadening our
sample of languages, we may notice that other languages express indirect evidentiality,
such as Kannada in sentence 2.3 (Sridhar, 1990, p. 3) and Dutch in sentence 2.4:

(2.3) Nimma
your

pustaka
book

avara
he.poss

hattira
near

illav-ante.
neg-quot

‘Allegedly, your book is not with him.’

(2.4) Het
it

moet
mod

een
a

goede
good

film
film

zijn.
be.inf

‘It must be a good film.’

Although the form of -ante in Kannada is unrelated to -lda in Lezgian, they are equivalent
because they are both affixes. Otherwise stated, languages may adopt the same formal
strategy (although not necessarily the same lexical unit) to codify a specific function
(Croft et al., 2017). On the other hand, Dutch resorts to a previously unexpected and
exotic strategy, the modal verb moet.3 Obviously, classifying languages into ‘types’
according to their most frequent strategy requires a set of cross-lingually valid categories:
in this case, affix, inflectional tense, and modal verb. Concretely, there is no finite set
of such categories that can be fixed in advance (Haspelmath, 2007); rather, they are
progressively refined as new evidence becomes available (Bickel, 2007, p. 248).

2.1.1 Typological Universals

Performing this kind of comparison systematically across functions based on a represen-
tative sample of the world’s languages is the goal of linguistic typology (Comrie, 1989;
Croft, 2002). The type of each language is documented in typological databases, such as
the World Atlas of Language Structures (WALS; Dryer and Haspelmath, 2013).4 For
instance, at least 6 types are attested for the function of evidentiality according to WALS:
in Figure 2.1, each language on the world map is colour-keyed based on its strategy.5 As
it emerges, languages spoken in the same area may tend to share the same strategy.

3Exotic indeed: this strategy is common only to 7 languages in a sample of 418, and they are mostly
concentrated in Western Europe

4For a comprehensive list of typological databases, consult Ponti et al. (2019a).
5The language locations in the plot span Voronoi cells rather than dots as proposed by McNew et al.

(2018) to visualise areal contiguity.
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Feature 78A: Coding of Evidentiality
Mixed
Modal morpheme

No grammatical evidentials
Part of the tense system

Separate particle
Verbal affix or clitic

Figure 2.1 Map of the types of strategies to code evidentiality in the world’s languages
according to WALS (Dryer and Haspelmath, 2013).

Moreover, typological databases account for the variation in other levels of linguistic
description. The structural level is concerned purely with the form of linguistic units
(such as phonemes, morphemes, words, clauses). For instance, languages can be classified
based on whether grammatical morphemes tend to be isolated, concatenated, or fused
with their root (Sapir, 2014 [1921], p. 128). The semantic level, instead, focuses on
the allocation of concepts into categories in the lexicon (Evans, 2011). For instance,
languages can be classified in terms of the granularity of a semantic field: they can
either distinguish finger from arm through separate words, or cover both under a
single umbrella term. Henceforth, I refer to any aspect regarding which languages can be
compared as a typological feature.

As a result, a typological database can be conceived as a binary matrix where each
row is a language ℓ ∈ L, and each column is a (binarised) feature f ∈ F (Georgi et al.,
2010). Each cell contains a 1 if a language belongs to the corresponding type, and a
0 otherwise. Hence, a language can be represented as a vector of typological features
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Figure 2.2 Language features from WALS dimensionality-reduced with t-sne.

tℓ ∈ [0, 1]|F |. The feature vector of each language in WALS is visualised in Figure 2.2
after being reduced to 2 dimensions through t-sne (Maaten and Hinton, 2008).6 Note,
incidentally, that points aggregate in space according to family membership.

The information contained in databases, however, is far from exhaustive. First, it is
sparse and skewed, as some languages and some features are better documented than
others. As a result, many cells in the matrix remain blank. Second, most typological
databases are coarse-grained as they fail to account for feature variations within each
language: reporting only the majority values overshadows the fact that multiple strategies
are often attested simultaneously, although with different frequencies. Further challenges
are posed by restricted feature applicability and feature hierarchies, which introduce
redundancies and nonassignable entries (Ponti et al., 2019a).

Despite all these limitations, the copious evidence provided by typological databases
can be examined to ascertain general patterns of cross-lingual variation. As I already
mentioned above, the distribution of features across languages is not random, but rather
depends on family and area. In fact, similar strategies can be inherited from a common

6Missing values are populated automatically through a weighted nearest neighbour algorithm (Littell
et al., 2017).
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ancestor (Ross, 1997), or borrowed by contact with a neighbour. For instance, in all
languages part of the Eastern Tucanoan family, spread across the western Amazon forest,
evidentiality is part of the tense system. As an example of geographic percolation, most
languages in Africa do not grammaticalise evidentiality at all, as shown in Figure 2.1.
Moreover, since family and area explain part of the variation of other features, too, they
influence the entire ‘profile’ of a language, which results in similar feature vectors (see
Figure 2.2 again).

What is more, typological features are not independent from each other given family
and area. Indeed, even accounting for these variables (Bakker, 2010), typological features
turn out to display a high degree of ‘solidarity’: the presence of one feature may implicate
another (in one direction or both). The discovery of these patterns, called universals,
is owed to Greenberg (1966). For example, if adpositions precede their noun, then
genitive-like modifiers tend to follow their noun, and vice versa. It is worth stressing that
these implications are not deterministic (Corbett, 2010), as exceptions are known for
most of the universals if understood as absolute (Evans and Levinson, 2009).

The dependency of each feature on both area / family and other features is due to
the hybrid nature of language, which involves both cultural and biological components
(Durham, 1991). Cross-lingual variation can therefore be explained from two comple-
mentary perspectives: on the one hand, event-based theories focus on the diffusion of
features due to family inheritance or areal percolation, accounting for their propagation
or extinction (Bickel, 2015). On the other hand, functional theories emphasise the
influence of cognitive and communicative principles in the origins of innovations among
the features of a language (Croft, 1995, 2000).

Ultimately, the origin of innovations traces back to the individual speaker. This leads
to the generation of multiple strategies within a language community. The selection
among these variants is socially governed, for instance according to the prestige of the
speakers adopting it (Herzog et al., 1968). Since this selection is completely independent
of the innovation, however, language-internal variation is reflected faithfully in cross-
lingual variation (Croft, 2001, p. 107). In fact, typological universals can be considered as
recurrent solutions in time and space by individuals, and outliers as rare happenstances
triggered by unlikely preconditions (Evans and Levinson, 2009).

Hence, typological universals can shed light on the shared principles underlying
the grammatical knowledge of individuals. Communicative principles favour linguistic
expressions that are frequently used or easy to process (Cristofaro and Ramat, 1999;
Haspelmath, 1999). At the same time, cognitive principles constrain the mapping between
semantic functions and formal strategies. In particular, functions can be arranged into a
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main-predication
auditory

auditory evidential

non-visual
sensory

evidential

-’a
to hear

hearsay

weak
inferential

circumstantial inferentiallogical inferential

evidentials

Figure 2.3 Simplified semantic map of evidentials according to Anderson (1986). Boxes
are functions, arrows common diachronic trajectories of semantic shift.

‘semantic map’ where each language-specific form can express only a range of language-
independent functions lying in a contiguous region (Haspelmath, 2003). Discrete functions
(points in the meaning space) are distinguished if and only if there exist a pair of languages
whose forms draw different boundaries with respect to them. For instance, consider
the (simplified) semantic map of evidentials according to Anderson (1986) in Figure 2.3.
Possible functions are surrounded by boxes; those of concern here can be exemplified as
follows:

(2.5) main predication: The prophet heard a divine voice.

hearsay: The journalist heard that Haruki Murakami would win the Nobel prize.

auditory evidential: The rebel heard military helicopters flying overhead.

The form of the verb to hear in English spans across the area coloured in salmon pink
in Figure 2.3, which covers these three functions. On the other hand, Maricopa -’a can
express auditory as well as non-visual sensory evidentials, the light blue area. In this
case, the region dedicated uniquely to auditory evidentials is justified by the opposition
between the two languages.
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2.1.2 The Inductive Bias in Children

Once established that cross-lingual universal tendencies stem from principles operating
at the level of adult individuals, one may wonder if these are “capacities that young
humans share and presumably draw on in working out the structure of the language they
hear” (Bowerman, 2011, p. 1). In fact, Chomsky (1980) famously argued against the
presumption that imitating behavioural patterns of adults alone is sufficient to learn a
language, owing to the paucity of the stimuli available to children. Instead, it is necessary
to postulate an inductive bias that accelerates learning either by pruning the search
space of possible grammars or by favouring specific meaning-to-form mappings.

The first hypothesis has been formulated within generativism. In particular, this
framework maintains that an innate component hard-wired in the brain constrains the
possible formal grammatical structures. When exposed to a specific language, a child
calibrates a set of binary ‘parameters’ (Lightfoot, 1979) that, for instance, determine
the side in which dependents recursively fall with respect to their head, and whether
specifiers and complements are on the same side (Graffi, 1980). While this conjecture
explains the implicational universals in word order observed by Greenberg (1966), it
fails to account for its exceptions. Moreover, the delay between the onset of linguistic
production and the full command of a grammar in children was shown to remain stable
irrespective of the flexibility of word order in the target language (Bowerman, 1973).
Hence, the acquisition of formal structures appears to be mostly empirical.

On the other hand, there is ample evidence of a correspondence between universal
tendencies in function-to-form mapping and language acquisition in children that accounts
for their preparedness for language, as envisaged by the ‘cognition hypothesis’ (Slobin,
1973). First, this is corroborated by the so-called emergent categories (Clark, 2001),
typical errors consisting in the over-extensions or under-extensions of lexical meaning
that are not conventional in the target adult language but are quite common cross-
lingually. These usually surface during the early stages of learning, but later vanish. For
instance, the application of known words to new objects (e.g. ball for a pincushion)
is predominantly driven by shape similarity, the same criterion that informs numeral
classifier systems across the world. In fact, both are arguably driven by principles
common to human perception (Clark, 1976).

Moreover, several scientists (Bickerton, 2015; Slobin, 1985; Talmy, 1983) put forth
the idea that grammatical meanings constitute the innate scaffold of semantics upon
which learned content-word meanings are mounted. For instance, Slobin (1985) provides
the example of the most salient temporal contrast, that is between results and processes.
Children learning Turkish use the evidential past -di/dı/ti/tı with telic verbs (which
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entail a completion), whereas they use the present tense -iyor/ıyor/üyor/uyor with atelic
verbs (which entail duration). In general, this opposition transcends the formal means
available in single languages like Turkish.

Although the degree to which core grammatical meanings are innate, as opposed to
imitated from the target adult language, has been curtailed (Bowerman, 2011), it is safe
to conclude that to some extent children are guided, in developing the knowledge of a
language, by the same cognitive principles outlined in Section 2.1.1 and responsible for
the typological universals in cross-lingual variation.

2.2 Machine Learning and Language

The acquisition of language in humans mentioned in Section 2.1.2 stands in stark contrast
with the state-of-the-art practices in machine learning (Linzen, 2020). Ideally, probabilistic
models should be able to imitate children’s ability to fully command any new language
from limited stimuli, in a sample-efficient fashion. In reality, the range of purposes of
natural language is almost boundless: inner thought, social interactions, expression of
emotions, search of information, creative performances, are just a few (Halliday, 1975).
This list is both too wide to capture and too hard to evaluate quantitatively. Hence,
machine learning usually addresses specific ‘tasks’—rather than the language faculty
as a whole—whose successful solution requires a certain degree of language knowledge
and where the system performance is measurable. Moreover, the information available
to machines is often purely textual, thus excluding grounding on other perceptual
modalities (such as vision and speech) as well as communicative aspects of natural
linguistic interactions (Bisk et al., 2020a).

2.2.1 Probability Theory

Textual linguistic data consist of variable-length sequences of discrete tokens (basic
linguistic units such as words, characters, phonemes, etc). For a vocabulary of tokens
{v | v ∈ V }, the Kleene closure defines the possible sequences {x | x ∈ V ⋆}. The most
fundamental task is language modelling, namely the assignment of a probability to any
sequence in this set. This is an instance of self-supervised learning, which discovers the
underlying structure from the data themselves without any additional guidance.

On the other hand, token sequences are often associated to labels from an inventory
Y such that the constitute a dataset D ≜ {(x, y) | x ∈ V ⋆, y ∈ Y }. This is an instance
of supervised learning, as the goal is modelling the conditional probability of labels given
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the corresponding sequences. The task is defined classification if labels are discrete,
regression if they are continuous. Labels can also be themselves sequences. For instance,
the task of POS tagging requires to tag each word with its part of speech; therefore,
yi ∈ {noun, verb, . . . }|xi|.

For the sake of generality, both unlabelled and labelled data are defined here as
observable events from a sample space X . A model M is a set of probability measures on
X . Each measure is a function p(·) that maps from (sets of) events in the sample space to a
real probability value such that p : E ∈ X 7→ R and it satisfies the 3 axioms of probability
(Wasserman, 2013, p. 5): p(E ∈ Ω) ≥ 0, p(Ω) = 1, and p (⋃∞

i=1 Ei) = ∑∞
i=1 p(Ei)

if {E1, E2, . . . } are disjoint. Each measure in the model M can be identified by its
parameters ϑ sampled from a parameter space T ∈ Rd, formally M = {mϑ | ϑ ∈ T }.
If the dimensionality of the parameters d is finite, the model is called parametric, and
nonparametric otherwise.

The data D ≜ x1(y1), . . . , xn(yn) from X are always observed in finite number and
can be treated as random variables {X1, X2, . . . }. These are assumed to be sampled
from a measure in the model m independently and identically distributed (i.i.d.):

X1, . . . , Xn ∼i.i.d. mϑ

The parameters are also a random variable Θ. From a Bayesian perspective, indeed,
all sources of uncertainty are treated as random, including variables that are fixed but
unknown. By making assumptions about the prior distribution p(Θ), the model becomes
hierarchical. In particular, the observations are assumed to be generated from a two-step
process (Orbanz, 2012):

Θ ∼ p(Θ)
X1, . . . , Xn ∼i.i.d p(· | Θ) ≜ M

(2.6)

The relationship between random variables in Equation (2.6) can be expediently condensed
in a graph, such as in Figure 2.4. Nodes represent random variables and are shaded if
observed, clear if latent. Arrows correspond to the assumptions of dependency between
variables. Finally, plates denote repetition of a variable of a specific kind.7

The parameters are often modelled as a multivariate Gaussian distribution, which is
the maximum entropy distribution among those with support over Rd, the space of T ,

7For brevity, I employ the value symbol in graphs and equations in lieu of the variable symbol: e.g.,
ϑ in lieu of Θ.
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xiϑ

n

Figure 2.4 Graph of a minimal Bayesian generative model of the data.

and with only first and second moments defined: the mean µ = E(ϑ) and the variance
Σij = E((ϑi − µi)(ϑj − µj)). This choice allows us to make as few assumptions as
possible about the nature of the distribution. The probability density function of a
multivariate Gaussian N (µ, Σ) is:

p(ϑ | µ, Σ) = (2π)− d
2 det(Σ)− 1

2 exp
(
−1

2(ϑ− µ)⊤Σ−1(ϑ− µ)
)

(2.7)

The goal of machine learning is performing backward inference to estimate the distribution
of the parameters given the observed data points. This amounts to calculating the
posterior probability of Θ, which equals

p(ϑ | x1, . . . , xn)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
n∏
i=1

p(xi | ϑ)×

prior︷ ︸︸ ︷
p(ϑ)

∫ n∏
i=1

p(xi | ϑ)× p(ϑ) dϑ︸ ︷︷ ︸
evidence

(2.8)

according to Bayes’ theorem (Bayes, 1763; Laplace, 1820). Modelling the likelihood
p(x1, . . . , xn | ϑ) as ∏n

i=1 p(xi | ϑ) in Equation (2.8) relies on a crucial assumption: the
parameters entirely contain the pattern underlying the observed data, and the remaining
randomness decouples across samples (Orbanz, 2012). In particular, this is ensured in
the second step of Equation (2.6): given Θ, each example is conditionally independent
from the others, i.e. X

∐
X ′ | Θ.

This assumption is viable if and only if the examples are exchangeable, according
to De Finetti’s theorem (De Finetti, 1929). Exchangeability implies that the order
of observations is irrelevant. More formally, for any finite sequence of permutation of
arbitrary pairs π of such order, the joint distribution of the examples remains unaffected,
such that p(x1, . . . , xn+1) = p(xπ(1), . . . , xπ(n+1)). Most remarkably, the assumption of
symmetry inherent to exchangeability is essential for prediction (Zabell, 2005). In fact,
under this condition the probability of a new example xn+1 can be inferred as:
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p(xn+1 | ϑ,D) =
∫

p(xn+1 | ϑ)× p(ϑ | D) dϑ (2.9)

2.2.2 Artificial Neural Networks

The state-of-the art for natural language processing tasks is currently achieved by a
precise brand of models, artificial neural networks (LeCun et al., 2015; Wang et al., 2019).
In supervised settings, these models aim at learning a function from examples to labels
fϑ = X 7→ Ŷ parameterised by ϑ ∈ Rd.8 This function is the composition of a series of
sub-functions, the most fundamental one being an individual neuron. A neuron consists
in an affine transformation of input array x ∈ Re into a single output x′ ∈ R through a
weight w ∈ Re and a bias b ∈ R, followed by a non-linear deterministic function ϕ (called
activations):

x′ = ϕ(w⊤x + b) (2.10)

A list of activations ϕ relevant for this thesis, together with their corresponding derivatives
with respect to the input, is presented in Table A.1. Multiple neurons can be juxtaposed
together to constitute a layer with multiple outputs (whose number is the layer size h).
In turn, layers can be stacked by feeding the output of the previous layer as the input
to the next one. In particular, a 2-layer architecture where ϕ1 is non-polynomial and
ϕ2 = softmax, h1 ∈ N and h2 = |Y | is a Multi-Layer Perceptron (MLP) classifier:

ŷ = MLP(x) = softmax(W2 ϕ(W1x + b1) + b2) (2.11)

The output ŷ represents p(y | x, fϑ,α), the conditional probability distribution of labels
given a sentence under the feed-forward function. Note that f is uniquely characterised
by the weight parameters, in this case ϑ = {W1, b1, W2, b2}, and the architecture
parameters, in this case α = {ϕ1, h1, ϕ2, h2}. While the latter are usually treated as fixed
hyper-parameters, the weights are the variable to be learned. Crucially, the function in
Equation (2.11) is a universal approximator, meaning that it can represent any continuous
function f : Re 7→ R|Y | for a suitable choice of parameters (Cybenko, 1989; Hornik, 1991).

How can ϑ be learned then? First, if a correct label y ∈ Y is observed, a loss
function L(ŷ, y) can estimate the penalty for predicting ŷ instead. In other words, this
function measures the divergence between the predictive distribution p(ŷ | x,ϑ) and

8Since d is finite, artificial neural networks are parametric models.
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true label distribution q ≜ δy, where δ is the Kronecker delta. In particular, the average
cross-entropy H(p, q) between discrete distributions over n examples is:

L(Ŷ , Y ) ≜ 1
n

n∑
i=1

H(p(i), q(i)) ≜ 1
n

n∑
i=1

−∑
y∈Y

p(i)
y ln q(i)

y

 (2.12)

Thus learning is tantamount to finding the parameters that minimise the loss function in
Equation (2.12): arg minϑ L(fϑ,α(X), Y ). Since the feed-forward function is non-convex
due to the non-linear activations, however, no closed-form solution exists. Gradient
descent provides an approximation that converges to a local minimiser by iteratively
adjusting the parameters. For a learning rate η at the time step t:

ϑt+1 = ϑt − η∇ϑL(fϑt,α(X), Y ) (2.13)

The time complexity of a single step of Equation (2.13) is O(|ϑ|n) and depends on the
number of data points n. In practice, this time is reduced by estimating the gradient
stochastically on sub-samples of the data drawn uniformly at random, called batches
B ⊂ D. This entails that the proxy gradient ∇ϑL(fϑt,α(BX),BY ) is an unbiased estimator
of the true gradient, retaining the same convergence guarantees (Peyré, 2020).9 The
gradient ∇ϑL(·) can be calculated efficiently through the back-propagation algorithm
(Rumelhart et al., 1986).

In order to avoid over-fitting, it is customary to enforce an Occam’s razor privileging
specific parameter configurations. This is achieved by adding a regulariser R(ϑ) to
the cross-entropy function, such as an ℓ2-norm of the parameter value. The relative
importance of this second term is regulated by a hyper-parameter λ. As a result, the
function to be minimised becomes L(·) + λ1

2
∑
i ϑ

2
i . Note that as λ→ 0, parameters are

forced to decrease in magnitude, which encourages more complex, high-degree polynomial
models. Vice versa, increasing λ favours simpler models.

Gazing through probabilistic spectacles, a neural network can receive the following
interpretation (MacKay, 2003, pp. 492–495). Exponentiating the negative of the cross-
entropy function in Equation (2.12), we obtain the definition of the likelihood p(D | ϑ):

p(y | x,ϑ,α) = exp (−L(fϑ,α(x), y)) (2.14)
9To cancel out the noise introduced by sampling, η → 0. Moreover, taking averages of previous

iterations (momentum) into account can accelerate convergence.
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Hence, the loss function is equivalent to the negative log-likelihood in Bayesian terms.
Moreover, the ℓ2 regulariser can be interpreted as a log-prior distribution over parameters,
as follows:

p(ϑ | λ) =
(

λ

2π

) d
2

exp (−λR(ϑ)) (2.15)

Hence, an ℓ2 regulariser places a multivariate Gaussian prior N (0, 1
λ
I) on the parameters.

Combining the negative log-likelihood of Equation (2.14) and the log-prior of Equa-
tion (2.15), we recover the (unnormalised) posterior of Equation (2.8), p(ϑ | D, λ,α) ∝
p(y | x,ϑ,α)× p(ϑ | λ). Rather than treating the parameters Θ as a random variable
and inferring the full posterior, the gradient descent optimisation of Equation (2.13) only
retrieves the point with maximum a posteriori (MAP) probability ϑ⋆, the (local) mode
of the posterior distribution.10 Thus, neural networks fail to account for the uncertainty
surrounding the estimate of the parameters, staking everything on a single value.

This engenders at least two nefarious consequences. First, predictive inference in
neural networks does not perform marginalisation over parameters of Equation (2.9), the
hallmark of Bayesian learning. Instead, the (locally) optimal parameters are plugged into
the equation such that p(xn+1 | ϑ,D,α) = p(xn+1 | ϑ⋆,α). Second, when new data D2

become available after the MAP inference of ϑ⋆, the model needs to be re-trained from
scratch lest to catastrophically forget the information encapsulated in the old data D1.
Instead, after inferring the full posterior distribution one can simply continue learning
through Bayesian updating (Nguyen et al., 2018):

p(ϑ | D1,D2,α) = p(D2 | ϑ,D1,α)× p(ϑ | D1,α)
p(D2)

(2.16)

2.2.3 Data Paucity

The over-confidence of MAP estimates is exacerbated in regimes of data paucity, when
the number of observed examples is small. In the limit of infinite data, the posterior
becomes peaked precisely at the MAP estimate:11 limn→∞ p(ϑ | D) = δϑ⋆(ϑ).12 This is
why MAP inference is called ‘consistent’, as it is guaranteed to find the correct value (or
a likelihood-equivalent one, for non-identifiable models like neural networks), provided it
lies in the hypothesis space.

10In absence of a regulariser, this becomes a maximum likelihood (ML) estimate.
11In the limit of infinite data, this is also the ML estimate, as the likelihood overwhelms the prior.
12The Dirac measure δx(A) equals 1 if x ∈ A else 0.
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Figure 2.5 Number of speakers and sentences per language in Universal Dependencies
2.5, released in November 2019. The axes are in logarithmic scale.
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Figure 2.6 Number of speakers and articles per language in Wikipedia as of December
2018. The axes are in logarithmic scale.
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In practice, however, the model has access only to finitely many observations. This
raises a pivotal question: what is the influence of data paucity on the over-confidence
of a neural model? To answer, we must turn the attention to the difference between
the training error as formulated in Equation (2.12) and the generalisation error on new
examples, as a function of the number of observed data points. While the training error
can almost vanish in neural networks, to the extent that they can can memorise even
random labels (Zhang et al., 2017), the generalisation error is also surprisingly moderate
in practice. This holds true not despite—but exactly because—neural networks are
broadly over-specified, as |D| ≪ |ϑ| (Bartlett, 1998). A classical theorem on the bound
between the training loss given the (locally) optimal function Lf⋆

ϑ
and the generalisation

loss given the true function Lfϑ
states that for any family of functions F , with probability

1− δ (Mohri et al., 2018, Theorem 3.1 p. 35):

Lfϑ̂
− Lfϑ

≥ 2RD(F) + 3

√√√√ ln(2/δ)
|D|

(2.17)

where RD(F) is the empirical Rademacher complexity with respect to a family of functions
F and a data sample D:

RD(F) = E
ξ∼{±1}|D|

[
sup
f∈F

1
|D|

∑
x∈D

ξf(x)
]

(2.18)

The Rademacher complexity in Equation (2.18) for a network like the one described
in Equation (2.11) decreases with a scale proportional to 1) the width of the hidden
layers—hence, the number of parameters— (Neyshabur et al., 2019)13 and 2) the square
root of the training data size

√
|D|. The same growth rate is followed by the second term

in the right-hand side of Equation (2.17). Crucially, this implies that for small amounts
of data points, the gap between the two losses spreads. As a consequence, ML estimation
becomes unreliable (Bottou and Bousquet, 2008).

Crucially, the provision of an abundance of labelled linguistic data does not only run
counter to the natural learning process of human children (see Section 2.1.2), but also
violates the constraints imposed by data availability for most combinations of languages
and tasks. In fact, the creation of annotated data is time-consuming and skill-intensive.
Hence, most of the linguistic resources are oligopolised by a handful of well-researched
languages. What is more, also unlabelled data are concentrated in a few languages

13Note that the proof only accounts for 2-layer MLPs with a ReLU activation.
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whose communities of speakers have a substantial presence on the internet, leading to
the so-called ‘digital divide’ (Kornai, 2013).14

To make some concrete examples, let us consider the resources that currently cover
the broadest set of languages. The Universal Dependencies treebanks contain sentences
in 90 languages annotated for dependency parsing, whereas Wikipedia dumps contain
unlabelled texts for 278 languages.15 Not only this number pales in comparison to the
total world’s languages, but the data distribution per language is highly imbalanced, as
shown in Figure 2.5 for Universal Dependencies sentences and in Figure 2.6 for Wikipedia
articles. Crossing this information with the number of native speakers and with the
unesco language status (from 1 safe to 6 extinct),16 it emerges that resource-poor
languages tend to be more endangered, but their speaker communities may be as large
as those of resource-rich languages. This hints at the fact that available data is not only
imbalanced in terms of number of data points, but also not representative of the language
variation across the world.

2.2.4 Cross-lingual Knowledge Transfer

Data paucity poses an insurmountable obstacle to supervised learning in resource-poor
languages, as well as to inherently multilingual applications such as machine translation
(Artetxe et al., 2018, 2019; Lample et al., 2018a,b). Nevertheless, the knowledge needed
to solve a task may be available through data in other domains. In fact, such knowledge
can be transferred from other tasks, assuming that the required sets of skills are synergic
and partly overlapping (Ruder et al., 2019a), or from other modalities such as vision
(Lu et al., 2019, inter alia). The most widespread and effective source of transferable
knowledge, however, are other resource-rich languages. In fact, as argued in Section 2.1,
while languages vary formally owing to the arbitrariness of the sign, semantic functions
are universal. Obviously, the main challenge in this case is that source language s and
target language t do not share their sample spaces, hence Xs ̸= Xt. This can be overcome
by transferring either the annotation to the other space or the model parameters.

Annotation transfer relies on projecting the labels from a source text to a target
parallel text, as pioneered by Yarowsky et al. (2001) and Hwa et al. (2005). If the

14In fact, 34% of the world’s languages are not even recorded in writing despite their status being
vigorous (Lewis et al., 2016). As of March 2015, just 40 out of the 188 languages documented on the
internet accounted for 99.99% of the web pages, according to https://w3techs.com/technologies/
overview/content_language/all.

15Universal Dependencies version 2.5 was released on 15 November 2019. Per language article counts
of Wikipedia dumps were last updated on December 2018.

16This information was queried from Wikidata on 8 April 2020.

https://w3techs.com/technologies/overview/content_language/all
https://w3techs.com/technologies/overview/content_language/all
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annotation is token-level, it further requires to word-align the parallel texts before the
projection. Afterwards, a model can be trained through supervised learning on the
resulting target annotation. This approach, however, is hampered by several factors.
First, creating word-alignment systems demands parallel texts in the first place. Second,
errors inherent to such systems pile up along the projection pipeline (Agić et al., 2015).
Third, and most importantly, token-level projection assumes that all linguistic structures
are preserved in translation. However, this is patently false, due to typological variation.
While post-processing can partially amend this discrepancy, by filtering out annotations
that are infrequent or with low confidence (Padó and Lapata, 2009), this would also
introduce unwanted bias into the training data.

An alternative method for cross-lingual transfer is translating the target language
into English during evaluation (Conneau et al., 2018; Lewis et al., 2019). Thus, an
English model can be deployed on top of the resulting data. Otherwise, English can be
translated into the target language before training. This is achieved through a machine
translation (MT) model (Banea et al., 2008) or a bilingual lexicon (Durrett et al., 2012).
The annotation is then projected and used to supervise training in the target language.
Between translating evaluation or training data, the former is by far the more successful
(Conneau et al., 2018; Lewis et al., 2019). However, both assume the availability of
reliable MT systems, and again cross-lingual isomorphism in linguistic structure.

Model transfer, finally, offers higher flexibility (Conneau et al., 2018) and involves
training a model directly on the source data and deploying it onto target data (Zeman and
Resnik, 2008). This entails mapping both source and target data onto a language-agnostic
representation, for instance part-of-speech tags and morphological features (Zhang et al.,
2012), or multilingual Brown word clusters (Täckström et al., 2012). This approach,
however, reaches it full potential by mapping linguistic units from multiple languages
into distributed representations in a shared space f : t → x ∈ Re inferred through
unsupervised learning, known as word embeddings.

Static word embeddings, identical for any instance of a token throughout a text, are
inspired by the distributional hypothesis (Firth, 1957; Harris, 1951) and are pre-trained
based on word co-occurrence information in corpora (Bojanowski et al., 2017; Ruder et al.,
2019b; Upadhyay et al., 2016). On the other hand, contextualised word embeddings
assign a representation to each token dependent on its surroundings, providing a proxy
for meaning in context, by pre-training an encoder network through language modelling
(Conneau et al., 2020; Conneau and Lample, 2019; Devlin et al., 2019, inter alia). By said
method, given some raw texts in both the source and target languages {x | x ∈ Ds ∪Dt},
the parameters of an encoder ϑenc are first optimised. Subsequently, a classifier with
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parameters ϑcls (usually a feed-forward network such as an MLP) is stacked on top of
the encoder, and randomly initialised. Both are jointly ‘fine-tuned’ through labelled
data in the source language {(x, y) | (x, y) ∈ Ds}. Incidentally, this method achieves the
state of the art on multilingual benchmarks across assorted tasks (Hu et al., 2020), but
receives exposure to a number of examples multiple orders of magnitude higher than
children (see the poverty of the stimulus argument from Section 2.1.2). In fact, explicit
guidance from adults is negligible compared to the profuse and entangled information
supplied by raw perceptual inputs (Gorder, 2006, quoting Geoffrey Hinton in 1996).

Given a target resource-poor language, the selection of the most suited source lan-
guage(s) among those with labelled data is no less paramount than the method of transfer.
Originally, the choice was driven by similarity in formal structures, devising metrics
based on typological features (Deri and Knight, 2016), part-of-speech tag distributions
(Rosa and Zabokrtsky, 2015), or dependency tree edit distance (Ponti et al., 2018a).
This is predicated on the assumption that narrowing the gap between sample spaces
Xs and Xt facilitates transfer. Obviously, there may be a trade-off between language
similarity and the abundance of data in candidate source languages. In fact, with the
advent of unsupervised pretraining, it is the latter, and hence the reliability of the shared
representation, that plays a pivotal role in the success of cross-lingual transfer (Lauscher
et al., 2020).

After fine-tuning the model on the source language, the transferred model can either
perform predictive inference on target examples directly, a setting known as zero-shot
learning, or be further updated on a small number of target labelled data, known as
few-shot learning. Although successful, multilingual pre-training and fine-tuning are
inadequate in light of the discussion so far:

• Since initialising parameters obtained through maximum likelihood estimates may
incur catastrophic forgetting (see Section 2.2.2), the final model risks to lose the
memory of both unlabelled data and source annotated data in between the two
transfer steps.

• The focus on formally similar languages in source selection infringes a key finding
of human language acquisition (see Section 2.1): namely, that the grammatical
knowledge of children is not biased towards specific formal strategies, but rather
mirrors the universal patterns in meaning-to-form mapping.

• Massively multilingual pretraining is riddled by the ‘curse of multilinguality’ (Cao
et al., 2020; Conneau et al., 2020; Hu et al., 2020): the more languages covered,
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the more performance collapses, as the model needs to ‘cram’ information about
multiple separate data distributions into a single set of parameters.

In this thesis, I argue that all these limitations can be solved elegantly by recasting
neural knowledge transfer into the framework of Bayesian learning. In particular, rather
than leveraging formal similarities, I seek to recreate a language-universal inductive bias.
Since the cognitive and communicative principles that guide learning in children are
inaccessible without grounding, however, I simulate their effect by ‘reverse-engineering’
a representative sample of source languages. Contrary to point estimates, Bayesian
inference allows for taking uncertainty into account. Thus, a prior distribution over
neural models of language (i.e. over both neural weights and architectures) would mirror
the variation across possible languages. This prior can then be harnessed to accelerate
the process of learning a target language in zero-shot and few-shot settings.

2.3 Bayesian Neural Models

In order to recast cross-lingual neural transfer into a Bayesian framework, it is necessary
to ask the same questions explored in Section 2.2.2 for supervised neural learning. Under
which conditions is a model expected to generalise to new languages? The answer relies
again on de Finetti’s theorem: generalisation rests on the assumption of symmetry across
examples, which is obviously false for data from a source language and a target language.
In fact, the respective joint distributions are different regardless of the sample size, i.e.
p(Ds) ̸= p(Dt). Hence, the model defined by Figure 2.4 does not provide sufficient
guarantees for generalisation. Instead, one has to posit that language-specific parameters
are, in turn, exchangeable and hence conditionally independent given a higher-order
variable Φ:

Φ ∼ p(Φ)
Θ1, . . . , Θm ∼i.i.d p(· | Φ)
X1, . . . , Xn ∼i.i.d p(· | Θi)

(2.19)

This translates into the hierarchical graphical model of Figure 2.7. Therefore, cross-
lingual transfer can be thought as seeking a language-universal prior φ. Continuing the
analogy with language acquisition in children established in Section 2.1, this prior should
capture all aspects of cognition that precede and accompany the experience of linguistic
stimuli.
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Figure 2.7 Graph of a hierarchical Bayesian generative model.

This perspective can shed light on the widespread approach where a point estimate
ϑ⋆ from ‘pre-training’ serves as initialisation for ‘fine-tuning’ on target data Dt through
gradient descent as in Equation (2.13), and reveal that it posits an implicit prior. In fact,
Santos (1996) proved that for linear functions, truncated optimisation starting from a
specific initialisation is equivalent to performing maximum-a-posteriori inference on the
model in Figure 2.7 where φ is a fixed prior N (ϑ⋆,Q) and Q depends on the learning
rate η, the step number t, and the co-variance matrix of Ds. The implicit objective that
is maximised by performing gradient descent from initialisation ϑ⋆ is then:

arg maxϑ p(Dt | ϑ)− (ϑ⋆ − ϑ)⊤Q−1(ϑ⋆ − ϑ) (2.20)

Instead of leaving the varianceQ implicit in the optimisation procedure, we could improve
the prior by estimating it explicitly from pre-training. How to perform Bayesian inference
of the distribution over neural parameters given source data then, rather than a mere
point estimate ϑ⋆? As it is obvious from Equation (2.8), treating Θ as a latent variable
would require to integrate over all possible ϑ values, which is utterly intractable. Since
an exact solution is off-limits, an approximation is in order.

A first set of Bayesian approximations proposed for neural networks is characterised
by discrete support, as they assign zero probability mass almost everywhere in the
neural parameter space (Wilson, 2019). These include Monte-Carlo Dropout, where the
expectation over a posterior distribution is approximated as the average of a series of
feed-forward passes with different dropout patterns (Gal and Ghahramani, 2016a); Deep
Ensembles, where multiple neural networks are combined and their predictive distribution
is smoothed through adversarial training (Lakshminarayanan et al., 2017); and Stochastic
Gradient Lengevin Dynamics (Welling and Teh, 2011). However, because of their discrete
support, these methods provide highly skewed distributions: when performing Bayesian
updates, if the true solution is found outside the few probability ‘spikes’, they cannot
converge. In other words, no amount of data can overwhelm such prior.
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2.3.1 Deterministic Inference

Methods for Bayesian inference with continuous support can be divided into two families.
Recall that the need of approximation stems from the presence of latent variables, whose
posterior cannot be computed analytically. Deterministic methods, such as Laplace
(MacKay, 1992) and variational approximations (Blundell et al., 2015) bound the effects of
introducing such variables, and optimise this bound. Instead, imputation methods require
to sample from the latent variable—for instance, though Monte Carlo sampling (Neal,
1996)—and condition dependent variables on such value. Because of their ability to scale
seamlessly to large models, throughout the current thesis I will take into consideration
only deterministic methods, which I outline below.

Laplace Approximation

The Laplace method simply approximates the true (possibly multi-modal and non-
Gaussian) probability of the neural weights with a multi-variate Gaussian, whose param-
eters have to be determined. Assume the mode of the (unnormalised) probability density
p⋆(ϑ | D) is known; for instance, it can be obtained in neural networks as the MAP
estimate arg maxϑ L(fϑ(X), Y ) + λR(ϑ). Afterwards, it is sufficient to Taylor-expand
the unnormalised log-probability around such peak value (MacKay, 2003, p. 341):

log p⋆(ϑ | D) ≈ log p⋆(ϑ⋆ | D)− 1
2(ϑ− ϑ⋆)⊤H(ϑ− ϑ⋆) + . . . (2.21)

where H is the Hessian, the matrix of second order derivatives of the log-probability with
respect to the parameters evaluated at the mode:

Hij = δ2

δϑi
δϑj

log p⋆(ϑ | D)
∣∣∣∣
ϑ=ϑ⋆

(2.22)

Note that the first-order term of the Taylor expansion (ϑ− ϑ⋆)⊤∇p⋆(D | ϑ⋆) in Equa-
tion (2.21) is dropped as by definition the gradient at the optimum is zero. Then the
posterior p(ϑ | D) can be approximated by plugging the approximation based on Taylor
expansion of Equation (2.21) into Bayes theorem of Equation (3.3):

p(ϑ | D) ≈
exp

[
p⋆(ϑ⋆ | D) + 1

2(ϑ− ϑ⋆)⊤H (ϑ− ϑ⋆)
]

∫
exp

[
p⋆(ϑ⋆ | D) + 1

2(ϑ− ϑ⋆)⊤H (ϑ− ϑ⋆)
]

dϑ
(2.23)

By simplifying the term p⋆(ϑ⋆ | D) and evaluating the integral, we obtain:
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exp
[
−1

2(ϑ− ϑ⋆)⊤(−H)(ϑ− ϑ⋆)
]

√
(2π)d |−H|−1

≜ N (ϑ⋆,−H−1) (2.24)

In other words, the Laplace method approximates a posterior distribution by a Gaussian
whose mean is the MAP estimate ϑ⋆ and whose co-variance is the negative inverse of
the Hessian, −H−1. This method is employed in the experiments of Chapter 3, where I
further elaborate on its implementation.

Variational Inference

Variational approximation is an alternative inference technique to deal with the intractable
integral arising in Equation (2.8). In particular, it consists in deriving a lower bound
of the log-evidence of the data, called ELBO, by introducing a surrogate distribution
over weights q(ϑ) ≜ N (ϑ;µ, Σ) and minimising its Kullbach-Leibler divergence from
the true posterior p(ϑ | D):

arg minµ,Σ KL [q(ϑ;µ, Σ) || p(ϑ | D)] (2.25)

Expanding Equation (2.25) by the definition of Kullbach-Leibler divergence, one obtains:

arg minµ,Σ
∫

q(ϑ) log q(ϑ)
p(D | ϑ) p(ϑ) dϑ (2.26)

Note that p(D) disappears because it shares no arguments with the arg min operator.
Then by the definition of expectation the objective becomes:

arg minµ,Σ KL [q(ϑ) || p(ϑ)]− Eq(ϑ) log p(D | ϑ) (2.27)

where the first term (known as complexity cost) is the divergence between the learned
posterior and the prior over weights, and the second term is the familiar log-likelihood.
In practice, the complexity cost has a closed-form solution if the prior is also multivariate
Gaussian. Blundell et al. (2015) proposed an algorithm, called Bayes by Backprop, to
optimise Equation (2.27) for neural network weights. Under mild assumptions, it can
be shown that the gradient of the expectation in Equation (2.27) is equivalent to the
expectation of the gradient. Furthermore, the weights ϑ can be Monte Carlo sampled
via a deterministic function (known as reparametrisation trick) given the Gaussian
parameters and some noise ϵ ∼ N (0, I) as µ+ σ ⊙ ϵ, where ⊙ stands for element-wise
multiplication. Thus, averaging over repeated samples returns an unbiased estimate of



2.4 Summary 33

the gradients. As a consequence, the neural network can be trained through regular
gradient descent via back-propagation.

In addition to enabling end-to-end learning during posterior inference, the reparametri-
sation trick comes in handy also for predictive inference. In fact, it allows to approximate
model averaging, the integration over weights appearing in Equation (2.9), as an average
over samples. Although the performance is not always superior to simply plugging in the
learned mean, (approximate) model averaging yields smoother distributions, which better
quantify uncertainty in predictions. I resort to variational inference for such purpose
in the experiments in Chapter 5, where I derive distinct ELBOs for the specific model
proposed therein.

2.3.2 Empirical Bayes

Bayesian inference is not limited to neural weights. In fact, anything measurable can be
modelled as a variable under this framework. This includes, for instance, the architecture
of neural networks. Rather than fixed hyper-parameter selected through grid search,
parameters such as layer width and depth, or the choice of non-linear activation functions,
can be learned during the training phase. Assuming the conditional independence of the
data from the architecture given the weights, the objective becomes:

arg maxα
∫

p(x | ϑ) p(ϑ | α) p(α) dϑ (2.28)

where an intractable integral over weights resurfaces. A cheap and naive solution is
Empirical Bayes, which estimates the maximum likelihood value of the architecture first,
and then freezes it during the weight optimisation. This approach, however, is prone
to over-fitting and over-confidence in predictive inference (Murphy, 2012, p. 173). I
propose more sophisticated inference schemes for hierarchical Bayesian models as defined
by Equation (2.28) in Chapter 4.

2.4 Summary

The remarkable facts that cross-lingual variation is bounded rather than random, and
that children can pick up languages with limited stimuli, both find a common justification.
In fact, language is grounded on real-world communication and embodied in human
perception and cognition. These constrain the paths of language innovation and guide
language acquisition. In such a way, they provide an inductive bias for learning and
enable generalisation to new usages of language.
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While machine learning has made great strides in natural language processing, the
current state-of-the-art approaches—pretraining an encoder through self-supervision on
language modelling, and subsequently fine-tuning it on few annotated examples—struggle
with scenarios characterised by data paucity or distribution shift. Since this hinders their
effectiveness in most non-trivial applications and for most of the world’s languages, it is
crucial to adopt solutions to correct these limitations.

In this thesis, I propose that this can be achieved by re-aligning machine learning
with some desirable properties of language acquisition in humans within a Bayesian
framework. In particular, I supply neural functions with an inductive bias by constructing
a prior (encompassing both weights and architectures) through cross-lingual knowledge
transfer and hand-crafted typological features. This requires to perform inference through
deterministic techniques such as the Laplace and variational approximations. Moreover,
I explore the potential of graphical models to express the structured nature of linguistic
knowledge, and leverage this factorisation of the space of neural weights to improve
generalisation.
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A Prior over Weights for Language Modelling

3.1 Introduction

Despite their success in core natural language processing tasks, neural networks remain
black-box models: it is arduous to interpret if they capture linguistic knowledge or
rather spurious correlations while solving a task. In turn, such propensity towards ‘true’
linguistic knowledge is desirable as it arguably leads to the same sort of generalisation as
humans. In particular, researchers have turned their attention to probing the ‘inductive
bias’ towards language (Linzen et al., 2016; Marvin and Linzen, 2018; Ravfogel et al.,
2018), intended as the abstractions a model is capable of, exhibited by manually designed
architectures such as LSTMs (Hochreiter and Schmidhuber, 1997). For example, do they
learn syntax (Marvin and Linzen, 2018)? Do they map onto grammaticality judgements
(Warstadt et al., 2019)? The focus on architectures stems from the fact that hyper-
parameters α constrain the family of functions that a neural network can learn (see
Section 2.2.2). This recent vein of research, however, implicitly assumes a uniform
(unnormalizable) prior over the space of neural weight parameters ϑ (Ravfogel et al.,
2019, inter alia).

In this chapter of my thesis, in contrast, I aim at providing the correct inductive bias
by finding a prior distribution over network parameters that generalise well for human
language. Thus, the focus is not only on the content of the inductive bias, but also on its
ability to achieve sample efficiency. In particular, I take a Bayesian-updating approach
and approximate the posterior distribution over the network parameters conditioned on
the data from a sample of seen training languages using the Laplace method (Azevedo-
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Filho and Shachter, 1994; MacKay, 1992).1 Afterwards, such distribution serves as a prior
for maximum-a-posteriori (MAP) estimation of network parameters for each held-out
unseen language.

This study focuses on the task of character-level language modelling (Cotterell et al.,
2018; Gerz et al., 2018b; Mielke et al., 2019). In particular, I opt for an open-vocabulary
setup where all tokens—including infrequent ones—are preserved rather than being
substituted with a special <unk> token. This is crucial for a fair comparison of model
performances across languages (Gerz et al., 2018a). Taking characters as a proxy for the
underlying phonemes, the search for a universal prior is then motivated by the notion that
knowledge about likely phoneme inventories and their combinations precedes experience
in humans, as argued in Section 2.1.2. Although the nature of such prior knowledge
is still disputed—innate constraints whose ranking is language-specific for generativist
frameworks like Optimality Theory (Smolensky and Prince, 1993), or the outcome of
general articulatory and perceptual principles for functionalist frameworks—at least two
key aspects are unanimously agreed upon, which are relevant to this experiment: i)
this knowledge facilitates language acquisition (Chomsky, 1959); and ii) it is reflected
in cross-lingual variation (Gilligan, 1989; Graffi, 1980), which implies that it can be
reconstructed from it to some extent.

In this chapter, I investigate whether a suitable prior over weight parameters can
encapsulate such prior knowledge, and make machines achieve sample efficiency in
learning. In particular, I run experiments under several regimes of data scarcity for the
held-out languages (zero-shot, few-shot, and joint multilingual learning) over a sample of
77 typologically diverse languages.

As an orthogonal contribution, I also explore a regime where the universal prior is
conditioned on side information from typology. Realistically, in fact, a model should
not be completely in the dark about held-out languages, as coarse-grained features
about general linguistic properties are documented for most of the world’s languages
and available in typological databases such as URIEL (Littell et al., 2017), as mentioned
in Section 2.1.1. In particular, I consider several techniques for conditional language
modelling from the literature, including: i) concatenating typological features to hidden
states (Östling and Tiedemann, 2017) and ii) generating the weight parameters through
hyper-networks receiving typological features in input (Platanios et al., 2018).

Empirically, given the results of this study, I offer two findings. The first is that
neural recurrent models with a universal prior significantly outperform baselines with

1In principle, alternative inference schemes such as variational inference (Blundell et al., 2015) or
Hamiltonian Monte Carlo (Neal, 2011) could serve the same purpose.
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uninformative and unnormalisable priors both in zero-shot and few-shot training settings.
Secondly, conditioning on typological features further reduces the test error in the few-
shot setting, but I report negative results for the zero-shot setting, possibly due to some
inherent limitations of typological databases (Ponti et al., 2019a).

The study of low-resource language modelling also holds promise to have a benign
impact on society. As shown in Section 2.2.3, the digital footprint of most of the world’s
languages is almost insignificant. What is more, Kornai (2013) prognosticates that the
digital divide will act as a catalyst for the extinction of many of the world’s languages.
The transfer of language technology may help reverse this course and give access to
vital services to unrepresented communities of speakers. My work is a step in this
direction, given that character-level language modelling lies at the core of tasks such
as text-to-speak and morphological analysis. What is more, because of its generality,
the proposed method is amenable to be deployed in other natural language processing
applications in the future.

3.2 LSTM Language Models

In this work, I address the task of character-level language modelling. Whereas word
lexicalization is mostly arbitrary across languages, phonemes allow for transferring
universal constraints on phonotactics2 and language-specific sequences that may be
shared across languages, such as borrowings and cognates (Brown et al., 2008). Since
languages are mostly recorded in text rather than phonemic symbols (IPA), however, I
focus on characters as a loose approximation of phonemes.

Let Σℓ be the set of characters for language ℓ. Moreover, consider a collection of
languages T ⊔E partitioned into two disjoint sets of observed (training) languages T and
held-out (evaluation) languages E . Then, let Σ = ∪ℓ∈(T ⊔E)Σℓ be the union of character sets
in all languages. A universal, character-level language model is a probability distribution
over Σ∗.3 Let x ∈ Σ∗ be a sequence of characters. We write:

p(x | ϑ) =
∏
t

p(xt | x<t,ϑ) (3.1)

where t is a time step, ϑ are the parameters, and every sequence x starts (ends) with a
distinguished start-of-sentence (end-of-sentence) symbol.

2E.g. with few exceptions (Evans and Levinson, 2009, sec. 2.2.2), the basic syllabic structure is
vowel–consonant.

3Note that Σ is also augmented with punctuation and white space, and distinguished beginning-of-
sequence and end-of-sequence symbols, respectively.
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We implement character-level language models with Long Short-Term Memory
(LSTM) networks (Hochreiter and Schmidhuber, 1997). These encode the entire history
x<t as a fixed-length vector ht by manipulating a memory cell ct through a set of gates.
Then I define

p(xt | x<t,ϑ) = softmax(W ht + b). (3.2)

LSTMs have an advantage over other recurrent architectures as memory gating mitigates
the problem of vanishing gradients and captures long-distance dependencies (Pascanu
et al., 2013).

3.3 Neural Language Modelling with a Universal Prior

The fundamental hypothesis of this work is that there exists a prior p(ϑ) over the weights
of a neural language model that places high probability on networks that describe human-
like languages. Such a prior would provide an inductive bias that facilitates learning
unseen languages. In practice, I construct it as the posterior distribution over the weights
of a language model of seen languages. Let Dℓ be the examples in language ℓ, and let
DT be the examples in all training languages ∪|T |

ℓ=1Dℓ. Taking a Bayesian approach, the
posterior over weights is given by Bayes’ rule:

p(ϑ | DT )︸ ︷︷ ︸
posterior

∝
∏
ℓ∈T

p(Dℓ | ϑ)︸ ︷︷ ︸
likelihood

p(ϑ)︸ ︷︷ ︸
prior

(3.3)

I take the prior of Equation (3.3) to be a Gaussian with zero mean and covariance matrix
σ2 I, i.e.

p(ϑ) = 1√
2πσ2

exp
(
− 1

2σ2 ||ϑ||
2
2

)
. (3.4)

However, computation of the posterior p(ϑ | DT ) is woefully intractable: recall that,
in our setting, each p(DT | ϑ) is an LSTM language model, like the one defined in
Equation (3.2). Hence, I opt for a simple approximation of the posterior, using the
classic Laplace method (MacKay, 1992). This method has recently been applied to
other transfer learning or continuous learning scenarios in the neural network literature
(Kirkpatrick et al., 2017; Kochurov et al., 2018; Ritter et al., 2018).
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In Section 3.3.1, I first introduce the Laplace method, which approximates the
posterior with a Gaussian centred at the maximum-likelihood estimate.4 Its covariance
matrix is amenable to be computed with backpropagation, as detailed in Section 3.3.2.
Finally, I describe how to use this distribution as a prior to perform maximum-a-posteriori
inference over new data in Section 3.3.3.

3.3.1 Laplace Method

First, I (locally) maximise the logarithm of the RHS of Equation (3.3):

L(ϑ) =
∑
ℓ∈T

log p(Dℓ | ϑ) + log p(ϑ) (3.5)

We note that this is equivalent to the log-posterior up to an additive constant, i.e.

log p(ϑ | DT ) = L(ϑ)− log p(DT ) (3.6)

where the constant log p(DT ) is the log-normalizer. Let ϑ⋆ be a local maximizer of L(ϑ).5

We now approximate the log-posterior with a second-order Taylor expansion around ϑ⋆:

log p(ϑ | DT ) = L(ϑ⋆) + 1
2(ϑ− ϑ⋆)⊤H (ϑ− ϑ⋆) + R− log p(DT ) (3.7)

where H is the Hessian matrix and R are higher-order terms. Note that I have omitted the
first-order term, since the gradient ∇ϑL(ϑ) = 0 at the local maximizer ϑ⋆. This quadratic
approximation to the log-posterior is Gaussian, which can be seen by exponentiating
both sides in Equation (3.7):

p(ϑ | DT ) ∝∼ exp
(1

2(ϑ− ϑ⋆)⊤H (ϑ− ϑ⋆)
)

(3.8)

where exp(L(ϑ⋆)) is absorbed into the Gaussian’s normalisation constant, which may be
computed analytically. Because ϑ⋆ is a local maximizer, H is a negative semi-definite
matrix.6 In principle, computing the Hessian is possible by running backpropagation

4Note that, in general, the true posterior is multi-modal. The Laplace method instead approximates
it with a unimodal distribution.

5 In practice, non-convex optimization is only guaranteed to reach a critical point, which could be a
saddle point. However, the derivation of Laplace’s method assumes that we do reach a maximizer.

6Note that, as a result, our representation of the Gaussian is non-standard; generally, the precision
matrix is positive semi-definite and is accompanied by a negative sign.
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twice: this yields a matrix with d2 entries. However, in practice, this is impossible: first,
running backpropagation twice is tedious. Second, we can not easily store a matrix with
d2 entries since d is the number of parameters in the neural language model, which is
exceedingly large.

3.3.2 Approximating the Hessian

To cut the computation down to one pass, I exploit a property from theoretical statistics:
Namely, that the Hessian of the log-likelihood bears a close resemblance to a quantity
known as the Fisher information matrix. This connection allows us to develop a more
efficient algorithm that approximates the Hessian with one pass of backpropagation.

I derive this approximation to the Hessian of L(ϑ) here. First, note that due to the
linearity of ∇2, we have

H = ∇2L(ϑ)

= ∇2

∑
ℓ∈T

log p(Dℓ | ϑ) + log p(ϑ)


=
∑
ℓ∈T
∇2 log p(Dℓ | ϑ)︸ ︷︷ ︸

likelihood

+∇2 log p(ϑ)︸ ︷︷ ︸
prior

(3.9)

Note that the integral over languages ℓ ∈ T is a discrete summation, so we may exchange
addends and derivatives such as is required for the proof.

We now discuss each term of Equation (3.9) individually. First, to approximate the
likelihood term, I draw on the relation between the Hessian and the Fisher information
matrix. A basic fact from information theory Cover and Thomas (2006) gives us that
the Fisher information matrix may be written in two equivalent ways:

−E
[
∇2 log p(D | ϑ)

]
(3.10)

= E
[
∇ log p(D | ϑ)∇ log p(D | ϑ)⊤

]
︸ ︷︷ ︸

expected Fisher information matrix

This equality suggests a natural approximation of the expected Fisher information
matrix—the observed Fisher information matrix
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− 1
|DT |

∑
x∈DT

∇2 log p(x | ϑ) (3.11)

≈ 1
|DT |

∑
x∈DT

∇ log p(x | ϑ)∇ log p(x | ϑ)⊤

︸ ︷︷ ︸
observed Fisher information matrix

which is tight in the limit as |DT | → ∞ due to the law of large numbers. Indeed, when
we have a large number of training exemplars, the average of the outer products of the
gradients will be a good approximation to the Hessian. However, even this approximation
still has d2 entries, which is far too many to be practical. Thus, I further use a diagonal
approximation. I denote the diagonal of the observed Fisher information matrix as the
vector f ∈ Rd, which I define as

f =
∑
ℓ∈T

∑
x∈Dℓ

1
|Dℓ| · |T |

(
∇ log p(x | ϑ)

)2
(3.12)

Computation of the Hessian of the prior term in Equation (3.9) is more straightforward
and does not require approximation. Indeed, in the general case, this is the negative
inverse of the covariance matrix, which in our case means

∇2 log p(ϑ) = − 1
σ2 I (3.13)

Summing the (approximate) Hessian of the log-likelihood in Equation (3.12) and the
Hessian of the prior in Equation (3.13) yields our approximation to the Hessian of the
log-posterior

H̃ = −diag(f)− 1
σ2 I (3.14)

3.3.3 MAP Inference

Finally, I harness the posterior p(ϑ | DT ) ≈ N (ϑ⋆,−H̃−1) as the prior over model
parameters for training a language model on new, held-out languages via MAP estimation.
This is only an approximation to full Bayesian inference, because it does not characterise
the entire distribution of the posterior, just the mode (Gelman et al., 2013).
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In the zero-shot setting, this boils down to using the mean of the prior ϑ⋆ as network
parameters during evaluation. In the few-shot setting, instead, I assume that some data
for the target language ℓ ∈ E is available. Therefore, I maximise the log-likelihood given
the target language data plus a regularizer that incarnates the prior, scaled by a factor
of λ:

L(ϑ) =
∑
ℓ∈E

log p(Dℓ | ϑ) + λ

2 (ϑ− ϑ⋆)⊤H̃ (ϑ− ϑ⋆) (3.15)

I denote the the prior N (ϑ⋆,−H̃−1) that features in Equation (3.15) as Univ, as it
incorporates universal linguistic knowledge. As a baseline for this objective, I perform
MAP inference with an uninformative prior N (0, I), which I label Ninf. In the zero-shot
setting, this means that the parameters are sampled from the uninformative prior. In
the few-shot setting, I maximise

L(ϑ) =
∑
ℓ∈E

log p(Dℓ | ϑ)− λ

2 ||w||
2
2 (3.16)

Note that, owing to this formulation, the uninformed Ninf model does not have access
to the posterior of the weights given the data from the training languages.

Moreover, as an additional baseline, I consider a common approach for transfer
learning in neural networks (Ruder, 2017), namely ‘fine-tuning.’ After finding the
maximum-likelihood value ϑ⋆ on the training data, this is simply used to initialise the
weights before further refining them on the held-out data. I label this method FiTu. In
Bayesian terms, this last baseline corresponds to assuming an unnormalisable prior.

3.4 Language Modelling Conditioned on Typologi-
cal Features

Realistically, the prior over network weights should also be augmented with side in-
formation about the general properties of the held-out language to be learned, if such
information is available. In fact, linguists have documented such information even for lan-
guages without plain digital texts available and stored it in publicly accessible databases
(Croft, 2002; Dryer and Haspelmath, 2013). This information usually takes the form of
features that express either: i) the formal strategies each language employs to express a
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specific semantic or functional construction (Croft et al., 2017). For instance, English
expresses the construction of nominal predication with a copula strategy; or ii) the
presence or absence of a linguistic category. For instance, English possesses grammatical
tense.

The usage of such features to inform neural NLP models is still scarce, partly because
the evidence in favour of their effectiveness is mixed (Ponti et al., 2019a, 2018a) and partly
because many features are not documented for many languages (Bjerva et al., 2020). In
this work, I propose a way to distantly supervise the model with this side information
effectively. I extend the non-conditional language models outlined in Section 3.3 (Bare)
to a series of variants conditioned on language-specific properties, inspired by Östling
and Tiedemann (2017) and Platanios et al. (2018). A fundamental difference from these
previous works, however, is that they learn such properties in an end-to-end fashion from
the data in a joint multilingual learning setting. Obviously, this is not feasible for the
zero-shot setting and unreliable for the few-shot setting. Rather, I represent languages
with their typological feature vector, which I assume readily available both for training
and for held-out languages.

Let tℓ ∈ [0, 1]f be a vector of f typological features for language ℓ ∈ T ⊔ E . The
collection of such features for all training languages is denoted by FT . I reinterpret the
conditional language models within the Bayesian framework by estimating their posterior
probability

p(ϑ | DT ,FT ) ∝
∏
ℓ∈T

p(Dℓ | ϑ, tℓ) p(ϑ | tℓ). (3.17)

I now consider two possible methods to estimate p(Dℓ | ϑ, tℓ). For both of them, I first
encode the features through a non-linear transformation f(tℓ) = ReLU(W tℓ + b), where
W ∈ Rr×f and b ∈ Rr, r ≪ f . A first variant, labelled Oest, is based on Östling and
Tiedemann (2017). Assuming the standard LSTM architecture where ot is the output
gate and ct is the memory cell, I modify the equation for the hidden state ht as follows:

ht =
(
ot ⊙ tanh(ct)

)
⊕ f(tℓ) (3.18)

where ⊙ stands for the Hadamard product and ⊕ for concatenation. In other words, I
concatenate the typological features to all the hidden states.

Moreover, I experiment with a second variant where the parameters of the LSTM
are generated by a hyper-network (i.e., a simple linear layer with weight W ∈ R|ϑ|×r)
that transforms f(tℓ) into ϑ. This approach, labelled Plat, is inspired by Platanios
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et al. (2018), with the additional difference that they generate parameters for an encoder-
decoder architecture for neural machine translation, not for a language model.

On the other hand, I do not consider the conditional model proposed by Sutskever
et al. (2014), where f(tℓ) would be used to initialise the values for h0 and c0. During
the evaluation, for all time steps t, ht and ct are never reset on sentence boundaries, so
this model would find itself at a disadvantage because it would require either to erase
the sequential history cyclically or to lose memory of the typological features over long
sequences.

3.5 Experimental Setup

Data The source of text data is the Bible corpus7 (Christodouloupoulos and Steedman,
2015).8 I exclude languages that are not written in the Latin script9 and duplicate
languages, resulting in a sub-sample of 77 languages.10 Since not all texts cover the entire
Bible, they vary in size. The text from each language is split into training, development,
and evaluation sets with a ratio of 80/10/10%. Moreover, for the MAP inference in the
few-shot setting, I randomly sample 100 sentences from each training set.

I obtain the typological feature vectors from URIEL (Littell et al., 2017).11 I include
the features related to 3 levels of linguistic structure, for a total of 245 features: i) syntax,
e.g. whether the subject tends to precede the object. These originate from the World
Atlas of Language Structures (Dryer and Haspelmath, 2013) and the Syntactic Structures
of the World’s Languages (Collins and Kayne, 2009); ii) phonology, e.g. whether a
language has distinctive tones; iii) phonological inventories, e.g. whether a language
possesses the retroflex approximant /õ/. Both ii) and iii) were originally collected in
PHOIBLE (Moran et al., 2014). Missing values were inferred as a weighted average of
the 10 nearest neighbour languages in terms of family, geography, and typology.12

7http://christos-c.com/bible/
8This corpus is arguably representative of the variety of the world’s languages: it covers 28 genealogical

families, several geographic areas (16 languages from Africa, 23 from Americas, 26 from Asia, 33 from
Europe, 1 from Oceania), and endangered or poorly documented languages (39 with less than a million
speakers).

9The choice of a homogeneous script is necessary because of the assumption that characters are
reasonable proxies for underlying phonemes. Multiple scripts could be modelled jointly in the future,
provided that a character-to-phoneme mapping is available.

10These are identified with their 3-letter iso 639-3 codes throughout the chapter. Please consult
Table B.1 in the Appendix for the full list of language names mapped to iso 639-3 codes.

11http://www.cs.cmu.edu/∼dmortens/uriel.html
12The heat map of the binary matrix of typological features is shown in Figure B.1 in the Appendix.

http://christos-c.com/bible/
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Ninf Univ Ninf Univ Ninf Univ
Bare Bare Oest Bare Bare Oest Bare Bare Oest

acu 8.491 3.244 3.472 fra 8.587 4.066 4.467 por 8.491 3.751 4.219
afr 8.607 3.229 3.995 gbi 8.610 3.823 3.912 pot 8.600 5.336 5.359
agr 8.603 3.779 3.946 gla 8.490 4.179 3.956 ppk 8.596 4.506 4.599
ake 8.602 5.753 6.281 glv 8.606 4.349 4.612 quc 8.605 4.063 4.118
alb 8.490 4.571 5.017 hat 8.594 4.186 4.620 quw 8.488 3.560 4.027

amu 8.610 4.912 5.959 hrv 8.606 4.050 3.441 rom 8.603 3.669 4.056
bsn 8.591 5.046 5.695 hun 8.493 4.836 5.030 ron 8.588 5.011 5.690
cak 8.603 4.068 4.326 ind 8.604 3.796 4.311 shi 8.601 5.496 5.946
ceb 8.488 3.668 3.850 isl 8.596 5.039 5.629 slk 8.491 4.304 4.512
ces 8.600 4.369 4.461 ita 8.605 4.023 3.752 slv 8.604 3.661 4.106
cha 8.594 4.366 4.353 jak 8.488 4.051 4.793 sna 8.596 4.146 4.283
chq 8.598 6.940 7.623 jiv 8.601 3.866 4.039 som 8.614 4.159 4.470
cjp 8.494 4.600 4.985 kab 8.596 4.659 5.400 spa 8.489 3.645 4.020
cni 8.604 3.740 4.651 kbh 8.607 4.663 4.950 srp 8.604 3.414 3.437
dan 8.593 3.471 4.599 kek 8.491 4.666 4.944 ssw 8.593 4.064 3.780
deu 8.599 4.102 4.214 lat 8.601 3.703 4.093 swe 8.605 4.210 3.892
dik 8.490 4.447 4.533 lav 8.588 5.415 6.130 tgl 8.487 3.639 3.878
dje 8.603 3.725 3.996 lit 8.602 4.794 4.853 tmh 8.602 4.830 4.711
djk 8.592 3.663 3.874 mam 8.488 4.292 5.076 tur 8.592 5.574 5.935
dop 8.609 5.950 7.351 mri 8.606 3.440 4.074 usp 8.604 4.127 4.337
eng 8.488 3.816 4.028 nhg 8.588 4.323 4.450 vie 8.490 7.137 7.484
epo 8.605 3.818 4.116 nld 8.601 3.851 4.326 wal 8.605 4.027 4.585
est 8.606 6.807 8.261 nor 8.492 3.174 3.902 wol 8.607 4.290 4.420
eus 8.605 4.118 4.321 pck 8.603 4.053 4.233 xho 8.602 4.171 4.276
ewe 8.490 5.049 5.497 plt 8.603 4.364 4.648 zul 8.488 3.218 4.109
fin 8.604 4.308 4.338 pol 8.601 5.158 5.556 All 8.572 4.343 4.691

Table 3.1 BPC scores (lower is better) for the Zero-shot learning setting, with the
uninformed prior (Ninf) and the universal prior (Univ): see §3.2 for the descriptions of
the priors. Colors define the split in which each language (rows) has been held out.

Bare Oest Bare Oest Bare Oest Bare Oest
acu 1.413 1.308 eng 1.355 1.350 kek 1.131 1.133 slk 1.844 1.754
afr 1.471 1.457 epo 1.471 1.450 lat 1.792 1.758 slv 1.848 1.793
agr 1.701 1.581 est 0.333 0.150 lav 2.146 1.931 sna 1.489 1.457
ake 1.453 1.377 eus 1.763 1.635 lit 1.895 1.833 som 1.477 1.468
alb 1.590 1.552 ewe 2.084 1.944 mam 1.654 1.548 spa 1.559 1.525

amu 1.402 1.340 fin 1.716 1.680 mri 1.342 1.330 srp 1.832 1.756
bsn 1.232 1.172 fra 1.465 1.432 nhg 1.302 1.238 ssw 1.890 1.697
cak 1.281 1.221 gbi 1.398 1.331 nld 1.621 1.601 swe 1.619 1.595
ceb 1.193 1.185 gla 3.403 1.839 nor 1.623 1.590 tgl 1.221 1.210
ces 1.872 1.795 glv 1.932 1.644 pck 1.731 1.711 tmh 2.786 2.301
cha 1.934 1.790 hat 1.480 1.454 plt 1.296 1.286 tur 1.801 1.773
chq 1.265 1.220 hrv 2.059 1.974 pol 1.743 1.698 usp 1.290 1.214
cjp 1.706 1.565 hun 1.887 1.847 por 1.586 1.552 vie 1.648 1.637
cni 1.348 1.290 ind 1.356 1.336 pot 2.484 2.144 wal 1.561 1.457
dan 1.727 1.693 isl 1.845 1.808 ppk 1.538 1.439 wol 2.053 1.890
deu 1.532 1.512 ita 1.615 1.583 quc 1.393 1.291 xho 1.680 1.634
dik 1.979 1.835 jak 1.415 1.322 quw 1.498 1.418 zul 1.880 1.620
dje 1.570 1.550 jiv 1.705 1.572 rom 1.706 1.587 All 1.652 1.550
djk 1.515 1.435 kab 1.955 1.791 ron 1.572 1.537
dop 1.810 1.676 kbh 1.436 1.371 shi 2.057 1.903

Table 3.2 BPC results (lower is better) for the Joint learning setting, with the uninformed
Ninf prior. These results constitute the ceiling performance for language transfer models.
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Ninf FiTu Univ Ninf FiTu Univ
Bare Oest Bare Oest Bare Oest Bare Oest

acu 4.203 2.117 2.551 2.136 kbh 4.644 2.362 2.434 2.288
afr 4.423 3.620 3.042 2.773 kek 4.613 2.809 3.015 2.714
agr 4.268 3.282 3.403 2.457 lat 4.239 4.342 3.416 3.202
ake 4.318 2.168 2.238 2.180 lav 4.765 2.867 3.842 2.917
alb 4.544 3.186 3.302 3.084 lit 4.769 3.752 3.592 3.668

amu 4.486 2.820 3.948 2.080 mam 4.525 2.274 2.873 2.363
bsn 4.546 1.861 2.678 1.850 mri 3.795 3.482 3.010 2.459
cak 4.426 1.994 2.053 1.956 nhg 4.373 2.004 2.480 1.965
ceb 4.084 2.562 2.595 2.470 nld 4.469 3.008 2.908 2.903
ces 4.984 4.651 4.190 3.680 nor 4.453 3.152 2.954 3.054
cha 4.329 2.546 2.899 2.525 pck 4.246 4.011 3.532 3.030
chq 4.941 1.948 2.078 1.963 plt 4.201 2.532 2.742 2.490
cjp 4.424 2.389 2.880 2.393 pol 4.853 3.852 3.620 3.788
cni 4.185 2.797 3.018 1.982 por 4.446 3.231 3.198 3.098
dan 4.719 3.211 3.127 3.180 pot 4.299 3.773 3.944 2.763
deu 4.589 3.103 3.007 2.953 ppk 4.439 2.220 2.736 2.236
dik 4.380 2.640 3.020 2.667 quc 4.538 2.154 2.242 2.108
dje 4.382 3.815 3.398 2.898 quw 4.223 2.196 2.547 2.158
djk 4.130 2.064 2.446 2.085 rom 4.378 3.121 3.257 2.455
dop 4.508 2.506 2.562 2.448 ron 4.579 3.273 3.734 3.216
eng 4.436 2.808 2.913 2.719 shi 4.509 2.963 3.092 2.970
epo 4.469 3.609 3.511 2.825 slk 4.873 3.722 3.812 3.631
est 3.618 1.952 2.487 1.962 slv 4.633 4.630 3.527 3.501
eus 4.354 2.628 2.705 2.567 sna 4.455 2.910 3.114 2.870
ewe 4.590 2.806 3.336 2.786 som 4.257 3.048 2.908 2.934
fin 4.385 4.339 3.830 3.312 spa 4.507 3.223 3.149 3.090
fra 4.551 3.086 3.276 2.981 srp 4.561 4.467 3.367 3.380
gbi 4.250 2.138 2.170 2.054 ssw 4.370 2.611 2.924 2.570
gla 4.159 2.377 2.835 2.395 swe 4.657 3.266 3.184 3.177
glv 4.346 3.523 3.702 2.644 tgl 4.060 2.546 2.592 2.436
hat 4.468 2.929 3.048 2.849 tmh 4.618 4.087 4.218 3.125
hrv 4.615 3.845 3.608 3.588 tur 4.846 3.509 4.282 3.552
hun 4.806 3.589 3.709 3.522 usp 4.529 2.114 2.189 2.073
ind 4.377 3.317 3.258 2.420 vie 5.185 3.018 3.751 3.015
isl 4.744 3.174 3.703 3.101 wal 4.398 2.986 3.623 2.278
ita 4.370 3.384 3.196 3.178 wol 4.621 2.898 2.968 2.826
jak 4.532 2.113 2.650 2.126 xho 4.561 3.415 3.208 3.289
jiv 4.338 3.413 3.475 2.504 zul 4.564 2.625 2.866 2.622
kab 4.649 2.783 3.574 2.800 All 4.467 3.007 3.120 2.731

Table 3.3 BPC scores for the Few-shot learning setting, with Ninf, FiTu and Univ
priors. Colors define the split in which each language (rows) has been held out.
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Language Model I implement the LSTM following the best practices and hyper-
parameter settings indicated for language modelling by Merity et al. (2017, 2018). In
particular, I tie input and output embeddings and optimise the weights with Adam
(Kingma and Ba, 2015) and a non-monotonically decayed learning rate: its value is
initialised as 10−4 and decreases by a factor of 10 every 1/3rd of the total epochs. The
maximum number of epochs amounts to 6 for training, with early stopping based on
development set performance, and the maximum number of epochs is 25 for few-shot
learning.

For each training iteration, I sample a language proportionally to the amount of its
data: p(ℓ) ∝ |Dℓ|, in order not to exhaust examples from resource-lean languages in the
early phase of training. Then, I sample without replacement from Dℓ a mini-batch of
128 sequences with a variable maximum sequence length.13 This length is sampled from
a distribution m ∼ N (µ = 125, σ = 5).14 Each epoch comes to an end when all the data
sequences have been sampled.

I apply several techniques of dropout for regularisation, including variational dropout
(Gal and Ghahramani, 2016b), which applies an identical mask to all time steps, with
p = 0.1 for character embeddings and intermediate hidden states, and p = 0.4 for the
output hidden states. DropConnect (Wan et al., 2013) is applied to the model parameters
U of the first hidden layer with p = 0.2.

Following Merity et al. (2017), the underlying language model architecture consists
of 3 hidden layers with 1,840 hidden units each. The dimensionality of the character
embeddings is 400. For conditional language models, the dimensionality of f(t) is set to
115 with the oest method based on concatenation (Östling and Tiedemann, 2017), and
4 (due to memory limitations) in the plat method based on meta-networks (Platanios
et al., 2018). For the regulariser in Equation (3.15), I performed grid search over the
hyperparameter λ: I finally select a value of 105 for Univ and 10−5 for Ninf.

Regimes of Data Paucity I explore the following regimes of data paucity for the
held-out languages:
• Zero-shot transfer setting: I split the sample of 77 languages into 4 subsets. The
languages in each subset are held out in turn, and I use their test set for evaluation.15

For each subset, I further randomly choose 5 languages whose development set is used
13This avoids creating insurmountable boundaries to back-propagation through time (Tallec and

Ollivier, 2017).
14The learning rate is therefore scaled by m

µ ×
|DT |

L·|Dℓ| , where L is the total number of languages, on
account of the variability in sequence length and in training data per language.

15Holding out each language individually would not increase the sample of training languages signifi-
cantly, while inflating the number of experimental runs needed.
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for validation. The training set of the rest of the languages is used to estimate a prior
over network parameters via the Laplace approximation.
• Few-shot transfer setting: on top of the zero-shot setting, I use the prior to perform
MAP inference over a small sample (100 sentences) from the training set of each held-out
language.
• Joint multilingual setting: T = E such that the full training set for all 77 languages
is observed, without any held-out language. This works as a ceiling for the expected
performance of language transfer models.

3.6 Results and Analysis

The results for our experiments are grouped in Table 3.1 for the Zero-shot regime,
Table 3.3 for the Few-shot regime, and in Table 3.2 for the Joint multilingual regime.
The scores represent Bits Per Character (BPC) (Graves, 2013): this metric is simply
defined as the average negative log-likelihood of test data divided by log 2. I compare
the results along the following dimensions:

Informativeness of Prior The main result is that the Univ prior consistently out-
performs both baselines by a large margin in both zero-shot and few-shot settings.
The superiority over the Ninf prior suggests that transfer is possible in the first place,
since cross-lingual tendencies give a faithful picture of what to expect in new languages.
The lowest BPC reductions are observed for languages like Vietnamese (15.94% error
reduction) or Highland Chinantec (19.28%) where character distributions are unmatched
in other languages. As for the FiTu prior, the universal prior reduces the average BPC
error from 3.007 to 2.731 (in the Oest conditional model). This indicates a second
important conclusion: that correct uncertainty information in the prior makes learning
more accurate and sample-efficient. Hence, the proposed method holds promise to under-
mine fine-tuning as the most reliable mechanism of cross-lingual transfer (Peters et al.,
2019). Thirdly, note that the Zero-shot Univ models are on a par or better than
even the Few-shot Ninf models. In other words, the most helpful supervision comes
from a universal prior rather than from a small in-language sample of sentences. All
these results demonstrate that the Univ prior is truly imbued with universal linguistic
knowledge that facilitates learning of previously unseen languages.

Conditioning on Typological Information Another fascinating result regards the
fact that conditioning language models on typological features yields opposite effects in
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the Zero-shot setting compared to the Few-shot and Joint multilingual settings.
By comparing the Bare and Oest models’ columns in Table 3.1, the non-conditional
baseline Bare is superior for 71 / 77 languages (the exceptions being Chamorro, Croatian,
Italian, Swazi, Swedish, and Tuareg). On the other hand, the same columns in Table 3.3
and Table 3.2 reveal an opposite pattern: Oest outperforms the Bare baseline in 70 /
77 languages. Finally, Oest surpasses the Bare baseline in the Joint setting for 76 /
77 languages (save Q’eqchi’).

I also took into consideration an alternative conditioning method, namely Plat. For
clarity’s sake, I exclude this batch of results from Table 3.1 and Table 3.3, as this method
proves to be consistently worse than Oest. In fact, the average BPC of Plat amounts
to 5.479 in the Zero-shot setting and 3.251 in the Few-shot setting. These scores
have to be compared with 4.691 and 2.731 for Oest, respectively.

A possible explanation behind the mixed evidence on the success of typological
features, on the one hand, points to some intrinsic flaws of typological databases. Ponti
et al. (2019a) have shown how i) the feature granularity may be too coarse to liaise with
data-driven, exemplar-based probabilistic models; ii) the limited coverage of features
results in noise introduced by the inferred missing values; and iii) database information is
restricted to the majority strategy within a language and overshadows language-internal
variation, hence hindering models from learning less likely but plausible patterns (Sproat,
2016).

Arguably, another cause of the failure of the typology-informed model in the zero-shot
setting may be connected to how the model exploits the typological features. Possibly,
the model uses features as indices to memorise parameter configurations, irrespective of
their original typological interpretation. Thus, at least a few examples are necessary to
create the correct mapping between an index and its corresponding parameters. However,
the features are still useful as they softly tie the parameters of languages with similar
properties. As a consequence of both these reasons, language models seem to be damaged
by typological features in absence of data, whereas they find a way to follow their lead
when at least a small sample of sentences is available in the Few-shot setting.

Data Paucity Different regimes of data paucity display uneven levels of performance.
The best models for each setting (Zero-shot Univ Bare, Few-shot Univ Oest,
and Joint Oest) reveal large gaps between their average scores. Hence, in-language
supervision remains unsubstitutable, as transferred language models still lag behind their
resource-rich equivalents.
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Figure 3.1 Unigram character distribution (x-axis) per language (y-axis). Note how some
rows stand out as outliers.

Character Distribution Even within the same setting, BPC scores vary enormously
across languages in both the Zero-shot and Few-shot settings, which requires an
explanation. Similarly to Gerz et al. (2018a,b), I run a correlation analysis between
language modelling performance and basic statistics of the data. In particular, I first
create a vector of unigram character frequencies for each language, resulting in the matrix
shown in Figure 3.1. Then I estimate the average cosine distance between the vector of a
held-out language and each training language. This returns a measure of the ‘exoticness’
of a language’s character distribution.

Pearson’s correlation between such cosine distance and the perplexity of Univ Bare
in each language reveals a strong correlation coefficient ρ = 0.53 and a statistical
significance of p < 10−6 in the Zero-shot setting. On the other hand, such correlation
is absent (ρ = −0.13) and insignificant p > 0.2 in the Few-shot setting. In other
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words, language models cease to depend on the source unigram character distribution
and quickly adapt to the target one after only few examples.

10−5 10−4 10−3

|µ|
σ

10−5

10−4

10−3

10−2

10−1

100

101

102

p
d

f

Figure 3.2 Probability density function of the signal-to-noise ratio for each parameter of
the learned posteriors in the Univ Bare language models on splits 1 (blue), 2 (red), 3
(green), 4 (gold). The plot is in log-log scale.

Probing of Learned Posteriors Finally, it remains to establish which sort of knowl-
edge is embedded in the universal prior. How to probe a probability distribution over
weights in the non-conditional Univ Bare language model? First, I study the signal-to-
noise ratio of each parameter ϑi, computed as |µi|

σi
, in each of the 4 splits. Intuitively, this

metric quantifies the ‘informativeness’ of each parameter, which is proportional to both
the absolute value of the mean and the certainty of the estimate. The probability density
function of the signal-to-noise ratio is shown in Figure 3.2. From this plot, it emerges that
the uncertainty is generally under-estimated (small σi denominators yield high values).
Most crucially, the signal-to-noise values concentrate on the left of the spectrum, which
means they will incur in any penalty while changing, based on Equation (3.15); on the
other hand, there is a bulk of highly informative parameters on the right of the spectrum
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that are very likely to remain adamant, thus preventing catastrophic forgetting. All
splits display such a pattern, although somewhat shifted.

Second, to study the effect of conditioning the universal prior on typological features, I
generate random sequences of 25 characters from the learned prior in each language. The
first character is chosen uniformly at random, and the subsequent ones are sampled from
the distribution given by Equation (3.1) with a temperature of 1. The resulting texts are
shown in Table 3.4. Although this would warrant a more thorough and systematic analysis,
from a cursory view it is evident of the sequences abide with universal phonological
patterns, e.g. favouring vowels as syllabic nuclei and ordering consonants based on
sonority hierarchy. Moreover, the language-specific information clearly steers predicted
sequences towards the correct inventory of characters, as demonstrated by Vietnamese
(vie) and Lukpa (dop) in Table 3.4.

Sources of Uncertainty A crucial underlying assumption of this experiment is that
a more expressive prior, which takes uncertainty into account, better reflects the cross-
linguistic variability. Crucially, it must be noted that the variation is inherent to the
quantity being modelled, as its distribution spans different parameter configurations,
which are language-specific. Therefore, it would persist even in the limit of infinite
data, where sample-size effects vanish. Clearly, however, every experiment operates in a
scenario with limited data: hence, both sources of uncertainty are present in our model.
Within Bayesian theory, they are conflated and treated as one and the same. Therefore,
it is not possible to disentangle these two components in the learned prior. If infinite
data were available, the distribution would better reflect high-probability areas and thus
better guide the parameters towards those during fast few-shot learning.

3.7 Related Work

LSTM architectures have been probed for an inductive bias in capturing syntactic
dependencies (Linzen et al., 2016) and grammaticality judgements (Marvin and Linzen,
2018; Warstadt et al., 2019). Ravfogel et al. (2019) have extended the scope of this
analysis to typologically different languages through synthetic variations of English. In
this work, I modelled the inductive bias explicitly by constructing a prior over the space
of neural network parameters.

Few-shot word-level language modelling for truly under-resourced languages such as
Yongning Na has been investigated by Adams et al. (2017) with the aid of a bilingual
lexicon. Vinyals et al. (2016) and Munkhdalai and Trischler (2018) proposed novel



3.7 Related Work 53
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mri oki ka benoka ai ki kimanka pikaka ko rom hal kus seke nukertia dehe neshes hos n
slv čičvim koko si neče pau ku meta noj ne tmh @rofm sibarn awigtir ϵli d usi leped
hrv ca ka te zet jon jem nezin isak ve u ita tri cordia io si si conse de namni nel
epo j li inij keris ec xom el e sepon kaj srp e se a nil do zasom kuz je seƒe nij hoč
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kbh ẍe aquangmomnaynangmuacha tojam lat ifte quissi fetam remnas emens in timnex
ceb abithon kayay isa atoug giraban sula mam í la ŋil a cheh tjea nut tej quxen kaj
gbi fuma ome pani de imoako kema kaye ntul vie hẩ kì đãi bi ầt ni γì sa hiổ vū r
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Table 3.4 Randomly generated text on observed languages (top) and held-out languages
(bottom) in the 4th split.
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architectures (Matching Networks and LSTMs augmented with Hebbian Fast Weights,
respectively) for rapid associative learning in English, and evaluated them in few-shot
cloze tests. In this respect, this work is novel in pushing the problem to its most complex
formulation, zero-shot inference, in taking into account the largest sample of languages
for language modelling to date, and recasting cross-lingual neural transfer into a Bayesian
framework.

In addition to the set of approaches considered in our work, there are other alternatives
to conditional language modelling. Kalchbrenner and Blunsom (2013) used encoded
features as additional biases in recurrent layers. Kiros et al. (2014) put forth a log-
bilinear model that allows for a ‘multiplicative interaction’ between hidden representations
and input features (such as images). With a similar device, but a different gating
method, Tsvetkov et al. (2016) trained a phoneme-level joint multilingual model of words
conditioned on typological features from Moran et al. (2014).

The use of the Laplace method for neural continuous learning has been proposed
by Kirkpatrick et al. (2017), inspired by synaptic consolidation in neuroscience to
avoid catastrophic forgetting. Kochurov et al. (2018) tackled the same problem by
approximating the posterior probabilities through stochastic variational inference. Ritter
et al. (2018) substitute diagonal Laplace approximation with a Kronecker factored method.
Finally, the regulariser proposed by Duong et al. (2015) for cross-lingual dependency
parsing can be interpreted as a prior for MAP estimation where the covariance is an
identity matrix.

3.8 Conclusions

In this chapter, I proposed a Bayesian approach to cross-lingual language modelling
transfer. I created a universal prior over neural network weights that is capable of
generalising well to new languages riddled by data paucity, by Laplace-approximating
the posterior of the weights given a sample of training languages. Based on the results
of character-level language modelling on a sample of 77 languages, I demonstrated the
superiority of the universal prior over uninformative priors and uniform priors (i.e., the
widespread ‘fine-tuning’ approach) in both zero-shot and few-shot settings. Moreover, I
showed that adding language-specific side information drawn from typological databases
to the universal prior further increases the levels of performance in the few-shot regime,
although the evidence is mixed in the zero-shot regime. While I also showed that
language transfer still lags behind supervised learning when abundant in-language data
are available, this work joins current efforts towards bridging this gap in the future. In the
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next chapter, I will extend this idea further: first, showing how the idea of constructing
an inductive bias can be extended to neural architectures. Second, by demonstrating
that this approach can be equally successful in semantic tasks, in addition to structural
tasks like language modelling.
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A Prior over Architectures for Language
Understanding

4.1 Introduction

Constructing a prior exclusively over weight parameters, as endeavoured in Chapter 3, is
insufficient to endow artificial neural networks with the correct inductive bias towards
natural languages. In fact, as argued in Section 2.2.2, feed-forward functions are fully
defined not just in terms of neural weights, but also in terms of what is usually treated
as fixed hyper-parameters: layer depth and width, as well as the choice of non-linear
activations. In this chapter, I aim at facilitating sample-efficient natural language
processing by jointly constructing a prior over weight and architecture parameters.

Differentiable Neural Architecture Search (NAS) allows for performing inference on
both sets of parameters in an end-to-end fashion through back-propagation (Elsken et al.,
2019). This process, however, requires expensive second-order differentiation and two
separate stages to optimise first the architecture and then the weights (Liu et al., 2019).
Recent developments in the domain of vision, however, solved both issues by modelling
the architecture as a variable with categorical distribution (Maddison et al., 2017) and
optimising it simultaneously with weight parameters through regular gradient descent
(Xie et al., 2019).

In this chapter, I adjust these ideas to natural language processing tasks and architec-
tures, and in particular to state-of-the-art encoders pre-trained on multilingual language
modelling (Conneau et al., 2020). Moreover, I reinterpret NAS as empirical Bayes
(see Section 2.3.2), as it implicitly defines a hierarchical Bayesian model where a point
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estimate of the architecture parameters is inferred through a truncated approximation
of maximum-likelihood weights. Under this interpretation, NAS becomes amenable of
full Bayesian inference, generalising the original formulation of bi-level optimisation (Liu
et al., 2019). For instance, contrary to NAS, I model the dependence of the parameters
ϑ from the architecture α by parameterising the conditional probability p(ϑ | α) via a
hyper-network (see Section 4.3). Similarly to Chapter 3, after that a posterior distribution
is obtained from seen language data, I subsequently leverage it for zero-shot and few-shot
learning in held-out languages.

In order to evaluate such approach, the ideal dataset must meet a series of desiderata:
i) it must be typologically diverse enough to ‘stress test’ the robustness of cross-lingual
transfer towards languages displaying a variety of linguistic features; in other words, it
must be specifically tailored to reflect a realistic low-resource setting; ii) it must represent
a task related to natural language understanding, in order to demonstrate that the benefit
of an inductive bias transcends sequence prediction tasks related to structural knowledge
(explored in Chapter 3). In this case, the inductive bias should facilitate reasoning and
reflect high-level, abstract knowledge.

Unfortunately, datasets for natural language understanding that are truly typologically
diverse are rare, with the notable exception of TyDiQA (Clark et al., 2020). However,
passage-based question answering mostly relies on explicit information in the text;
therefore, the potential for transfer is limited. For these reasons, in this chapter I also
detail the creation of a novel dataset for causal commonsense reasoning, the Cross-
lingual Choice of Plausible Alternatives (XCOPA; Ponti et al., 2020). XCOPA covers
12 languages in total, including radically under-resourced languages such as Haitian
Creole and Southern Quechua. Moreover, solving this benchmark requires to complement
explicit textual information with implicit knowledge of typical causes and outcomes
of real-world situations. Thus, this dataset satisfies all the desiderata to evaluate the
Bayesian NAS model proposed in this chapter.

Based on the experimental results, I validate the proposition that positing a prior over
parameters and architectures in fact yields gains over state-of-the-art uninformed baselines,
which rely on pre-training and fine-tuning. Moreover, these findings demonstrate that the
prior constructed in this chapter can in fact enshrine knowledge that helps to enhance
the model’s reasoning capabilities.
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Figure 4.1 Structure of a cell with 4 nodes. Arrows with different colour / style denote
different operations.

4.2 Differentiable Neural Architecture Search

Inference over neural architectures was first formulated in a fully differentiable fashion in
the seminal work of Liu et al. (2019). In this framework, the search space is that of a
feed-forward network cell κ whose architecture is parameterized by α. Supposing that
the hidden state of the network lives in Rd, the cell is a deterministic function that takes
as input encoded token representations and the weight parameters [e(x0, . . . , xn),ϑ] and
outputs the hidden representations (h(k+1)

0 , . . . , h(k+1)
n ).

Within a cell, each encoded token input undergoes a series of transformations con-
stituting a directed acyclic graph (DAG) with k (topologically) ordered nodes, each an
intermediate representation (h(1), . . . , h(k)) where h(1) ≜ e(x). The directed edges of
the graph connect each such node with all subsequent nodes, for a total of (k

2) edges,
the (k − 1)th triangular number. Each edge ki → kj corresponds to a transformation
characterized by an affine mapping parameterized as ϑ(i,j) ≜ [W(i,j), b(i,j)] followed by an
operation o(i,j) (e.g. a non-linear activation). The intermediate representation is obtained
by reducing all incoming edges through summation:

h(i) =
i−1∑
j=1

o(j,i)
(
W(j,i)h(j) + b(j,i)

)
(4.1)

In particular, I consider the set of operations O = {sigmoid, tanh, ReLU, fI , f0}, where
fI is the identity function and f0 ≜ f : R → 0. This set defines a discrete variable with a
categorical distribution. An example of the structure of a cell with 4 nodes is summarised
in Figure 4.1. In turn, the cell output representations are the mean of all intermediate
representations:
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h(k+1) = 1
k

k∑
i=1

h(i). (4.2)

How to seek simultaneously the optimal weight parameters and operations given the
data, through back-propagation, in this setting?

DARTS The solution proposed by Liu et al. (2019) is relaxing the distribution over
operations into a continuous variable. Rather than an affine transformation followed by
a single operation o(i,j) then, an edge becomes a weighted sum of all operations, where
the mixing weights are parameterized by α ∈ R|O|×k. A softmax ensures that the mixing
weights add up to 1. As a consequence, each edge becomes:

h(i) =
∑
o∈O

exp α(i,j)
o∑

o′∈O exp α
(i,j)
o′

o(·) (4.3)

Liu et al. (2019) jointly optimise ϑ and α through 2 nested loops. In the internal loop,
parameters ϑ are optimised based on the log-likelihood of training data Dtrain, resulting
in a new value ϑ′ after a gradient descent update. In the external loop, the operation
weights α are optimised based on validation data Dval and ϑ′. This second signal can be
interpreted as the reward (in Reinforcement Learning terms) or fitness (in evolutionary
terms) of an architecture given optimal parameters. This algorithm repeats alternating
the 2 loops until convergence:

ϑ′ =ϑ− ξ∇ϑ log p(Dtrain | α,ϑ) (4.4)
α′ =α− ρ∇α log p(Dval | α,ϑ′) (4.5)

where ρ and ξ are scalar step sizes. By the chain rule, Equation (4.5) becomes:

α′ = α− ρ∇α log p(Dval | α,ϑ′) + ξ∇2
α,ϑ log p(Dtrain | α,ϑ)∇ϑ′ log p(Dval | α,ϑ′)

(4.6)

The third term contains a highly complex matrix-vector product, which is approximated
by Liu et al. (2019) through the finite difference method. Since this makes training
inefficient, the continuous relaxation of the architecture parameters is first estimated
through Equations (4.4) and (4.5) for a smaller model with a single cell. Subsequently,
given optimal α⋆, an architecture with discrete operations is derived retaining only
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the operations (excluding the zero function) with the highest probability in each node.
Finally, several copies of such a discretised cell are stacked into a larger model, and kept
fixed while estimating the weights for each of them.

SNAS In order to avoid two stages of optimisation, as well as the cumbersome finite
difference approximation, Xie et al. (2019) treat each edge operation O(i,j) as a categorical
distribution parameterized by α(i,j). In order to be differentiable, each (continuously
relaxed) sample is drawn through the re-parametrization trick. In particular, Xie
et al. (2019) make use of the concrete distribution (Maddison et al., 2017), rewriting
Equation (4.3) as:

h(i) =
∑
o∈O

exp((log α(i,j)
o +G(i,j)

o )/λ)∑
o′∈O exp((log α

(i,j)
o′ +G(i,j)

o′ )/λ)
o(·) (4.7)

where G(i,j)
o = − log(− log(U (i,j)

o )) is a draw from the Gumbel distribution associated
with o(i,j), and U (i,j)

o ∼ U(a, b) is a draw from the uniform distribution. The temperature
λ is steadily annealed towards 0, hence samples are one-hot vectors upon convergence.

4.3 Recasting NAS as Hierarchical Bayes

In this chapter, I propose to revisit the established NAS methods presented in Section 4.2
by recasting them as neural hierarchical Bayes. Not only this helps collocating DARTS
and SNAS in the wider context of pre-neural literature, but also treats them as special
cases of a more general model. This can be exploited to devise more expressive inference
schemes, such as variational inference, and a different parametrisation of the dependent
variables (in this case, via hyper-networks) which could improve the model performance.

As a starting point, one must note how the nested formulation of Equations (4.4)
and (4.5) is highly reminiscent of gradient-based hyper-parameter optimization (Franceschi
et al., 2018; Luketina et al., 2016; Maclaurin et al., 2015; Pedregosa, 2016). In fact, the
architecture parameters α can be interpreted as a hyper-parameter determining the cell
κ. For instance, this hyper-parameter could be manually set as having any number of
skip connections, layers (up to the number of nodes in the cell) and choice of activations
in between. The choice of optimizing the hyper-parameters on a set of data points Dval
distinct from Dtrain used for optimizing ϑ is simply meant to avoid over-fitting.

Let us now concentrate on ϑ′, the weights after a gradient descent update starting
from ϑ in the ‘inner loop’ of the bi-level optimization of Equation (4.4). They can be
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Figure 4.2 A graph of the hierarchical generative model for Neural Architecture Search.

considered as an approximation of the optimal parameters ϑ⋆ where gradient descent is
truncated after a single step rather than reaching convergence:

α′ =α− ρ∇α log p
[
Dval | α, (4.8)

ϑ− ξ∇ϑ log p(Dtrain | α,ϑ)︸ ︷︷ ︸
≈ϑ⋆

]

Then α becomes a variable that constrains ϑ. Thus, the external loop of the bi-level
optimization in Equation (4.5) in the original model can be recast an approximate inference
over a hierarchical Bayesian model where ϑ is integrated out (cf. Equation (2.28)):

α⋆ = argmaxα
∫

p(x | ϑ) p(ϑ | α) dϑ (4.9)

The resulting graphical model for Neural Architecture Search is depicted in Figure 4.2.
Under this formulation, both the structure of a cell κ and the appropriate parameters of
the affine layers ϑ are chosen according to a distribution α over architecture parameters.
For a classification task, the goal is predicting a sentence label y given some data x and
encoder parameters 𭟋, where the encoder is any black-box function such as multilingual
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BERT (Devlin et al., 2019) or XLM-R (Conneau et al., 2020). This amounts to finding
the joint probability p(y,α,ϑ | x,𭟋) as given by Equation (4.10).1 Subsequently, the
intermediate latent variables α and ϑ can be integrated out as shown in Equation (4.11)
to obtain the marginal likelihood p(y | x,𭟋) of Equation (4.12).

p(y,α,ϑ | x,𭟋) = p(y | h) δ(h | x,𭟋,α,ϑ) p(ϑ | α) p(α) (4.10)

p(y | x,𭟋) =
∫ ∫

p(y,α,ϑ | x,𭟋) dϑ dα (4.11)

=
∫ ∫

p(y | h) δ(h | x,𭟋,α,ϑ) p(ϑ | α) p(α) dϑ dα (4.12)

Again, this formulation gives rise to intractable integrals. Therefore, we must resort to
an approximate scheme such as variational inference, foreshadowed in Section 2.3.1.

This hierarchical graphical model leads to a generalisation of differentiable NAS.
Firstly, the value of the architecture-dependent parameters ϑ′ does not need to be
estimated necessarily through a gradient descent step as in Equation (4.4) during inference.
In fact, the gradient ∇ϑ is just a function from loss and parameters R1+|ϑ|+|α| → R|ϑ|

with some special properties. This function can be substituted with any another such
map (possibly with learnable parameters). Secondly, explicitly modelling priors allows
for providing inducting biases and prevent catastrophic forgetting (cf. Chapter 3), in case
the data shifts to a different distribution. DARTS (Liu et al., 2019) can be recovered as
a special case of my general formulation by setting:

p(α) = δ{κ = max(α)} (4.13)
p(ϑ | α; ξ) = δ{ϑ = ϑ− ξ∇ϑ log p(y | x,α,ϑ)} (4.14)

where δ is a Dirac delta function.
In constructing a hierarchical generative model with the independence assumptions

inherent to the graph in Figure 4.2, I assign a categorical distribution to the neural
architecture variable κ ∼ Concrete(α) and a Normal distribution over the variable for
weight parameters responsible for affine transforms ϑ ∼ N (µϑ, Σϑ). Each token xn is
encoded according to the embedding parameters p(𭟋) = δ{µ𭟋}. Finally, it remains
to establish a mechanism to sample weights conditioned on the architecture. In this
experiment, I generate samples through a function f(·) : R|α| → R|µϑ|, which is simply a

1Note that I omit κ as it results deterministically from α.
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premise choice 1 choice 2
qu Sipasqa cereal mikhunanpi

kuruta tarirqan. R
Payqa pukunman ñuqñuta

churakurqan.
Payqa manam mikhuyta

munarqanchu.
en The girl found a bug in her

cereal.
She poured milk in the bowl. She lost her appetite.

th ตาของฉันแดงและบวม C ฉันร้องไห้ ฉันหัวเราะ
en My eyes became red and

puffy.
I was sobbing. I was laughing.

Table 4.1 Examples of forward (Result R) and backward (Cause C) reasoning from the
XCOPA validation sets.

trainable linear mapping with additional parameters that outputs weight means µϑ. On
the other hand, I assume the variance to be fixed: Σϑ = I.

The process underlying the generative model is recapped in Algorithm 1, which
iterates across multiple languages ℓ ∈ T and then over sentences within a language Dℓ.

Algorithm 1 NAS Generative Model
1: κ ∼ Concrete(α)
2: µϑ, Σϑ ← f(α)
3: ϑ ∼ N (· | µϑ, Σϑ)
4: 𭟋 ∼ δ{µ𭟋}
5: for ℓ ∈ T
6: for s ∈ Dℓ
7: x(s) ← apply(𭟋, x

(s)
1 , . . . , x(s)

n )
8: h(s) ← apply(κ,ϑ, x(s))
9: y(s) ∼ p(· | h(s))

4.4 Multilingual Commonsense Reasoning

After the definition of Neural Architecture Search via hierarchical Bayes in Section 4.3,
in what follows I devise an experiment to evaluate how it compares to state-of-the-
art methods in terms of both performance and sample efficiency. Note, however, that
it is already possible to outline an advantage of the proposed method, its run-time
efficiency, on theoretical grounds. In fact, rather than grid searching different hyper-
parameter configurations, optimising architecture parameters requires just a single run.
In this section, I present the dataset I created for the experiment, whereas the following



4.4 Multilingual Commonsense Reasoning 65

Section 4.5 elaborates on the experimental setup, providing details on the neural model
and the inference scheme.

The ideal benchmark to evaluate whether Hierarchical Bayes NAS favours sample-
efficient natural language understanding i) should be a genuinely diverse multilingual
dataset, where the internal variety of typological features is privileged over the abundance
of digital resources in each language; ii) should require the transfer of high-level, abstract
knowledge in order to be solved successfully. Admittedly, there already exist a few natural
language understanding datasets that satisfy (i), such as TyDiQA (Clark et al., 2020) for
passage-based question answering or XNLI (Conneau et al., 2018) for natural language
inference. However, all of these mostly rely on explicit textual information, and are
therefore not really suitable for testing the transfer of implicit knowledge.

A perfect candidate for the requirement (ii) instead is commonsense reasoning, a
critical component of any natural language understanding system (Davis and Marcus,
2015). In fact, commonsense reasoning must bridge between premises and possible
hypotheses with world knowledge that is not explicit in text (Singer et al., 1992). Such
world knowledge encompasses, among other aspects: temporal and spatial relations,
causality, laws of nature, social conventions, politeness, emotional responses, and multiple
modalities. Hence, it corresponds to the individuals’ expectations about typical situations
(Shoham, 1990). Moreover, there are often multiple legitimate chains of sentences that
can be invoked in between premises and hypotheses. In short, commonsense reasoning
does not just involve understanding what is possible, but also ranking what is most
plausible.

A seminal work on the quantitative evaluation of commonsense reasoning is the
Choice Of Plausible Alternatives dataset (COPA; Roemmele et al., 2011), which focuses
on cause–effect relationships. In recent years, more datasets have been dedicated to other
facets of world knowledge (Bhagavatula et al., 2020; Bisk et al., 2020b; Rashkin et al.,
2018; Sakaguchi et al., 2020; Sap et al., 2019, inter alia). Unfortunately, the extensive
efforts related to this thread of research have so far been limited only to the English
language.2 Such a narrow scope not only curbs the development of natural language
understanding tools in other languages (Bender, 2011; Ponti et al., 2019a), but also
exacerbates the Anglo-centric bias in modelling commonsense reasoning. In fact, the
expectations about typical situations do vary across cultures (Thomas, 1983).

In order to fill the gap of a multilingual dataset for commonsense reasoning, I develop
a novel dataset, XCOPA (see examples in Table 4.1), by carefully translating and re-

2The only exception is direct translation of the 272 paired English Winograd Schema Challenge
instances to Japanese (Shibata et al., 2015), French (Amsili and Seminck, 2017), and Portuguese (Melo
et al., 2020).
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Range XCOPA TyDiQA XNLI XQUAD MLQA PAWS-X
Typology [0, 1] 0.41 0.41 0.39 0.36 0.32 0.31
Family [0, 1] 1 0.9 0.5 0.6 0.66 0.66
Geography [0, ln 6] 1.67 0.92 0.37 0 0 0

Table 4.2 Indices of typological, genealogical, and areal diversity for the language samples
of a set of NLU datasets.

annotating the validation and test sets of English COPA into 11 target languages from
11 distinct families, and 4 geographical macro-areas. The key design goals are: i) to align
examples across languages in order to make performance scores comparable; ii) to ensure
high quality, naturalness and idiomaticity of each monolingual dataset. In the following
sections, I outline the criteria underlying the selection of languages and the guidelines
adopted to achieve the above-mentioned goals.

4.4.1 Language Sampling

Multilingual evaluation benchmarks assess the expected performance of a model across
languages. However, should such languages be sampled according to the distribution of
digital texts or rather based on the distribution over the languages spoken around the
world? The former strategy is unreliable, as languages rich in resources tend to belong
to the same families and areas, which facilitates knowledge transfer and hence leads to
an overestimation of the expected performance (Gerz et al., 2018b; Ponti et al., 2019a).

Moreover, rather than samples that account for independent and identically distributed
draws from the ‘true’ language distribution (known as probability sampling), I opt for a
uniform distribution of linguistic phenomena, which encourages the inclusion of outliers
(known as variety sampling; Dryer, 1989; Rijkhoff et al., 1993). Thus, the performance
on XCOPA also reflects the robustness of a model, i.e. its resilience to phenomena that
are unlikely to be observed in the training data.

Inspired by Rijkhoff et al. (1993) and Miestamo (2004), I propose a series of simple
and interpretable metrics that quantify diversity of a language sample independent of its
size: 1) a typology index based on 103 typological features of each language from URIEL
(Littell et al., 2017), originally sourced from the World Atlas of Language Structures
(WALS; Dryer and Haspelmath, 2013). Each feature is binary and indicates the presence
or absence of a phenomenon in a language. I estimate the entropy of the distribution
of values in a sample. Afterwards, I average across all 103 feature-specific entropies.
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et ht id it qu sw ta th tr vi zh
val 97.0 97.0 99.0 98.0 98.0 99.0 100.0 99.0 97.0 97.0 96.0
test 98.2 96.4 100.0 97.0 94.8 99.0 98.6 98.2 96.4 98.4 96.6

Table 4.3 Percentage of annotated labels in each language agreeing with the majority
label. Note that the majority label is highly reliable, as I observed a 100% agreement
with the development set labels in the original COPA.

Intuitively, if all values are equally represented, the entropy is high. If all languages
have identical features, the entropy is 0; 2) The family index is simply the number of
distinct families divided by the sample size; 3) The geography index is the entropy of the
distribution over macro-areas in a sample.3

The sample of languages for XCOPA aims at maximising these indices. In particular,
XCOPA includes Estonian (et), Haitian Creole (ht), Indonesian (id), Italian (it), Cusco-
Collao Quechua (qu),4 Kiswahili (sw), Tamil (ta), Thai (th), Turkish (tr), Vietnamese
(vi), and Mandarin Chinese (zh). These languages belong to distinct families, respectively:
Uralic, Creole, Austronesian, Indo-European, Yuman–Cochimí, Niger-Congo, Dravidian,
Kra-Dai, Turkic, Austroasiatic, and Sino-Tibetan. Moreover, ht and qu are spoken in
Central and South America, respectively, which are underrepresented macro-areas. I
report the 3 metrics in Table 4.2 and compare them to samples from other standard
multilingual NLU datasets. XCOPA offers the most diverse sample in terms of typology
(on a par with TyDiQA), family, and geography.

4.4.2 Annotation Procedure

As shown in Table 4.1, each XCOPA instance corresponds to a premise, a question (“What
was the cause?” or “What happened as a result?”), and two alternatives. The task
is framed as binary classification where the machine has to predict the more plausible
choice. For each target language, XCOPA comprises 100 annotated data instances
in the validation set and 500 instances as the test set, which are translations from
the respective English COPA validation and test set, see Table 4.1 again. Translators
performed labelling prior to translation, deciding on the correct alternative for the English
premise and preserving the correctness of the same alternative in translation. I measure

3Six macro-areas, as defined by Dryer (1989), are Africa, Eurasia, Southeast Asia and Oceania,
Australia and New Guinea, North America, and South America.

4The translator is an Eastern Apurímac Quechua speaker.
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inter-translator agreement using the Fleiss’ κ statistic (Fleiss, 1971): the obtained scores
of 0.921 for development data and 0.911 for test data reveal very high agreement between
translators. In fact, Landis and Koch (1977) define κ ≥ 0.81 as almost perfect agreement.

From the 11 sets of annotation labels, I obtain the majority labels (i.e., 6+ translators
agree). I observe perfect agreement between these majority labels and the English COPA
labels for development data. I then compute the percentage of annotated labels which
agree with the majority label for each language individually, reported in Table 4.3, and
find very high agreement across 11 languages. On average, 2.1% of labels in the validation
set and 2.4% of labels in the test set do not match the majority label.

The choice of translating from English, rather than creating novel instances, abides
by the principle of maintaining examples aligned across languages. While the commonly
used translation approach achieves this objective, however, it is prone to compromise the
idiomaticity, bending the target language to the structural and lexical properties of the
source language To avoid these pitfalls, I adopt guidelines that address language-specific
challenges, such as the lack of equivalent concepts or the grammatical expression of tense
and aspect.

In particular, the scenarios included in English COPA were authored by American
English speakers with a particular cultural background. It is therefore inevitable that
some concepts, intended as commonplace, sound unusual or even completely foreign in
the target language. Examples include: (i) concrete referents with no language-specific
term available (e.g., bowling ball, hamburger, lottery); (ii) systems of social norms absent
in the target culture, e.g., traffic regulations (e.g., parallel parking, parking meter); (iii)
social, political, and cultural institutions and related terminology (e.g., e.g., mortgage,
lobbyist, gavel); (iv) idiomatic expressions (e.g., put the caller on hold).

In such cases, the translators were advised to resort to (i) paraphrasing; (ii) substitu-
tions with similar concepts, e.g., ‘faucet’ is replaced with ‘pipe’ in Tamil (!ழா$	, kul

¯
āy)

and Haitian Creole (tiyo); or (iii) phonetically transcribed loan words, e.g., in Tamil:
ெபௗலி&	ப'(	 (pauliṅ pantu, ‘bowling ball’), ேசா$%	 (cōppu, ‘soap’).

An in-depth analysis revealed the source of inter-translator disagreement on the
validation set annotations across languages.5 In only two cases of discrepancy did the
translator’s cultural frame of reference play a role. For instance, one example required to
be acquainted with American court trials: The judge pounded the gavel. cause: (a) The
courtroom broke into uproar. (b) The jury announced its verdict. Most disagreement cases
(87.5%), however, seem to be culturally independent and concern genuinely ambiguous

5Overall, there were 10 validation set questions with 1 translator out of 11 in disagreement, 5 questions
with 2, and 1 question with 3.
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cases (e.g. The detective revealed an anomaly in the case. result: (a) He finalized his
theory. (b) He scrapped his theory.).

4.5 Experimental Setup

I will now outline the setup of the experiment to perform multiple-choice classification
on XCOPA for both a baseline based on pre-training and fine-tuning and the proposed
model based on Hierarchical Bayes Neural Architecture Search (HBNAS).

Multiple-Choice Classification. XCOPA is a multiple-choice classification task: given
a premise and a prompt (cause or result), the goal is to select the more plausible
of the two answer choices (see Table 4.1). Due to training data scarcity in COPA, I
probe the usefulness of first “pretraining” the classifier on larger multiple-choice English
commonsense reasoning datasets, and specifically SocialIQa (SIQA; Sap et al., 2019).
As different multiple-choice selection tasks differ in the number of choices (e.g., there are
2 possible answers in XCOPA, whereas there are 3 in SIQA), a classifier with a fixed
number of classes is not a good fit for this scenario. I thus follow Sap et al. (2019) and
couple the (pretrained) encoder with a feed-forward network which produces a single
scalar score for each of the possible answers. The scores for individual choices are then
concatenated and passed to the softmax function. Besides the standard state-of-the-art
transfer models based on pretraining and fine-tuning, I also benchmark the HBNAS
model and measure how it fares against these competitive baselines.

Encoder Model. I evaluate the following state-of-the-art pretrained multilingual
encoders: 1) multilingual BERT (MBERT) (Devlin et al., 2019) and XLM-on-RoBERTa
(Conneau et al., 2020), both the Base (XLM-R) and Large (XLM-R-L) variant, in the
standard fine-tuning regime (i.e., their parameters are fine-tuned together with the task
classifier’s parameters), and 2) multilingual Universal Sentence Encoder (USE) (Yang
et al., 2019) in the feature-based regime (i.e., its parameters are fixed during the task
classifier’s training). Both MBERT and XLM-R include all XCOPA languages in their
pretraining data spanning ∼100 languages, except for Haitian Creole and Quechua.
Multilingual USE was trained on 16 languages, covering it, th, tr, and zh from the
XCOPA language sample. The hidden state size H of each encoder is equivalent to the
configuration of the pre-trained model: multilingual BERT (Base, H = 768), XLM-R
(Base, H = 768; Large, H = 1, 024), and multilingual USE (Large, H = 512).
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Train dataset Model selection

Setup SIQA COPA en target

CO-ZS ✓ ✓
CO-TLV ✓ ✓
SI-ZS ✓ ✓
SI+CO-ZS ✓ ✓ ✓
SI+CO-TLV ✓ ✓ ✓

Table 4.4 Different fine-tuning and transfer setups. CO=COPA; SI=SIQA; ZS=Zero-Shot;
TLV=Target Language Validation (Set).

Encoder Input. For each instance, I couple each of the answer choices with the
concatenation of the premise and the prompt and feed that as a “sentence pair” input to
MBERT and XLM-R, or as a single “sentence” to USE.6

Classifier Head. Let ci be the i-th answer choice of an instance of multiple-choice
dataset (i.e., i ∈ {1, 2} in COPA and i ∈ {1, 2, 3} in SIQA) and let xi ∈ RH (with H as
the vector size of the encoder) be the encoding of its corresponding input consisting of
the premise, prompt and the answer itself, as explained above.7 The predicted score ŷi

for the answer ci is then obtained with a L-layer feed-forward network. I obtain the score
ŷi for each answer ci and concatenate them into a prediction vector to which I apply
softmax normalisation: ŷ = softmax([ŷ1, . . . , ŷN ]), where N is the number of answers
in the multiple-choice selection dataset. The loss for the training instance is then the
standard cross-entropy classification loss.

Transfer Learning Setups. I evaluate each model in different transfer learning setups
based on 1) different sources of training data: SIQA,8 COPA, or both; and 2) different
model selection regimes for hyper-parameter tuning and early stopping (based on English
or target language validation set). The resulting combinations are shown in Table 4.4.

Hyper-parameters. The maximum sequence length of input sentences is fixed to 64
tokens. Training runs with an effective batch size of 32, for 5 epochs. Weight parameters

6For MBERT and XLM-R, I insert the standard special tokens. For example, for the last example
from Table 4.1 and Choice 1, the input for MBERT would be as follows: ‘[CLS] My eyes became red and
puffy. What was the cause? [SEP] I was sobbing. [SEP]’.

7For MBERT and XLM-R xi is the Transformer representation of the sequence start token. For USE,
xi is the average of contextualised vectors of all tokens.

8The SIQA dataset is similar in nature to COPA (i.e., it is a multiple-choice dataset for commonsense
reasoning about social interactions, with open-format prompts and three answer choices). It comes with
a much larger training set, consisting of 33K instances and therefore can provide useful learning signal
also for causal commonsense reasoning in XCOPA.
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ϑ optimised through an Adam optimiser (Kingma and Ba, 2015) a learning rate of
8× 10−6. Gradients are clipped to a norm of 1.

When performing HBNAS, architecture parameters α are updated through a separate
Adam optimiser with a learning rate of 3×10−3 and a weight decay of 10−3. Temperature
τ is annealed from 1 to 0 with a linear schedule. During variational inference, I assume
a prior of N (0, I) for the neural weights ϑ and a Dirichlet distribution Dir(1) for the
architecture α. The classifier depth with the highest validation performance was 2 for
the baseline, and 4 for NAS. The baseline classifier is a Feed-forward network with a
tanh activation and no skip connections.

Zero-Shot and Few-Shot Learning. In the zero-shot learning setting, the model
trained on English is directly evaluated on the multi-lingual XCOPA benchmark. Instead,
in the few-shot learning setting, the model is further trained on XCOPA development set
individually for each target language. Since no further development data is available to
grid search the hyper-parameters, those found on the COPA English developments set
are retained.

4.6 Results

In this section, I provide the results for different transfer learning settings (training and
validation data) and choices of encoders. Subsequently, I adopt the best model as a
baseline for HBNAS and compare their performances.

4.6.1 Choice of Encoder and Transfer Setting

Table 4.5 shows the aggregate accuracy of MBERT, XLM-R and USE over 11 XCOPA
languages for each of the previously described training setups from Table 4.4. Comparing
the XCOPA results with the English COPA performance of the monolingual English
BERT (Base) reported by Sap et al. (2019), it immediately emerges that even the best
setting in XCOPA yields a drop of -7% (from an accuracy of ~63) with COPA-only
fine-tuning and -17% (from an accuracy of ~80) with SIQA and COPA fine-tuning. This
reinforces recent suspicions (Cao et al., 2020; Hu et al., 2020) that massively multilingual
pretrained transformers do not offer a completely satisfactory solution for language
transfer.

XLM-R outperforms MBERT and USE in all setups, but the gains are pronounced
only in setups in which the models were first fine-tuned on SIQA (SI-ZS, SI+CO-ZS,
and SI+CO-TLV). USE outperforms MBERT surprisingly often. This might have been
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Setup Model All
MBERT ∩

XCOPA
USE ∩

XCOPA

CO-ZS
XLM-R 55.6 56.9 55.4
XLM-R-L 52.4 52.5 52.1
MBERT 54.1 54.4 55.7
USE 54.7 56.0 58.1

CO-TLV
XLM-R 55.1 56.4 55.2
XLM-R-L 51.6 51.7 52.1
MBERT 54.2 54.5 55.8
USE 54.8 55.4 59.0

SI-ZS
XLM-R 60.1 62.3 62.9
XLM-R-L 68.4 72.1 72.9
MBERT 54.7 55.6 56.4
USE 55.0 56.4 60.1

SI+CO-ZS
XLM-R 59.0 60.7 61.9
XLM-R-L 67.3 70.8 71.8
MBERT 55.8 56.8 57.9
USE 54.1 54.9 58.9

SI+CO-TLV
XLM-R 60.7 63.5 63.6
XLM-R-L 69.1 72.8 74.6
MBERT 54.4 54.8 54.2
USE 54.3 55.2 59.1

Table 4.5 Summary of XCOPA results. All: average over all 11 XCOPA languages;
MBERT∩XCOPA: average over 9 XCOPA languages (without ht and qu) included
in MBERT and XLM-R pretraining; USE∩XCOPA: average over 4 XCOPA languages
(it, th, tr, and zh), included in the USE pretraining.

EN ET HT ID IT QU SW TA TH TR VI ZH
Language

50

60

70

80

A
cc

ur
ac

y

XLM-R XLM-R-L MBERT USE

Figure 4.3 Per-language XCOPA results for XLM-R, MBERT, and USE in the
SIQA + COPA-TLV setup. Striped bars correspond to language-model pairs where
the language was not included in model pretraining.
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Model en et id it sw ta th tr vi zh all

Ze
ro

XLM-R Large 2 85.4 71.8 80.6 75.6 62.0 70.8 72.2 73.6 76.8 78.2 74.70
XLM-R Large 4 83.8 71.8 79.6 73.2 64.2 73.8 71.0 71.2 75.2 82.2 74.60
HBNAS 4 86.0 70.2 82.6 75.8 65.2 72.4 74.8 75.4 78.0 81.0 76.14

Fe
w

XLM-R Large 2 86.8 70.8 84.8 78.0 60.8 72.0 74.8 73.0 78.6 82.2 76.18
XLM-R Large 4 86.4 72.6 80.6 74.2 64.4 71.2 74.2 74.2 77.4 81.2 75.64
HBNAS 4 86.4 74.4 81.6 79.6 64.8 75.2 76.6 76.0 79.0 81.8 77.54

Table 4.6 Zero-shot and few-shot results on XCOPA comparing NAS to the best baseline.
Numbers after a model name indicate the depth of the classifier on top of the encoder.

expected in the COPA-only setups (CO-ZS and CO-TLV) where the small COPA training
set is insufficient to meaningfully fine-tune MBERT transformer parameters. However,
the finding that MBERT does not benefit more than USE from prior SIQA training is
surprising and warrants further investigation. What is more, USE in some setups even
outperforms MBERT for some of the languages (e.g., id, ta, sw) on which MBERT
was pretrained and USE was not (cf. the scores in the MBERT∩XCOPA column). I
speculate that this is due to the combination of two effects: (1) the infamous “curse of
multilinguality” (Conneau et al., 2020) is much more pronounced for MBERT (which
is pretrained on 104 languages) than for USE, pretrained on only 16 languages; and
(2) the presence of subword-level similarities between XCOPA target languages and the
16 languages used in USE pretraining. Unsurprisingly, the Large XLM-R substantially
outperforms its Base counterpart in all setups with SIQA training. Because of almost
3 times more parameters (355M vs. 125M), XLM-R-L stores more language-specific
information for each pretraining language. The large parameter space, however, also
causes XLM-R-L to underperform XLM-R in COPA-only setups (CO-ZS and CO-TLV),
when exposed only to a tiny COPA fine-tuning dataset.

Also note that training models only on SIQA yields performance that is comparable
(and for MBERT and USE often better) to the performance I obtain with additional
COPA training (setups SI + CO-ZS and SI + CO-TLV). While this is in part due to the
limited size of the COPA training set, it confirms the assumption that SIQA and COPA
are highly compatible tasks. Moreover, only slight gains are achieved by hyper-parameter
tuning on the target language validation set (TLV).

Figure 4.3 shows per-language performance in the best setup, SIQA + COPA-TLV,
while I provide detailed results for all other setups in Table C.1 in appendix. As expected,



74 A Prior over Architectures for Language Understanding

all models fluctuate around random-level performance on out-of-sample languages, ht and
qu. For all other languages, XLM-R outperforms MBERT. Surprisingly, I also observe
that for some languages (id, vi, zh) performance of transfer from English is slightly
higher than the actual performance in English, without transfer. Another observation is
that the transfer performance is often better for some languages typologically distant
from English than for languages closer to English (e.g., th, vi, zh versus it). This
might be partially due to superior representations of languages such as zh and th in
the pretrained models due to their large training data and very specific scripts (input
embedding parameters do not need to be shared with other languages).

4.6.2 Effectiveness of HBNAS

Given the results of Section 4.6.1, I adopt the best transfer setting and encoder as
a baseline for the proposed model, HBNAS. In particular, the baseline consists of an
XML-R encoder and a 2-layer MLP classifier, both trained on SIQA. Early stopping is
based on the XCOPA validation sets of all target languages. Such baseline is compared
to an equivalent model that learns the classifier architecture through NAS as detailed in
Section 4.3. To make the comparison as fair as possible, I also report the scores for a
baseline with an identical number of parameters, i.e. with 4 classifier layers. Finally, I
omit the results of DARTS for brevity: I verified that while it achieves performance gains
that are not statistically significant compared to the other baselines, it incurs excessively
more training time.

Results are shown in Table 4.6. Neural architecture search achieves superior results
for both zero-shot and few-shot learning. In particular, it outperforms the baseline in
7/10 languages (except et, ta, and zh) in the zero-shot setting and in 7/10 languages
(except en, id, and zh) in the few-shot setting. Note that the gains are especially evident
in languages whose scores lie on the low side of the spectrum, thus making the method
especially suited in resource-lean scenarios. In average, HBNAS obtains improvements of
1.44 points in accuracy for zero-shot learning, and 1.24 points in accuracy for few-shot
learning. These figures confirm the hypothesis that the proposed NAS method can help
construct a prior over both parameters and architectures that enables the transfer of
high-level, abstract knowledge necessary for causal common-sense reasoning.

Such prior is visualised in Figure 4.5, where I plot the heat map of the learned
posterior for α. These values translate into the cell structure illustrated in Figure 4.1.
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Figure 4.5 Heatmap of the α logits.

4.7 Conclusions

In this chapter, I have explored the idea of constructing a prior over both neural weights
and architectures (encompassing layer connections and nonlinear activations) in order
to facilitate zero-shot and few-shot natural language understanding in novel languages.
To do so, I have recast neural architecture search as implicitly defining a hierarchical
Bayesian model. Moreover, I have shown how to adapt this framework to state-of-art
algorithms for natural language processing, and in particular Transformer-based encoders
pretrained on language modelling.

As a challenging benchmark to evaluate the proposed method, I have created the
Cross-lingual Choice of Plausible Alternatives (XCOPA) dataset for causal commonsense
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reasoning. All XCOPA instances are aligned across 11 languages, which enables cross-
lingual comparisons. The language selection was informed by variety sampling, in order
to maximise diversity in terms of typological features, geographical macro-area, and
language family. This allows for testing the robustness of machine learning models for
an array of rare phenomena displayed by the chosen languages.

To establish strong baselines on this dataset, I ran a series of cross-lingual transfer ex-
periments, evaluating state-of-the-art transfer methods based on multilingual pretraining
and fine-tuning on English. I observed that, although these methods perform better than
chance, they still lag significantly behind the monolingual supervised learning setting.
Overall, the scores are held down by the ‘curse of multilinguality’, the need to account
for a wide sample of languages in pretraining. In addition, the transfer seems not to
depend that much on the distance from the source, but rather on the abundance of target
language data in multilingual pretraining.

Leveraging neural architecture search on the classifier network yielded additional gains
in both the zero-shot and few-shot learning settings, thus demonstrating the ability of
the learned prior to capture causal world knowledge. These results hold promise to foster
further research in multilingual commonsense reasoning and cross-lingual transfer, and
possibly apply the novel method to other multi-lingual tasks such as question answering
(Clark et al., 2020) or natural language inference (Conneau et al., 2018).
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5.1 Introduction

The annotation efforts in NLP have achieved impressive feats, such as the Universal
Dependencies (UD) project (Nivre et al., 2019) which now includes 83 languages. But, even
UD covers only a meagre subset of the world’s estimated 8,506 languages (Hammarström
et al., 2020) (cf. Section 2.2.3). Moreover, the Association for Computational Linguistics
Wiki1 lists 24 separate NLP tasks. Labelled data, which is both costly and labour-
intensive, is missing for many of such task–language combinations. This shortage hinders
the development of computational models for the majority of the world’s languages (Ponti
et al., 2019a; Snyder and Barzilay, 2010).

As argued in Section 2.2.4, a common solution is transferring knowledge across
domains, such as tasks and languages (Talmor and Berant, 2019; Yogatama et al., 2019),
which holds promise to mitigate the lack of training data inherent to a large spectrum of
NLP applications (Agić et al., 2016; Ammar et al., 2016; Ponti et al., 2018a; Täckström
et al., 2012; Ziser and Reichart, 2018, inter alia). In the most extreme scenario, zero-shot
learning, no annotated examples are available for the target domain. In particular,
zero-shot transfer across languages implies a change in the data domain, and leverages
information from resource-rich languages to tackle the same task in a previously unseen
target language (Artetxe and Schwenk, 2019; Lin et al., 2019; Ponti et al., 2019a; Rijhwani
et al., 2019, inter alia). Zero-shot transfer across tasks within the same language (Ruder
et al., 2019a), on the other hand, implies a change in the space of labels.

1aclweb.org/aclwiki/State_of_the_art

http://aclweb.org/aclwiki/State_of_the_art
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As the main contribution of this chapter, I propose a Bayesian generative model of
the neural parameter space (Ponti et al., 2021). I assume that this space is structured,
and for this reason factorisable into task- and language-specific latent variables.2 By
performing transfer of knowledge from both related tasks and related languages (i.e., from
seen combinations), my model allows for zero-shot prediction on unseen task–language
combinations. For instance, the availability of annotated data for part-of-speech (POS)
tagging in Wolof and for named-entity recognition (NER) in Vietnamese supplies plenty
of information to infer a task-agnostic representation for Wolof and a language-agnostic
representation for NER. Conditioning on these, the appropriate neural parameters
for Wolof NER can be generated at evaluation time. While this idea superficially
resembles matrix completion for collaborative filtering (Dziugaite and Roy, 2015; Mnih
and Salakhutdinov, 2008), the neural parameters are latent and are non-identifiable.
Rather than recovering missing entries from partial observations, in my approach I reserve
separate latent variables to each language and each task to tie together neural parameters
for combinations that have either of them in common.

I adopt a Bayesian perspective towards inference. The posterior distribution over
the model’s latent variables is approximated through stochastic variational inference
(SVI; Hoffman et al., 2013). Given the enormous number of parameters, I also explore
a memory-efficient inference scheme based on a diagonal plus low-rank approximation
of the covariance matrix. This guarantees that the model remains both expressive and
tractable.

I evaluate the model on two sequence labelling tasks: POS tagging and NER, relying
on a typologically representative sample of 33 languages from 4 continents and 11 families.
The results clearly indicate that the generative model surpasses standard baselines based
on cross-lingual transfer 1) from the (typologically) nearest source language; 2) from the
source language with the most abundant in-domain data (English); and 3) from multiple
source languages, in the form of either a multi-task, multi-lingual model with parameter
sharing (Wu and Dredze, 2019) or an ensemble of task- and language-specific models
(Rahimi et al., 2019).

Finally, I empirically demonstrate the importance of modelling uncertainty during
inference through Monte Carlo approximations of Bayesian model averaging, as opposed
to point estimates. While yielding comparable performances, this endows neural networks
with the ability to “fail loudly” (Rabanser et al., 2019) in low-confidence settings such
as zero-shot cross-lingual and cross-task transfer. In particular, whenever the posterior

2By latent variable I mean every variable that has to be inferred from observed (directly measurable)
variables. To avoid confusion, I use the terms seen and unseen when referring to different task–language
combinations.
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predictive distributions in a domain display a high entropy, prediction is such domain can
be avoided. As a result, the generative model enhances both accuracy and robustness in
low-resource NLP tasks.

5.2 Bayesian Generative Model

In this chapter, I propose a Bayesian generative model for multi-task, multi-lingual NLP.
I train a single Bayesian neural network for several tasks and languages jointly. Formally,
I consider a set T = {t1, . . . , tn} of n tasks and a set L = {l1, . . . , lm} of m languages.
The core modelling assumption I make is that the parameter space of the neural network
is structured: specifically, I posit that certain parameters correspond to tasks and others
correspond to languages. This structure assumption allows us to generalise to unseen
task–language pairs. In this regard, the model is reminiscent of matrix factorisation as
applied to collaborative filtering (Dziugaite and Roy, 2015; Mnih and Salakhutdinov,
2008).

I now describe the generative model in three steps that match the nesting level of the
plates in the diagram in Figure 5.1. Equivalently, the reader can follow the nesting level
of the for loops in Algorithm 2 for an algorithmic illustration of the generative story.

(1) Sampling Task and Language Representations: To kick off the generative
process, I first sample a latent representation for each of the tasks and languages
from multivariate Gaussians: ti ∼ N (µti , Σti) ∈ Rh and lj ∼ N (µlj , Σlj ) ∈ Rh,
respectively. While I present the model in its most general form, I take µti = µlj = 0
and Σti = Σlj = I for the experimental portion of this chapter.

(2) Sampling Task–Language-specific Parameters: Afterwards, to generate task–
language-specific neural parameters, we sample ϑij fromN (fψ(ti, lj), diag(fϕ(ti, lj))) ∈
Rd where fψ(ti, lj) and fϕ(ti, lj) are learned deep feed-forward neural networks
fψ : Rh → Rd and fϕ : Rh → Rd

≥0 parametrized by ψ and ϕ, respectively, similar
to Kingma and Welling (2014). These transform the latent representations into
the mean µθij

and diagonal of the covariance matrix σ2
θij

for the parameters ϑij
associated with ti and lj . The feed-forward network fψ just has a final linear layer as
the mean can range over Rd whereas fϕ has a final softplus (defined in Section 5.3)
layer to ensure it ranges only over Rd

≥0. Following Stolee and Patterson (2019), the
networks fψ and fϕ take as input a linear function of the task and language vectors:
t⊕ l⊕ (t− l)⊕ (t⊙ l), where ⊕ stands for concatenation and ⊙ for element-wise
multiplication. The sampled neural parameters ϑij are partitioned into a weight
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yijk

xijk

θij

ti lj

K mn

Figure 5.1 Graph (plate notation) of the generative model based on parameter space
factorisation. Shaded circles refer to observed variables.

W ij ∈ Re×c and a bias bij ∈ Rc, and reshaped appropriately. Hence, the dimension-
ality of the Gaussian is chosen to reflect the number of parameters in the affine layer,
d = e · c + c, where e is the dimensionality of the input token embeddings (detailed
in the next paragraph) and c is the maximum number of classes across tasks.3 The
number of hidden layers and the hidden size of fψ and fϕ are hyper-parameters
discussed in Section 5.4.2. I tie the parameters ψ and ϕ for all layers except for the
last to reduce the parameter count. I note that the space of parameters for all tasks
and languages forms a tensor Θ ∈ Rn×m×d, where d is the number of parameters of
the largest model.

(3) Sampling Task Labels: Finally, the kth label yijk for the ith task and the jth lan-
guage is sampled from a final softmax: p(yijk | xijk,ϑij) = softmax(Wij bert(xijk) +
bij) where bert(xijk) ∈ Re is the multi-lingual BERT (Pires et al., 2019) encoder.
The incorporation of m-BERT as a pre-trained multilingual embedding allows for
enhanced cross-lingual transfer.

Consider the Cartesian product of all tasks and languages T × L. We can decompose
this product into seen task–language pairs S and unseen task–language pairs U , i.e.
T ×L = S ⊔ U . Naturally, we are only able to train the model on the seen task–language

3Different tasks might involve different class numbers, the number of parameters hence oscillates.
The extra dimensions not needed for a task can be considered as padded with zeros.
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Algorithm 2 Generative Model of Neural Parameters for Multi-task, Multi-lingual NLP.
1: for ti ∈ T
2: ti ∼ N (µti , Σti)
3: for lj ∈ L
4: lj ∼ N (µlj , Σlj )
5: for ti ∈ T
6: for lj ∈ L
7: µθij

= fψ(ti, lj)
8: Σθij

= fϕ(ti, lj)
9: ϑij ∼ N (µθij

, Σθij
)

10: for xijk ∈ Xij

11: yijk ∼ p(· | xijk,ϑij)

pairs S. However, as we estimate all task–language parameter vectors ϑij jointly, the
model allows us to draw inferences about the parameters for pairs in U as well. The
intuition for why this should work is as follows: By observing multiple pairs where the
task (language) is the same but the language (task) varies, the model learns to distil
the relevant knowledge for zero-shot learning because the generative model structurally
enforces a disentangled representations—separating representations for the tasks from
the representations for the languages rather than lumping them together into a single
entangled representation (Wu and Dredze, 2019, inter alia). Furthermore, the neural
networks fψ and fϕ mapping the task- and language-specific latent variables to neural
parameters are shared allowing the model to generalise across task–language pairs.

5.3 Variational Inference

Exact computation of the posterior over the latent variables p(ϑ, t, l | x) is intractable.
Thus, we need to resort to an approximation. In this chapter, I use variational inference
as an approximate inference scheme. Variational inference finds an approximate posterior
over the latent variables by minimising the variational gap, which may be expressed as
the Kullback–Leibler (KL) divergence between the variational approximation q(ϑ, t, l)
and the true posterior p(ϑ, t, l | x). In this chapter, I employ the following variational
distributions:
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qλ = N (mt,St) mt ∈ Rh,St ∈ Rh×h (5.1)
qν = N (ml,Sl) ml ∈ Rh,Sl ∈ Rh×h (5.2)
qξ = N (fψ(t, l), diag(fϕ(t, l))) (5.3)

Note the unusual choice to tie parameters between the generative model and the variational
family in Equation (5.3); however, I found that this performs better in practice based on
the final results of my experiments.

Through a standard algebraic manipulation in Equation (5.4), the KL-divergence for
the generative model can be shown to equal the marginal log-likelihood log p(x), indepen-
dent from q(·), and the so-called evidence lower bound (ELBO) L. Thus, approximate
inference becomes an optimisation problem where maximising L results in minimising
the KL-divergence. One derives L is by expanding the marginal log-likelihood as in
Equation (5.5) by means of Jensen’s inequality. I also show that L can be further broken
into a series of terms as illustrated in Equation (5.7). In particular, we see that it is only
the first term in the expansion that requires approximation. The subsequent terms are
KL-divergences between variational and true distributions that have closed-form solution
due to my choice of prior. Due to the parameter-tying scheme above, the KL-divergence in
Equation (5.7) between the variational distribution qξ(ϑ | t, l) and the prior distribution
p(ϑ | t, l) is zero.

In general, the covariance matrices St and Sl in Equation (5.1) and Equation (5.2)
will require O(h2) space to store. As h is often very large, it is impractical to materialise
either matrix in its entirety. Thus, in this chapter, I experiment with smaller matrices
that have a reduced memory footprint; specifically, I consider a diagonal covariance
matrix and a diagonal plus low-rank covariance structure. A diagonal covariance matrix
makes computation feasible with a complexity of O(h); this, however, comes at the cost
of failing to capture the complex interactions among parameters, since non-diagonal
elements are zero. To allow for a more expressive variational family, I also consider a
covariance matrix that is the sum of a diagonal matrix and a low-rank matrix:

St = diag(δ2
t ) +BtB

⊤
t (5.8)

Sl = diag(δ2
l ) +BlB

⊤
l (5.9)

where B ∈ Rh×k ensures that rank
(
BB⊤

)
≤ k, and diag(δ) is diagonal. We can store

this structured covariance matrix in O(kh) space.
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KL (q(ϑ, t, l) || p(ϑ, t, l | x)) = − E
t∼qλ

E
l∼qν

E
ϑ∼qξ

log p(ϑ, t, l | x)
q(ϑ, t, l)

= − E
t∼qλ

E
l∼qν

E
ϑ∼qξ

[log p(ϑ, t, l, x)− log p(x)− log q(ϑ, t, l)]

= log p(x)− E
t∼qλ

E
l∼qν

E
ϑ∼qξ

log p(ϑ, t, l, x)
q(ϑ, t, l) ≜ log p(x)− L

(5.4)

log p(x) = log
(∫∫∫

p(x,ϑ, t, l) dϑ dt dl
)

= log
(∫∫∫

p(x | ϑ) p(ϑ | t, l) p(t) p(l) dϑ dt dl
)

= log
(∫∫∫ qλ(t) qν(l) qξ(ϑ | t, l)

qλ(t) qν(l) qξ(ϑ | t, l)
p(x | ϑ) p(ϑ | t, l) p(t) p(l) dϑ dt dl

)

= log
(

E
t∼qλ

E
l∼qν

E
ϑ∼qξ

p(ϑ | t, l) p(t) p(l) p(x | ϑ)
qλ(t) qν(l) qξ(ϑ | t, l)

)

≥ E
t∼qλ

E
l∼qν

E
ϑ∼qξ

[
log p(x | ϑ) p(ϑ | t, l) p(t) p(l)

qλ(t) qν(l) qξ(ϑ | t, l)

]
≜ L (5.5)

= E
t∼qλ

E
l∼qν

[
E
ϑ∼qξ

[
log p(x | ϑ) + log p(ϑ | t, l)

qξ(ϑ | t, l)

]
+ log p(t)

qλ(t) + log p(l)
qν(l)

]
= E

ϑ∼qξ

log p(x | ϑ)︸ ︷︷ ︸
requires approximation

− (5.6)

−
(
KL (qλ(t) || p(t)) + KL (qν(l) || p(l)) + KL (qξ(ϑ | t, l) || p(ϑ | t, l))

)
︸ ︷︷ ︸

closed-form solution

(5.7)

By definition, covariance matrices must be symmetric and positive semi-definite. The
first property holds by construction. The second property is enforced by a softplus
parameterization where softplus(·) ≜ ln(1+exp(·)). Specifically, I define δ2 = softplus(ρ)
and optimise over ρ.

5.3.1 Stochastic Variational Inference

To speed up the training time, I make use of stochastic variational inference (Hoffman
et al., 2013). In this setting, I randomly sample a task ti ∈ T and language lj ∈ L
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among seen combinations during each training step,4 and randomly select a batch of
examples from the dataset for the sampled task–language pair. I then optimise the
parameters of the feed-forward neural networks ψ and ϕ as well as the parameters of the
variational approximation to the posterior mt, ml, ρt, ρl, Bt and Bl with a stochastic
gradient-based optimiser (discussed in Section 5.4.2).

The KL divergence terms and their gradients in the ELBO appearing in Equation (5.7)
can be computed in closed form as the relevant densities are Gaussian (Duchi, 2007, p.
13). Moreover, they can be calculated for Gaussians with diagonal and diagonal plus
low-rank covariance structures without explicitly unfolding the full matrix. For a choice
of prior p = N (0, I) and a diagonal plus low-rank covariance structure, we have:

KL (q || p) = 1
2

[ h∑
i=1

(m2
i + δ2

i +
k∑
j=1
B2
ij)− h− ln det(S)

]
(5.10)

where Bij is the element in the i-th row and j-th column of B. This derives from
the general formula for computing the KL-divergence between multivariate Gaussians
analytically:

KL (q || p) = 1
2

[
ln |Σ|
|S|
− d + tr(Σ−1S) + (µ−m)⊤Σ−1(µ−m)

]
(5.11)

By substituting µ = 0 and Σ = I, it is trivial to obtain Equation (5.10).
The last term of Equation (5.10) can be estimated without computing the full matrix

explicitly thanks to the generalisation of the matrix–determinant lemma,5 which, applied
to the factored covariance structure, yields:

ln det(S) = ln
[
det(I +B⊤diag(δ−2)B)

]
+

h∑
i=1

ln(δ2
i ) (5.12)

where I ∈ Rk. The KL divergence for the variant with diagonal covariance is just a
special case of Equation (5.10) with Bij = 0.

4As an alternative, I experimented with a setup where sampling probabilities are proportional to the
number of examples of each task–language combination, but this achieved similar performances on the
development sets.

5det(A+UV ⊤) = det(I + V ⊤A−1U) · det(A). Note that the lemma assumes that A is invertible.
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However, as stated before, the following expectation does not admit a closed-form
solution. Thus I consider a Monte Carlo approximation:

E
ϑ∼qξ

log p(x | ϑ) =
∫

qξ(ϑ) log p(x | ϑ) dϑ

≈ 1
V

V∑
v=1

log p(x | ϑ(v)) where ϑ(v) ∼ qξ (5.13)

where V is the number of Monte Carlo samples taken. In order to allow the gradient to
easily flow through the generated samples, I adopt the re-parametrization trick (Kingma
and Welling, 2014). Specifically, I exploit the following identities ti = µti + σti ⊙ ϵ and
lj = µlj +σlj ⊙ ϵ, where ϵ ∼ N (0, I) and ⊙ is the Hadamard product. For the diagonal
plus low-rank covariance structure, I exploit the identity:

µ+ diag(δ2 ⊙ ϵ) +Bζ (5.14)

where ϵ ∈ Rh, ζ ∈ Rk, and both are sampled from N (0, I). The mean µθij
and the

diagonal of the covariance matrix σ2
θij

are deterministically computed given the above
samples and the parameters ϑij are sampled from N (µθij

, diag(σ2
θij

)), again with the
re-parametrization trick.

5.3.2 Posterior Predictive Distribution

During test time, I perform zero-shot predictions on an unseen task–language pair by
plugging in the posterior means (under the variational approximation) into the model.
As an alternative, I experimented with ensemble predictions through Bayesian model
averaging. I.e., for data for seen combinations xS and data for unseen combinations xU ,
the true predictive posterior can be approximated as p(xU | xS) =

∫
p(xU | ϑ, xS) qξ(ϑ |

xS) dϑ ≈ 1
V

∑V
v=1 p(xU | ϑ(v), xS), where V are 100 Monte Carlo samples from the

posterior qξ. Performances on the development sets are comparable to simply plugging
in the posterior mean. However, foreshadowing Section 5.5.4, marginalisation during
prediction has additional advantages, such as better estimating uncertainty.
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5.4 Experimental Setup

5.4.1 Data

I select NER and POS tagging as experimental tasks because their datasets encompass
an ample and diverse sample of languages, and are common benchmarks for resource-
poor NLP (Cotterell and Duh, 2017, inter alia). In particular, I opt for WikiANN
(Pan et al., 2017) for the NER task and Universal Dependencies 2.4 (UD; Nivre et al.,
2019) for POS tagging. Our sample of languages is chosen from the intersection of
those available in WikiANN and UD. However, I remark that this sample is heavily
biased towards the Indo-European family (Gerz et al., 2018b). Instead, the selection
should be: i) typologically diverse, to ensure that the evaluation scores truly reflect the
expected cross-lingual performance (Ponti et al., 2020); ii) a mixture of resource-rich
and low-resource languages, to recreate a realistic setting and to allow for studying the
effect of data size. Hence, I further filter the languages in order to make the sample
more balanced. In particular, I sub-sample Indo-European languages by including only
resource-poor ones, and keep all the languages from other families. Our final sample
comprises 33 languages from 4 continents (17 from Asia, 11 from Europe, 4 from Africa,
and 1 from South America) and from 11 families (6 Uralic, 6 Indo-European, 5 Afroasiatic,
3 Niger-Congo, 3 Turkic, 2 Austronesian, 2 Dravidian, 1 Austroasiatic, 1 Kra-Dai, 1
Tupian, 1 Sino-Tibetan), as well as 2 isolates. The full list of language iso 639-2 codes is
reported in Figure 5.2.

In order to simulate a zero-shot setting, I hold out in turn half of all possible task–
language pairs and regard them as unseen, while treating the others as seen pairs. The
partition is performed in such a way that a held-out pair has data available for the same
task in a different language, and for the same language in a different task.6 Under this
constraint, pairs are assigned to train or evaluation at random.7

I randomly split the WikiANN datasets into training, development, and test portions
with a proportion of 80-10-10. I use the provided splits for UD; if the training set for a
language is missing, I treat the test set as such when the language is held out, and as a
training set when it is among the seen pairs.8

6I use the controlled partitioning for the following reason. If a language lacks data both for NER and
for POS, the proposed factorisation method cannot provide estimates for its posterior. I leave model
extensions that can handle such cases for future work.

7See Section 5.5.2 for further experiments on splits controlled for language distance and sample size.
8Note that, in the second case, no evaluation takes place on such language.
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5.4.2 Hyper-parameters

The multilingual m-bert encoder is initialised with parameters pre-trained on masked
language modelling and next sentence prediction on 104 languages (Devlin et al., 2019).9

I opt for the cased Bert-Base architecture, which consists of 12 layers with 12 attention
heads and a hidden size of 768. As a consequence, this is also the dimension e of each
encoded WordPiece unit, a subword unit obtained through BPE (Wu et al., 2016). The
dimension h of the multivariate Gaussian for task and language latent variables is set to
100. The deep feed-forward networks fψ and fϕ have 6 layers with a hidden size of 400
for the first layer, 768 for the internal layers, and ReLU non-linear activations. Their
depth and width were selected based on validation performance.

The expectations over latent variables in Equation (5.7) are approximated through 3
Monte Carlo samples per batch during training. The KL terms are weighted with 1

|K|
uniformly across training, where |K| is the number of mini-batches.10 All the means m
of the variational approximation are initialised with a random sample from N (0, 0.1),
and the parameters for covariance matrices S with a random sample from U(0, 0.5),
following Stolee and Patterson (2019). k = 10 is chosen as the number of columns of
B so it fits into memory. The maximum sequence length for inputs is limited to 250.
The batch size is set to 8, and the best setting for the Adam optimiser (Kingma and Ba,
2015) was found to be an initial learning rate of 5 · 10−6 based on grid search. In order
to avoid over-fitting, I perform early stopping with a patience of 10 and a validation
frequency of 2.5K steps.

5.4.3 Baselines

I consider four baselines for cross-lingual transfer that also use bert as an encoder shared
across all languages.

First Baseline. A common approach is transfer from the nearest source (NS) lan-
guage, which selects the most compatible source to a target language in terms of similarity.
In particular, the selection can be based on family membership (Cotterell and Heigold,
2017; Kann et al., 2017; Zeman and Resnik, 2008), typological features (Deri and Knight,
2016), KL-divergence between part-of-speech trigram distributions (Agić, 2017; Rosa
and Zabokrtsky, 2015), tree edit distance of delexicalized dependency parses (Ponti
et al., 2018a), or a combination of the above (Lin et al., 2019). In this chapter, during

9Available at github.com/google-research/bert/blob/master/multilingual.md
10I found this weighting strategy to work better than annealing as proposed by Blundell et al. (2015).

http://github.com/google-research/bert/blob/master/multilingual.md
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evaluation, I choose the classifier associated with the observed language with the highest
cosine similarity between its typological features and those of the held-out language.
These features are sourced from URIEL (Littell et al., 2017) and contain information
about family, area, syntax, and phonology.

Second Baseline. I also consider transfer from the largest source (LS) language, i.e.
the language with most training examples. This approach has been adopted by several
recent works on cross-lingual transfer (Artetxe et al., 2020; Conneau et al., 2018, inter
alia). In my implementation, I always select the English classifier for prediction.11 In
order to make this baseline comparable to my model, I adjust the number of English
NER training examples to the sum of the examples available for all seen languages S.12

Third Baseline. Next, I apply a protocol designed by Rahimi et al. (2019) for weighting
the predictions of a classifier ensemble according to their reliability. For a specific task,
the reliability of each language-specific classifier is estimated through a Bayesian graphical
model. Intuitively, this model learns from error patterns, which behave more randomly
for untrustworthy models and more consistently for the others. Among the protocols
proposed in the paper, I opt for BEA in its zero-shot, token-based version, as it achieves
the highest scores in a setting comparable to the current experiment. I refer the reader
to the original paper for the details.13

Fourth Baseline. Finally, I take inspiration from Wu and Dredze (2019). The joint
multilingual (JM) baseline, contrary to the previous baselines, consists of two classifiers
(one for POS tagging and another for NER) shared among all observed languages
for a specific task. I follow the original implementation of Wu and Dredze (2019)
closely adopting all recommended hyper-parameters and strategies, such as freezing the
parameters of all encoder layers below the 3rd for sequence labelling tasks.

It must be noted that the number of parameters in the generative model scales better
than baselines with language-specific classifiers, but worse than those with language-
agnostic classifiers, as the number of languages grows. However, even in the second case,
increasing the depth of baselines networks to match the parameter count is detrimental
if the bert encoder is kept trainable, which was also verified in previous work (Peters
et al., 2019).

11I include English to make the baseline more competitive, but note that this language is not available
for the generative model as it is both Indo-European and resource-rich.

12The number of NER training examples is 1,093,184 for the first partition and 520,616 for the second
partition.

13I implemented this model through the original code at github.com/afshinrahimi/mmner.

http://github.com/afshinrahimi/mmner
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Task BEA NS LS JM PF-d PF-lr
POS 47.65±1.54 42.84±1.23 60.51±0.43 64.04±0.18 65.00±0.12 64.71±0.18
NER 66.45±0.56 74.16±0.56 78.97±0.56 85.65±0.13 86.26±0.17 86.70±0.10

Table 5.1 Results per task averaged across all languages.

5.5 Results and Discussion

5.5.1 Zero-shot Transfer

Firstly, I present the results for zero-shot prediction based on the generative model using
both of the approximate inference schemes (with diagonal covariance PF-d and factor
covariance PF-lr). Table 5.1 summarises the results on the two tasks of POS tagging
and NER averaged across all languages. Our model (in both its variants) outperforms the
four baselines on both tasks, including state-of-the-art alternative methods. In particular,
PF-d and PF-lr gain 4.49 / 4.20 in accuracy (~7%) for POS tagging and 7.29 / 7.73 in
F1 score (~10%) for NER on average compared to transfer from the largest source (LS),
the strongest baseline for single-source transfer. Compared to multilingual joint transfer
from multiple sources (JM), the two variants gain 0.95 / 0.67 in accuracy (~1%) for
POS tagging and +0.61 / +1.05 in F1 score (~1%).

More details about the individual results on each task–language pair are provided in
Figure 5.2, which includes the mean of the results over 3 separate runs. Overall, I obtain
improvements in 23/33 languages for NER and on 27/45 treebanks for POS tagging,
which further supports the benefits of transferring both from tasks and languages.

Considering the baselines, the relative performance of LS versus NS is an interesting
finding per se. LS largely outperforms NS on both POS tagging and NER. This shows
that having more data is more informative than relying primarily on similarity according
to linguistic properties. This finding contradicts the received wisdom (Cotterell and
Heigold, 2017; Lin et al., 2019; Rosa and Zabokrtsky, 2015, inter alia) that related
languages tend to be the most reliable source. I conjecture that this is due to the
pre-trained multi-lingual bert encoder, which helps to bridge the gap between unrelated
languages (Wu and Dredze, 2019).

The two baselines that hinge upon transfer from multiple sources lie on opposite sides
of the spectrum in terms of performance. On the one hand, BEA achieves the lowest
average score for NER, and surpasses only NS for POS tagging. I speculate that this is
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Figure 5.2 Results for NER (top) and POS tagging (bottom): four baselines for cross-
lingual transfer compared to Matrix Factorisation with diagonal covariance and diagonal
plus low-rank covariance.
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Task |L| = 11 |L| = 22
Sim Dif Sim Dif

POS 72.44 53.25 66.59 63.22
NER 89.51 81.73 86.78 85.12

Table 5.2 Average performance when relying on |L| similar (Sim) versus different (Dif )
languages in the train and evaluation sets.

due to the following: i) adapting the protocol from Rahimi et al. (2019) to my model
implies assigning a separate classifier head to each task–language pair, each of which is
exposed to fewer examples compared to a shared one. This fragmentation fails to take
advantage of the massively multilingual nature of the encoder; ii) my language sample
is more typologically diverse, which means that most source languages are unreliable
predictors. On the other hand, JM yields extremely competitive scores. Similarly to
my model, it integrates knowledge from multiple languages and tasks. The extra boost
in my model stems from its ability to disentangle each aspect of such knowledge and
recombine it appropriately.

Moreover, comparing the two approximate inference schemes from Section 5.3.1, PF-lr
obtains a small but statistically significant improvement over PF-d in NER, whereas
they achieve the same performance on POS tagging. This means that the posterior is
modelled well enough by a Gaussian where covariance among co-variates is negligible.

We can see that even for the best model (PF-lr) there is a wide variation in the scores
for the same task across languages. POS tagging accuracy ranges from 12.56 ± 4.07
in Guaraní to 86.71± 0.67 in Galician, and NER F1 scores range from 49.44± 0.69 in
Amharic to 96.20 ± 0.11 in Upper Sorbian. Part of this variation is explained by the
fact that the multilingual bert encoder is not pre-trained in a subset of these languages
(e.g., Amharic, Guaraní, Uyghur). Another cause is more straightforward: the scores are
expected to be lower in languages for which we have fewer training examples in the seen
task–language pairs.

5.5.2 Language Distance and Sample Size

While I designed the language sample to be both realistic and representative of the
cross-lingual variation, there are several factors inherent to a sample that can affect
the zero-shot transfer performance: i) language distance, the similarity between seen
and held-out languages; and ii) sample size, the number of seen languages. In order to
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Figure 5.3 Entropy of the posterior predictive distributions over classes for each test
example. The higher the entropy, the more uncertain the prediction.

disentangle these factors, I construct subsets of size |L| so that training and evaluation
languages are either maximally similar (Sim) or maximally different (Dif ). As a proxy
measure, I consider as ‘similar’ languages belonging to the same family. In Table 5.2, I
report the performance of parameter factorisation with diagonal plus low-rank covariance
(PF-lr), the best model from Section 5.5.1, for each of these subsets.

Based on Table 5.2, there emerges a trade-off between language distance and sample
size. In particular, performance is higher in Sim subsets compared to Dif subsets for both
tasks (POS and NER) and for both sample sizes |L| ∈ {11, 22}. In larger sample sizes, the
average performance increases for Dif but decreases for Sim. Intuitively, languages with
labelled data for several relatives benefit from small, homogeneous subsets. Introducing
further languages introduces noise. Instead, languages where this is not possible (such as
isolates) benefit from an increase in sample size.
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Figure 5.4 Samples from the posteriors of 4 languages, PCA-reduced to 4 dimensions.

5.5.3 Visualisation of the Learned Posteriors

The approximate posteriors of the latent variables can be visualised in order to study
the learned representations for languages. Previous work (Bjerva and Augenstein, 2018;
Johnson et al., 2017; Malaviya et al., 2017; Östling and Tiedemann, 2017) induced
point estimates of language representations from artificial tokens concatenated to every
input sentence, or from the aggregated values of the hidden state of a neural encoder.
The information contained in such representations depends on the task (Bjerva and
Augenstein, 2018), but mainly reflects the structural properties of each language (Bjerva
et al., 2019).

In our work, due to the estimation procedure, languages are represented by full
distributions rather than point estimates. By inspecting the learned representations,
language similarities do not appear to follow the structural properties of languages. This
is most likely due to the fact that parameter factorisation takes place after the multi-
lingual bert encoding, which blends the structural differences across languages. A fair
comparison with previous works without such an encoder is left for future investigation.
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As an example, consider two pairs of languages from two distinct families: Yoruba and
Wolof are Niger-Congo from the Atlantic-Congo branch, Tamil and Telugu are Dravidian.
We take 1,000 samples from the approximate posterior over the latent variables for each
of these languages. In particular, we focus on the variational scheme with a low-rank
covariance structure. We then reduce the dimensionality of each sample to 4 through
PCA,14 and we plot the density along each resulting dimension in Figure 5.4. We observe
that density areas of each dimension do not necessarily overlap between members of the
same family. Hence, the learned representations depend on more than genealogy.

5.5.4 Entropy of the Predictive Distribution

A notable problem of point estimate methods is their tendency to assign most of the
probability mass to a single class even in scenarios with high uncertainty. Zero-shot
transfer is one of such scenarios, because it involves drastic distribution shifts in the data
(Rabanser et al., 2019). A key advantage of Bayesian inference, instead, is marginalisation
over parameters, which yields smoother posterior predictive distributions (Kendall and
Gal, 2017; Wilson, 2019).

I run an analysis of predictions based on (approximate) Bayesian model averaging.
First, I randomly sample 800 examples from each test set of a task–language pair. For
each example, I predict a distribution over classes Y through model averaging based on
10 samples from the posteriors. I then measure the prediction entropy of each example,
i.e. H(p) = −∑|Y |

y p(Y = y) ln p(Y = y), whose plot is shown in Figure 5.3.
Entropy is a measure of uncertainty. Intuitively, the uniform categorical distribution

(maximum uncertainty) has the highest entropy, whereas if the whole probability mass
falls into a single class (maximum confidence), then the entropy H = 0.15 As it emerges
from Figure 5.3, predictions in certain languages tend to have higher entropy on average,
such as in Amharic, Guaraní, Uyghur, or Assyrian Neo-Aramaic. This aligns well with
the performance metrics in Figure 5.2. In practice, languages with low scores tend to
display high entropy in the predictive distribution, as expected.

To verify this claim, I measure the Pearson’s correlation between entropies of each
task–language pair in Figure 5.3 and the log-likelihood, a performance metric. I find
a very strong negative correlation with a coefficient of ρ = −0.914 and a two-tailed
p-value of 1.018× 10−26. Finally, I compare this inference scheme (based on a stochastic
variational approximation) with point estimate methods. In particular, I measure the
same correlation between predictive entropy and performance for Monte Carlo Dropout

14Note that the dimensionality reduced samples are also Gaussian since PCA is a linear method.
15The maximum entropy is ≈ 2.2 for 9 classes as in NER and ≈ 2.83 for 17 classes as in POS tagging.
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(MCD; Gal and Ghahramani, 2016a) under the same model. MCD is an ensemble method
where different parameter values are sampled simply by applying random dropout patterns
to the same maximum-likelihood estimate. I found, again, a negative correlation, but
with a smaller coefficient of ρ = −0.634. From this result, we may conclude that SVI
inference better characterises predictive uncertainty.

5.6 Related Work

Our approach builds on ideas from several different fields: cross-lingual transfer in NLP,
with a particular focus on matrix factorisation, contextual parameter generation, and
neural Bayesian methods.

Data Matrix Factorisation. Although I am the first to propose a factorisation of
the parameter space for unseen combinations of tasks and languages, the factorisation
of data for collaborative filtering and social recommendation is an established research
area. In particular, the missing values in sparse data structures such as user-movie
review matrices can be filled via probabilistic matrix factorisation (PMF) through a
linear combination of user and movie matrices (Ma et al., 2008; Mnih and Salakhutdinov,
2008; Shan and Banerjee, 2010, inter alia) or through neural networks (Dziugaite and
Roy, 2015). Inference for PMF can be carried out through MAP inference (Dziugaite
and Roy, 2015), Markov chain Monte Carlo (MCMC; Salakhutdinov and Mnih, 2008) or
stochastic variational inference (Stolee and Patterson, 2019). Contrary to prior work, I
perform factorisation on latent variables (task- and language-specific parameters) rather
than observed ones (data).

Contextual Parameter Generation. Our model is reminiscent of the idea that
parameters can be conditioned on language representations, as proposed by Platanios
et al. (2018). However, since this approach is limited to a single task and a joint learning
setting, it is not suitable for generalisation in a zero-shot transfer setting.

Bayesian Neural Networks. So far, these models have found only limited application
in NLP for resource-poor languages, despite their desirable properties. Firstly, they can
incorporate priors over parameters to endow neural networks with the correct inductive
biases towards language: Ponti et al. (2019b) constructed a prior imbued with universal
linguistic knowledge for zero- and few-shot character-level language modelling. Secondly,
they avoid the risk of over-fitting by taking into account uncertainty. For instance,



96 Modular Design via Parameter Factorisation

Shareghi et al. (2019) and Doitch et al. (2019) use a perturbation model to sample
high-quality and diverse solutions for structured prediction in cross-lingual parsing.

5.7 Conclusion

The main contribution of this chapter is a Bayesian generative model for multiple NLP
tasks and languages. At its core lies the idea that the space of neural weights can be
factorised into latent variables for each task and each language. While training data are
available only for a meagre subset of task–language combinations, this model opens up
the possibility to perform prediction in novel, undocumented combinations at evaluation
time. I performed inference through stochastic variational methods, and ran experiments
on zero-shot named entity recognition (NER) and part-of-speech (POS) tagging in a
typologically diverse set of 33 languages. Based on the reported results, I conclude that
leveraging the information from tasks and languages simultaneously is superior to model
transfer from English (relying on more abundant in-task data in the source language),
from the most typologically similar language (relying on prior information on language
relatedness), or from multiple source languages. Moreover, I found that the entropy of
predictive posterior distributions obtained through Bayesian model averaging correlates
almost perfectly with the error rate in the prediction. As a consequence, my approach
holds promise to alleviating data paucity issues for a wide spectrum of languages and
tasks, and to make knowledge transfer more robust to uncertainty.

Finally, I remark that my model is amenable to be extended to multilingual tasks
beyond sequence labelling—such as natural language inference (Conneau et al., 2018)
and question answering (Artetxe et al., 2020; Clark et al., 2020; Lewis et al., 2019)—and
to zero-shot transfer across combinations of multiple modalities (e.g. speech, text, and
vision) with tasks and languages. I leave these exciting research threads for future
research.
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Conclusions

This final chapter draws some main conclusions from the research carried out in this
thesis. In Section 6.1, I provide a synopsis of the motivations justifying the endeavour of
conforming machine learning to some aspects of human learning, including the presence of
an inductive bias accelerating learning and the capacity to generalise by disentangling and
recombining knowledge. Afterwards, I assess to what extent the proposed Bayesian neural
framework satisfied these desiderata, and in particular sample efficiency, resilience to
catastrophic forgetting, generalisation to novel domains, and robustness to uncertainty. I
take stock of the findings and contributions of this thesis in this respect in Section 6.2, and
discuss the implications in Section 6.3. Finally, I speculate about possible perspectives
for future work and address the remaining open questions in Section 6.4.

6.1 Motivation Synopsis

The present thesis set out from the ostensible disconnect between language acquisition
in humans on the one hand, where limited examples are sufficient to master any of the
multifarious language varieties the world is studded with, and current machine learning
practices on the other, which are predicated on the availability of massive amounts of
data (van Schijndel et al., 2019) and i.i.d. domains during both training and evaluation
(Linzen, 2020). In fact, children exhibit much higher flexibility and efficiency, which
can be better understood by considering evidence from their learning process. Error
patterns (also known as ‘emergent categories’) and the preference for specific kinds of
meaning-to-form mappings both point towards the presence of an inductive bias that
guides learning (Bowerman, 2011; Clark, 2001; Slobin, 1973). Such inductive bias results
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both from embodiment, the perceptual and cognitive constraints imposed by the human
brain, and from grounding, the shared human experience of reality.

Bridging the hiatus between these two different paradigms of learning would have
significant ramifications in practice. In fact, sample-efficient learning is indispensable
to develop natural language processing applications that are genuinely multilingual.
Indeed, most of the world’s languages suffer from data paucity, because annotating
data is expensive and time-consuming, and even unlabelled texts are often scarce due
to the imbalance in usage of and access to the digital sphere across communities of
speakers (Ponti et al., 2019a). Even the datasets with the amplest coverage—such as
Wikipedia or Universal Dependencies—span across but a minute fraction of the total of
existing languages. As a consequence, modelling resource-poor languages hinges upon
the ability to cope with zero-shot and few-shot learning scenarios, which is notoriously
challenging (Bottou and Bousquet, 2008; Ravi and Larochelle, 2017; Vinyals et al., 2016).1

In particular, this requires both to adapt to novel information quickly and to access
previously acquired relevant knowledge and recombine it in original ways in order to
address unseen combinations of tasks, languages, and modalities. In other words, both
sample efficiency and generalisation through modular design—intended as a mechanism
to disentangle separate facets of linguistic knowledge—are necessary to deal with a diverse
set of scarcely documented languages.

While recent efforts of the community concentrated on knowledge transfer to mitigate
these problems, the solutions they offer are inconclusive. In fact, current techniques
are based on pretraining deep Transformer-based encoders on language modelling in an
unsupervised fashion and subsequently fine-tuning them on downstream tasks (Conneau
et al., 2020; Wu and Dredze, 2019, inter alia) through many labelled examples of source
resource-rich languages (Conneau et al., 2020; Wu and Dredze, 2019) and possibly
few examples in a target resource-poor language (Lauscher et al., 2020). This is still
insufficient for achieving satisfactory performance in few-shot learning, for several reasons:
1) it remains data-demanding for both pre-training and fine-tuning; 2) it tends to incur
catastrophic forgetting as most techniques (including meta-learning) provide only points
of initialisation for neural weights, failing to model variance and architecture parameters;
3) it is prone to error when applied to a radically different domain where the label
distribution is shifted or the input language is different; 4) finally, it makes it hard to
gauge the confidence of predictions, thus making models less robust.

1 Recent attempts to address this problem, such as GPT-3 (Brown et al., 2020), managed to reduce
the requirements of labelled data to a bare minimum, but at the cost of tremendously inflating the
requirements of raw texts. Hence, they remain nonviable for resource-poor languages.
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In this thesis, I argued that the desirable properties of a learning agent can instead be
fulfilled in a unified Bayesian framework. In particular, I constructed a prior encompassing
both neural weights and architectures, and capable of drawing information from both
other languages and typological features, by inferring an approximate posterior through
Laplace or variational methods. Performing Bayesian update rather than pretraining
and fine-tuning also allows for preserving previous knowledge while acquiring a new one.
Moreover, graphical models specify the dependence assumptions among the variables
involved in an experiment. I took advantage of this to disentangle separate facets of
knowledge relevant for any combination of task, language, and modality, which facilitates
generalisation. Finally, I revealed (approximate) model averaging in estimating the
predictive distribution to be a powerful tool to measure the confidence of a prediction.

6.2 Findings and Contributions

Given the motivations in Section 6.1, I ran a series of experiments whose main findings
and contributions are listed below as bullet points, ordered by chapter of appearance.

6.2.1 A Prior over Weights for Language Modelling

In order to provide models with the correct inductive bias towards a new language,
in Chapter 3 I proposed to harness two sources of information, namely texts in other
languages and hand-crafted features from typological databases. I focused on the task of
character-level, open-vocabulary language modelling in a typologically diverse sample of
77 languages, and I compared different priors over neural weights and different scenarios
of data paucity.

• I leveraged the Laplace approximation for posterior inference over neural weights,
developed by MacKay (1992) and recently shown by Kirkpatrick et al. (2017) to
alleviate catastrophic forgetting, for cross-lingual transfer for the first time. This
approach surpassed state-of-the-art alternative methods for transfer such as fine-
tuning and uninformed priors by a large margin. Moreover, the results revealed that
the abundance of data (copious out-of-domain texts) is more helpful than quality
(few in-domain data points). In fact, the performances for zero-shot learning with
a universal prior obtained through the proposed method are superior to few-shot
learning with an uninformed prior.

• I complemented such prior by providing side information from typological features
about target languages. More specifically, I conditioned neural hidden states on
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them by adapting methods developed for language vector learning. In particular,
feature concatenation (Östling and Tiedemann, 2017) turned out to surpass both
hyper-networks2 (Platanios et al., 2018) and baselines without typological features
in a few-shot learning setting. On the other hand, in the zero-shot setting there
appeared to be no benefit in adding typological features. Hence, the evidence for
their usefulness is mixed. Possibly, this stems from issues of granularity, inconsis-
tency, and neglect of intra-language variation inherent to typological databases (see
Section 2.1).

• I studied the dynamics of the adaptation of the language universal prior to the
specifics of a target language after observing a few examples. A strong correlation
was found between zero-shot performance and similarity of unigram character
between source and target languages. However, this correlation vanishes in the
case of few-shot performance. This implies that the adaptation takes place quickly.
Moreover, probing the learned posterior unravelled that there are clearly distin-
guished sets of parameters with high and low signal-to-noise ratio. Retaining the
former unchanged prevents catastrophic forgetting. Finally, a quantitative analysis
demonstrated that the universal prior displays cross-lingual tendencies in terms of
syllable structure and consonant clusters, thus being truly imbued with universal
linguistic knowledge about phonotactics.

6.2.2 A Prior over Architectures for Language Understanding

In Chapter 4, I investigated how to construct a prior over neural weights and architectures
to facilitate natural language understanding in new languages, by building on recent
developments in neural architecture search. I evaluated the model on a newly created
evaluation benchmark for commonsense reasoning in 11 languages.

• I proposed a generalisation of current differentiable Neural Architecture Search
methods, such as DARTS (Liu et al., 2019) and SNAS (Xie et al., 2019), which
clarifies the implicit graphical model underlying them and enables more expressive
inference schemes. In particular, the bi-level optimisation at the core of those
methods can be interpreted as a version of empirical Bayes where a truncated
approximation of the neural weights in an inner loop is the starting point for a
point estimate of the neural architecture in an outer loop. Optimisation alternates
between the nested loops until convergence. Under this light, there emerges a

2Hyper-networks are trainable functions that generate the parameters of a subordinate network.
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hierarchical dependence of the two variables, neural weights and architecture
parameters. What is more, whereas Neural Architecture Search has been deployed
mostly in the visual domain, it is currently under-explored in the language domain.
In particular, its usage has been somewhat limited to the language modelling task.
In this thesis, its usage has been shown to be more broadly beneficial for downstream
applications such as natural language understanding. Another contribution of this
chapter consists in adapting NAS to the Transformer architecture, whereas previous
work focused entirely on recurrent architectures. Most crucially, this generalisation
allows for experimenting with alternative inference schemes (such as variational
methods) and with different parametrisations of the variables (in my case, modelling
the conditional probability of the neural weights given the architecture through a
hyper-network).

• To provide a challenging multilingual benchmark as a test-bed for the proposed
approach, I devised a novel dataset for cross-lingual commonsense causal reasoning
in 11 languages, XCOPA, whose translations and annotations were crowd-sourced.
The task is formulated as multiple-choice question answering: given a premise and
a question, the machine has to select the more reasonable between two hypothetical
answers. I proposed explicit metrics to quantify the typological, geographical, and
family diversity of a dataset. These drove the selection of languages in the sample,
according to the principle of variety maximisation. This ensures that evaluation
reflects the true expected performance of a model cross-lingually and its robustness
to rare features and distant languages. Finally, I streamlined an annotation protocol
that hybridises translation and example adaptation. In particular, I individuated
strategies to mitigate the sources of cross-lingual divergence, both cultural and
grammatical, to keep examples both comparable and idiomatic.

• I benchmarked a series of state-of-art multilingual encoders on XCOPA, where
XLM Large emerged victorious (Conneau et al., 2020). Moreover, I compared
several transfer learning setups: based on the results, validation on target language
data (rather than English) appeared superior (although by a little margin). Also, it
was beneficial to increment the training set with out-of-domain but related English
datasets such as SocialIQA (Sap et al., 2019). Most crucially, Neural Architecture
Search based on a hierarchical Bayesian model surpassed all equivalent baselines
with a fixed classifier architecture during fine-tuning, both in the zero-shot and
few-shot learning settings. This demonstrates the viability and efficiency of the
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proposed method, and its ability to prime the model towards the knowledge required
to solve complex causal reasoning.

6.2.3 Modular Design via Parameter Factorisation

Finally, Chapter 5 pursued the idea that models should be able to disentangle the aspects
of knowledge relevant to solve a specific combination of tasks and languages. This way,
they can be recombined in novel ways when facing unprecedented combinations. In fact,
while some of such combinations are documented with annotated data, most are not,
which precludes supervised learning. However, the missing data can be compensated for
by performing the high-level combinatorial generalisations typical of humans.

• I advocated for considering the space of neural parameters as a structured space,
where each possible combination of task and language defines a separate cell.
Accordingly, I defined a Bayesian generative model of neural parameters, where each
task–language-specific set of parameters is conditioned on variables representing
the task and language for a specific example. I also explored several approximate
inference schemes for the posteriors of task and language Gaussian distributions: a
diagonal approximation of their covariance, and a low-rank factored approximation.

• Evaluating the proposed model on zero-shot learning for 2 tasks (part-of-speech
tagging and named entity recognition) and 33 typologically diverse languages, I
compared its performance with state-of-the-art baselines relying on regular fine-
tuning. In this case, source languages were selected according to the similarity
of their typological features or the abundance of their annotated data. Based on
the results, parameter factorisation yields large gains due to its ability to take
advantage of jointly transferring knowledge from all source languages and tasks.
Rather than conflating disparate facets of linguistic knowledge into a fully shared
set of parameters, the proposed approach distils the regularities of each language
and task into a dedicated representation.

• By virtue of variational inference, I put forth a method to obtain an estimate of
the uncertainty of predictions—a crucial asset in radical domain shifts such as
cross-lingual transfer—with a simple approximation of Bayesian model averaging.
Crucially, I found an extremely strong correlation between the entropy of the
predictive posterior and the accuracy of the model. Thus, predictions in low-
confidence combinations can be rejected in block if they surpass a certain threshold.
This increases the model robustness in zero-shot learning.
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6.3 Implications and Discussion

The findings summarised in Section 6.2 have important implications for the two notions
at the core of the present thesis, namely inductive bias and modular design. In what
follows, I discuss them briefly in the context of the received wisdom in the literature.

6.3.1 Inductive Bias

The experiments in Chapter 3 and Chapter 4 elaborate on the established notion of
inductive bias. In fact, this is generally interpreted as the set of assumptions that enable
a model to generalise beyond samples encountered during training (Mitchell, 1980). This
definition can be operationalised more formally in terms of model support (MacKay,
2003; Wilson, 2019) as follows. Given a model M (for instance, a neural architecture
parameterised by α), weight parameters ϑ, and a series of datasets {D1, . . . ,Dn}, the
marginal likelihood of the i-th dataset equals p(Di | M) =

∫
p(Di | M,ϑ) p(ϑ) dϑ. The

support is then defined as {Di | p(Di | M) > 0}, the subset of datasets with a positive
marginal likelihood. A model with the correct inductive bias for a specific dataset
is consequently a model with the adequate distribution of marginal likelihood among
supported datasets, peaked around the one of interest. Or, otherwise stated, a model
assigning high probability to such a dataset notwithstanding the set of weight parameters
chosen.

In the case of natural language processing, let us assume that each ‘dataset’ consists
in a conceivable language with a bundle of typological features, including unlikely and
impossible ones. The latter may involve phonotactics (e.g. consonant clusters that are
unpronounceable given human anatomy), syntax (e.g. words with fixed linear positions
in a sentence) (Moro and Chomsky, 2015), or semantics (e.g. nonsense meanings like
‘Colorless green ideas sleep furiously’) (Chomsky, 1956, p. 116). A model with the correct
inductive bias should have no support for such datasets. Thus, the support should stretch
as far as a language is possible, in order to be able to learn any of the languages spoken
around the world. In addition, the marginal likelihood should also peak around likely
configurations, so that a model is facilitated learning them by contracting its parameters
around the true solution efficiently.

In this thesis, I stressed how the importance of an inductive bias towards language
not only stems from enhancing sample efficiency in machine learning, but also from
shedding light on what sorts of linguistic features are favoured in language acquisition. In
other words, probing the content of the inductive bias enables the extraction of positive
scientific knowledge about the learning process. In Chapter 3, I showed that probing the
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posterior over weights of a character-level language model yields common cross-lingual
patterns in terms of syllabic structure and phonotactics. Recently, McCoy et al. (2020)
reached a similar conclusion for morphological inflection. In their study, they show
that a point estimate of neural weights learned through meta-learning reflects specific
inductive biases in phonotactics depending on which languages the model is exposed
to. For instance, by carefully selecting the training languages, a preference for syllables
ending in a vowel (in Optimality Theory terms, NoCoda, cf. Smolensky and Prince
1993).

This line of research also opens up new frontiers for measuring the quality of inductive
biases. Throughout this thesis, I focused on comparing the performance of identical
models with and without the proposed inductive bias in downstream tasks under the same
regimes of data paucity, i.e. zero-shot and few-shot learning. However, the advantage
brought by different inductive biases could be quantified also as the difference in the
number of training examples needed to reach the same level of performance. Overall, it
should be noted that both these metrics are prone to flaws because, for instance, they
are accentuated based on the affinity between source and target languages. I investigated
this effect through similarity in unigram character distribution in Chapter 3 and family
relationship in Chapter 5.

6.3.2 Modular Design

The notion of modular design presented in this thesis hinges upon two desirable properties
of machine learning models: generalisation to unseen domains and disentanglement of
separable aspects of knowledge.

Generalisation is usually intended theoretically as the gap between train and test error.
Neural networks are deemed to excel in this respect (Bottou and Bousquet, 2008) (see also
Section 2.2.3). However, this definition has been impoverished in practice by evaluating
generalisation only in settings with identically distributed data across splits (Linzen,
2020, inter alia). It does not come as a surprise then, that neural networks faced with a
distribution shift become unreliable (Rabanser et al., 2019). In fact, rather than relying
on the linguistic structures and causal reasoning of humans, they often capture spurious
patterns, much like clever Hans (Niven and Kao, 2019). Since cross-lingual transfer may
constitute a rather extreme form of distribution shift, it is a better benchmark to assess
generalisation.

While my thesis in general is concerned with this challenge, in Chapter 5 I introduced
a second, higher-level notion of generalisation which does not concern individual test
examples, but rather the entire target domain, which is assumed to be previously unseen.
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The same way token-level compositionality is entailed in understanding grammatical yet
brand-new sentences, in this case a more abstract ‘compositionality’ should play a role
in reassembling relevant knowledge from observed domains. As argued in Chapter 5, this
requires the ability ‘to disentangle the factors of variation underlying the observed data’
given that they can be separately controlled (Bengio, 2013). Unlocking this ability is key
in building machines more similar to humans (Lake et al., 2017).

Moreover, to my knowledge, this is the first work pinpointing the importance of
modularity in learning neural models across different domains. In fact, modularity has
been shown to be crucial at the level of single episodes of a task, as it achieves better
generalisation and robustness to changes in the environment. The ideas at the core of
architectures implementing this principle, such as Recurrent Independent Mechanisms
(RIMs; Goyal et al., 2019), are: i) sparse interaction among independent modules; ii) soft
or hard competition of the modules to become active at every time step to attend to a
portion of the sensory input. Goyal et al. (2020) further expanded this framework by
enforcing a separation between objects (the states of each module) and schemata (the
mechanisms updating them, i.e. the recurrent network parameters).

In a certain way, these two level of modularity (one of RIMs and the other proposed in
this thesis) correspond to two levels of memory (Hill et al., 2020; Yogatama et al., 2021).
One level is short term and splits the job of tracking how the sensory input changes
across time among several processing units. The other kind of memory is long term, and
stores general aspects knowledge, which, bundled together in different combinations, are
needed to solve different tasks.

6.4 Future Work

Finally, the discussion in Section 6.3 leaves open ample scope for extending the notions
of inductive bias and modular design for neural models of language beyond the content
of this thesis. In this section, I elaborate on future work along these lines: in addition
to offering some detailed ideas for research in natural language processing, I also briefly
touch upon other newly opened possibilities for typological linguistics.

6.4.1 A Prior from Emergent Communication

Given the necessity of constructing a prior over neural networks that achieve sample-
efficient learning, the idea of cross-lingual knowledge transfer can be pushed even further.
Often, not even raw data for a target language are available for unsupervised pre-
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training. In this setting, one can exploit artificial languages emerging from a referential
game on raw images (Kazemzadeh et al., 2014; Lazaridou et al., 2017) as a source for
transfer. In particular, artificial agents can be encouraged to cooperate in identifying
images among distractors by communicating over vocabularies whose meanings are
unknown. The key intuition is that, whereas lexicalisation is mostly arbitrary (Saussure,
1916), communication grounded in a real-world environment (portrayed by images) does
constrain what languages are likely or possible (Croft, 2000; Haspelmath, 1999). Hence,
I hypothesise that the parameters of a recurrent model that have been optimised for
communication over raw images are a favourable starting point to initialise an encoder-
decoder model for downstream applications involving genuine natural languages, such as
few-shot neural machine translation. Some early results in this direction have already
been showcased by Li et al. (2020).

In the past, emergent communication has mostly attracted theoretical interest as a
tool to shed light on cooperative behaviours, the compositional properties of emergent
communication protocols (Cao et al., 2018; Havrylov and Titov, 2017; Kajić et al., 2020;
Lazaridou et al., 2017; Li and Bowling, 2019; Rodríguez Luna et al., 2020), and natural
language evolution (Graesser et al., 2019; Kottur et al., 2017). To my knowledge, this
would be the first preliminary study on deploying artificial languages from emergent
communication in natural language applications. Not only does this hold promise to
benefit downstream tasks in resource-learn scenarios in the long run, but also offers an
extrinsic evaluation of the properties of languages produced through emergent communi-
cation. In particular, one could study the impact of the rate of communication success
and maximum sequence length during pre-training on downstream performance.

6.4.2 Parameter Factorisation across Modalities

The success of parameter space factorisation for zero-shot transfer across languages and
tasks holds promise to improve generalisation capabilities in other aspects of linguistic
knowledge such as multiple modalities (e.g. text, vision, and speech). In fact, state-of-the-
art multi-modal neural networks are based on architectures similar to the one outlined in
Chapter 4: a Transformer-based encoder creates contextualised representations of text
and images, and a task-specific head relies on these representations for classification or
regression. For instance ViLBERT (Lu et al., 2019) reserves a separate encoding stream
for each modality, and fuses them together at a higher level through a co-attention
mechanism, that allows textual tokens to attend to image segments, and vice versa. For
instance, given a textual input XL, a visual input XV , and H attention heads, in higher
layers the Transformer attention mechanism is substituted with:
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where ⊕ stands for concatenation, and the parameters are specific for queries Q, keys
K, values V, and output O (Vaswani et al., 2017). The other architecture components,
included inter-layer FFNs, highway layers, and layer normalisation remain identical.

However, extending this naive approach beyond monolingual English models may lead
to a series of problems: 1) The proliferation of parameters without information sharing.
If each language is granted a private encoding stream, the number of resulting parameters
would multiply accordingly without taking advantage of cross-modal commonalities. 2)
Lack of generalisation. After observing two matched inputs of the domains English–vision
and English–Tamil, an ideal model should be able to encode Tamil–vision properly,
too; however, this is impossible under the existing approaches. Instead, how to share
information across modalities and languages, and let the model generalise on unseen
combinations?

A possible solution proposed in this thesis is parameter factorisation. In addition
to simply conditioning the generation of neural parameters for the classifier head, the
concurrence of multiple modalities requires to handle the encoder parameters similarly.
In particular, the weights in Equation (6.1) could be graphically dependent on variables
representing a specific language l, task t, and modality m, such that ϑbert ∼ p(· | l, t,m).
Following the method proposed in Chapter 5, such probability could be inferred through
a hyper-network mapping from variable samples to weight values. However, in this case
the cardinality |ϑbert| is massive, which makes such mapping memory-intensive. To
mitigate this problem, rather than generating all encoder parameters, factorisation could
be limited to Adapter layers (Houlsby et al., 2019).3

6.4.3 Gradient Typology

Finally, the perspective I advocated for, where machine learning is inspired by cross-
lingual variation and language acquisition, may help avert some fundamental limitations
of the current theoretical approaches to linguistic typology. In fact, typological database
documentation is incomplete, approximate, and discrete. As a consequence, it does not
fit well with the gradient and contextual models of machine learning.

However, typological databases are originally created from raw linguistic data. Hence,
a solution could involve learning typology from such data automatically (i.e. from scratch).

3Adapter layers are modules inserted between encoder layers, which remain fixed, after pre-training.
They are the only parameters trained during fine-tuning.
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This would capture the variation within languages at the level of individual examples,
and naturally encode typological information into continuous representations. These
goals have already been partly achieved by methods involving language vectors, heuristics
derived from morphosyntactic annotation, or distributional information from multi-
parallel texts (Ponti et al., 2019a). The main future challenge is the integration of
bottom-up typological information into machine learning models, as opposed to sourcing
typological features from databases.

Another alternative development of the usage of typological information for natu-
ral language processing could take inspiration from the family of methods known as
retrofitting or semantic specialisation. These methods inject external lexical knowledge
into distributed representations of words (Kamath et al., 2019; Majewska et al., 2020;
Mrkšić et al., 2017; Ponti et al., 2018b, 2019c, inter alia). Since typological knowledge
pertains each language in its entirety, or abstract formal strategies, it is not suitable to
enrich word-level embeddings. However, in Chapter 5 I showed how to create language
embeddings. Hence, typological information could be injected at this level instead to
refine language representations learned end-to-end from textual or labelled data.

The possibilities revealed by the experiments presented in the current thesis extend
beyond the research ideas detailed in the previous sections. A tighter integration of
the processes of learning of humans and machines touches upon several elements that
are left for future research. For instance, why are extremely early phases of learning
pivotal (Frankle et al., 2020)? Given that stimuli are limited, how important is it to
mimic ‘parentese’, the language mothers and fathers use to address their children, for
instance through curriculum learning (Elman, 1993)? Can we shed light on the cognitive
substratum of the cross-lingual tendencies in meaning-to-form mapping combining natural
language processing and brain imaging techniques (Toneva and Wehbe, 2019)? Hopefully,
the insights presented in this thesis will contribute to finding an answer to these open
questions.
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Background

A.1 Activation Functions and Derivatives

ϕ(x) dϕ(x)
dx

ReLU

0 if x ≤ 0
x if x > 0

0 if x ≤ 0
1 if x > 0

Tanh ex − e−x

ex + e−x 1− ϕ(x)2

Sigmoid 1
1 + e−x ϕ(x)(1− ϕ(x))

ϕ(xi)
∂ϕ(xi)

∂xj

Softmax ex1∑
j exj

ϕ(xi)(δi,j − ϕ(xj))

Table A.1 Common element-wise (top) and array-wise (bottom) non-linear activation
functions (left) and their total or partial derivatives (right). δij is the Kronecker delta: it
equals 1 if i = j and 0 if i ̸= j.





A
pp

en
di

x
B

A Prior over Weights for Language Modelling

B.1 List of iso 639-3 codes and language names

In Table B.1, the iso 639-3 codes for each language are associated with the corresponding
language name. In addition to this information, Table B.1 provides the total count of
characters for the three data splits, and the type-to-token ratio.

B.2 Typological Features

The 245 binarized typological features from Littell et al. (2017) that define the general
properties of each language are plotted as a heat map in Figure B.1. Features are related
to syntax if their name starts with S, to phonology if it starts with P , and to phonemic
inventories if it starts with INV . Note how some values are so rare that they belong
exclusively to a single language in the sample, e.g. the vowel /9/ for Thai.
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S_SVO
S_SOV
S_VSO
S_VOS
S_OVS
S_OSV

S_SUBJECT_BEFORE_VERB
S_SUBJECT_AFTER_VERB
S_OBJECT_AFTER_VERB
S_OBJECT_BEFORE_VERB

S_SUBJECT_BEFORE_OBJECT
S_SUBJECT_AFTER_OBJECT

S_GENDER_MARK
S_SEX_MARK

S_DEFINITE_AFFIX
S_DEFINITE_WORD

S_INDEFINITE_AFFIX
S_INDEFINITE_WORD
S_POSSESSIVE_PREFIX
S_POSSESSIVE_SUFFIX

S_ADPOSITION_BEFORE_NOUN
S_ADPOSITION_AFTER_NOUN
S_POSSESSOR_BEFORE_NOUN
S_POSSESSOR_AFTER_NOUN
S_ADJECTIVE_BEFORE_NOUN
S_ADJECTIVE_AFTER_NOUN

S_DEMONSTRATIVE_WORD_BEFORE_NOUN
S_DEMONSTRATIVE_WORD_AFTER_NOUN

S_DEMONSTRATIVE_SUFFIX
S_NUMERAL_BEFORE_NOUN
S_NUMERAL_AFTER_NOUN
S_RELATIVE_BEFORE_NOUN
S_RELATIVE_AFTER_NOUN

S_NOMINATIVE_VS_ACCUSATIVE_MARK
S_ERGATIVE_VS_ABSOLUTIVE_MARK
S_NEGATIVE_WORD_BEFORE_VERB

S_NEGATIVE_PREFIX
S_NEGATIVE_WORD_AFTER_VERB

S_NEGATIVE_SUFFIX
S_NEGATIVE_WORD_BEFORE_SUBJECT
S_NEGATIVE_WORD_AFTER_SUBJECT
S_NEGATIVE_WORD_BEFORE_OBJECT
S_NEGATIVE_WORD_AFTER_OBJECT

S_NEGATIVE_WORD_INITIAL
S_NEGATIVE_WORD_FINAL

S_NEGATIVE_WORD_ADJACENT_BEFORE_VERB
S_NEGATIVE_WORD_ADJACENT_AFTER_VERB

S_PLURAL_PREFIX
S_PLURAL_SUFFIX
S_PLURAL_WORD

S_OBJECT_HEADMARK
S_OBJECT_DEPMARK

S_POSSESSIVE_HEADMARK
S_POSSESSIVE_DEPMARK

S_TEND_HEADMARK
S_TEND_DEPMARK
S_TEND_PREFIX
S_TEND_SUFFIX
S_ANY_REDUP
S_CASE_PREFIX
S_CASE_SUFFIX

S_CASE_PROCLITIC
S_CASE_ENCLITIC
S_CASE_MARK

S_COMITATIVE_VS_INSTRUMENTAL_MARK
S_NUMCLASS_MARK

S_ADJECTIVE_WITHOUT_NOUN
S_PERFECTIVE_VS_IMPERFECTIVE_MARK

S_PAST_VS_PRESENT_MARK
S_FUTURE_AFFIX
S_TAM_PREFIX
S_TAM_SUFFIX

S_DEGREE_WORD_BEFORE_ADJECTIVE
S_DEGREE_WORD_AFTER_ADJECTIVE

S_POLARQ_MARK_INITIAL
S_POLARQ_MARK_FINAL

S_POLARQ_MARK_SECOND
S_POLARQ_WORD
S_POLARQ_AFFIX

S_SUBORDINATOR_WORD_BEFORE_CLAUSE
S_SUBORDINATOR_WORD_AFTER_CLAUSE

S_SUBORDINATOR_SUFFIX
S_PROSUBJECT_WORD
S_PROSUBJECT_AFFIX
S_PROSUBJECT_CLITIC
S_NEGATIVE_AFFIX
S_NEGATIVE_WORD

S_ANY_AGREEMENT_ON_ADJECTIVES
S_COMPLEMENTIZER_WORD_BEFORE_CLAUSE
S_COMPLEMENTIZER_WORD_AFTER_CLAUSE

S_VOX
S_XVO
S_OXV

S_OBLIQUE_AFTER_VERB
S_OBLIQUE_BEFORE_VERB

S_OBLIQUE_BEFORE_OBJECT
S_ARTICLE_WORD_BEFORE_NOUN
S_ARTICLE_WORD_AFTER_NOUN

P_VOICE
P_VOICED_PLOSIVES

P_VOICED_FRICATIVES
P_EJECTIVES

P_IMPLOSIVES
P_GLOTTALIZED_RESONANTS

P_UVULARS
P_UVULAR_STOPS

P_UVULAR_CONTINUANTS
P_LATERALS
P_LATERAL_L

P_LATERAL_OBSTRUENTS
P_NASAL_VOWELS

P_FRONT_ROUND_VOWELS
P_FRICATIVES

P_LABIAL_VELARS
P_CLICKS

P_TH
P_PHARYNGEALS

P_COMPLEX_ONSETS
P_TONE

P_VELAR_NASAL
P_VELAR_NASAL_INITIAL

P_CODAS
P_COMPLEX_CODAS
P_LONG_VOWELS

INV_OPEN_FRONT_UNROUNDED_VOWEL
INV_VOICED_BILABIAL_PLOSIVE

INV_VOICELESS_PALATAL_PLOSIVE
INV_VOICED_ALVEOLAR_PLOSIVE

INV_CLOSE_MID_FRONT_UNROUNDED_VOWEL
INV_VOICELESS_LABIODENTAL_FRICATIVE

INV_VOICELESS_GLOTTAL_FRICATIVE
INV_CLOSE_FRONT_UNROUNDED_VOWEL

INV_PALATAL_APPROXIMANT
INV_VOICELESS_VELAR_PLOSIVE

INV_ALVEOLAR_LATERAL_APPROXIMANT
INV_BILABIAL_NASAL
INV_ALVEOLAR_NASAL

INV_CLOSE_MID_BACK_UNROUNDED_VOWEL
INV_VOICELESS_BILABIAL_PLOSIVE
INV_VOICELESS_UVULAR_PLOSIVE

INV_ALVEOLAR_TRILL
INV_VOICELESS_ALVEOLAR_FRICATIVE
INV_VOICELESS_ALVEOLAR_PLOSIVE
INV_CLOSE_BACK_ROUNDED_VOWEL

INV_VOICED_LABIODENTAL_FRICATIVE
INV_VOICED_LABIAL_VELAR_APPROXIMANT

INV_VOICELESS_VELAR_FRICATIVE
INV_CLOSE_FRONT_ROUNDED_VOWEL

INV_OPEN_OPEN_MID_FRONT_UNROUNDED_VOWEL
INV_VOICELESS_PALATAL_FRICATIVE

INV_VOICED_DENTAL_FRICATIVE
INV_CLOSE_MID_FRONT_ROUNDED_VOWEL
INV_VOICELESS_PHARYNGEAL_FRICATIVE

INV_VELAR_NASAL
INV_OPEN_MID_FRONT_ROUNDED_VOWEL

INV_OPEN_OPEN_MID_CENTRAL_UNROUNDED_VOWEL
INV_OPEN_BACK_UNROUNDED_VOWEL
INV_OPEN_BACK_ROUNDED_VOWEL
INV_VOICED_BILABIAL_IMPLOSIVE

INV_OPEN_MID_BACK_ROUNDED_VOWEL
INV_VOICELESS_ALVEOPALATAL_FRICATIVE

INV_VOICED_RETROFLEX_PLOSIVE
INV_VOICED_ALVEOLAR_IMPLOSIVE

INV_CLOSE_MID_CENTRAL_UNROUNDED_VOWEL
INV_MID_CENTRAL_UNROUNDED_VOWEL

INV_OPEN_MID_FRONT_UNROUNDED_VOWEL
INV_OPEN_MID_CENTRAL_UNROUNDED_RHOTIC_VOWEL

INV_VOICED_PALATAL_PLOSIVE
INV_VOICED_UVULAR_PLOSIVE
INV_VOICED_VELAR_FRICATIVE

INV_VOICED_LABIAL_PALATAL_APPROXIMANT
INV_VOICED_GLOTTAL_FRICATIVE

INV_VOICELESS_POSTALVEOLAR_VELAR_FRICATIVE
INV_CLOSE_CENTRAL_UNROUNDED_VOWEL

INV_CLOSE_CLOSE_MID_HIGH_FRONT_UNROUNDED_VOWEL
INV_VOICELESS_ALVEOLAR_LATERAL_FRICATIVE

INV_VOICED_RETROFLEX_LATERAL_APPROXIMANT
INV_VOICED_ALVEOLAR_LATERAL_FRICATIVE

INV_CLOSE_BACK_UNROUNDED_VOWEL
INV_LABIODENTAL_NASAL

INV_PALATAL_NASAL
INV_RETROFLEX_NASAL

INV_CLOSE_MID_CENTRAL_ROUNDED_VOWEL
INV_VOICELESS_BILABIAL_FRICATIVE

INV_ALVEOLAR_APPROXIMANT
INV_RETROFLEX_APPROXIMANT

INV_RETROFLEX_FLAP
INV_ALVEOLAR_TAP
INV_UVULAR_TRILL

INV_UVULAR_APPROXIMANT
INV_VOICELESS_RETROFLEX_FRICATIVE

INV_VOICELESS_POSTALVEOLAR_FRICATIVE
INV_VOICELESS_RETROFLEX_PLOSIVE

INV_CLOSE_CENTRAL_ROUNDED_VOWEL
INV_LABIODENTAL_APPROXIMANT

INV_LABIODENTAL_FLAP
INV_OPEN_MID_BACK_UNROUNDED_VOWEL
INV_VOICELESS_LABIO_VELAR_FRICATIVE
INV_PALATAL_LATERAL_APPROXIMANT

INV_CLOSE_CLOSE_MID_HIGH_FRONT_ROUNDED_VOWEL
INV_VOICED_RETROFLEX_FRICATIVE

INV_VOICED_ALVEOPALATAL_FRICATIVE
INV_VOICED_POSTALVEOLAR_FRICATIVE

INV_GLOTTAL_PLOSIVE
INV_VOICED_PHARYNGEAL_FRICATIVE

INV_VOICED_PALATAL_FRICATIVE
INV_VOICED_BILABIAL_FRICATIVE

INV_VOICELESS_DENTAL_FRICATIVE
INV_VOICED_UVULAR_FRICATIVE
INV_PLACE_PALATALIZED_LAB

INV_PLACE_LABIOVELARIZED_LAB
INV_PLACE_LABIOVELAR

INV_PLACE_MANNER_LABIOVELAR_OBS
INV_PLACE_DENTAL

INV_PLACE_LABIOVELARIZED_ALVEOLAR
INV_PLACE_ALVEOLAR

INV_PLACE_PALATOALVEOLAR
INV_PLACE_ALVEOPALATAL

INV_PLACE_PALATAL
INV_PLACE_RETROFLEX

INV_PLACE_MANNER_RETROFLEX_OBS
INV_PLACE_PALATALIZED_VELAR

INV_PLACE_LABIOVELARIZED_VELAR
INV_PLACE_UVULAR

INV_PLACE_PHAR_EPIGLOTTAL
INV_PLACE_GLOTTAL

INV_PLACE_FRONT_ROUND
INV_APICICAL_LAMIMANL

INV_VELAR_UVULAR
INV_NASAL_MINUS_NASAL
INV_TENSE_MINUS_TENSE

INV_ROUND_MINUS_ROUND
INV_HI_MINUS_HI
INV_LO_MINUS_LO

INV_VOWEL_3
INV_VOWEL_4
INV_VOWEL_5
INV_VOWEL_6
INV_VOWEL_7
INV_VOW_8
INV_VOW_9

INV_VOW_10_MORE
INV_CONS_ASP

INV_OBS_VD_VLESS
INV_CONT_VD_VLESS
INV_SON_VD_VLESS
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Figure B.1 Binary values of the typological features from Littell et al. (2017) (y-axis) for
each language (x-axis).
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iso Name Train
char

Dev
char

Eval
char

Typ /
Tok

iso Name Train
char

Dev
char

Eval
char

Typ /
Tok

acu Achuar 1149777 136773 119849 5.902−05 kbh Camsa 1373946 144068 140039 5.307−05

afr Afrikaans 3229549 413064 437532 1.985−05 kek Q’eqchi’ 4375494 525831 517455 1.735−05

agr Aguaruna 991098 118726 103237 6.348−05 lat Latin 2700731 325553 342365 1.514−05

ake Akawaio 960849 113905 111793 5.141−05 lav Latvian 644923 77572 78263 1.161−04

alb Albanian 3152312 402399 427612 1.808−05 lit Lithuanian 2531703 313391 309237 2.536−05

amu Amuzgo 1156128 142241 132194 5.662−05 mam Mam 1053107 119781 112869 6.222−05

bsn Barasana 1397953 171482 162042 4.736−05 mri Maori 3504361 437499 456364 1.501−05

cak Cakchiquel 1404839 169031 161609 4.033−05 nhg Nahuatl 1126416 135355 126213 5.548−05

ceb Cebuano 3985326 509809 536615 1.471−05 nld Dutch 3224058 392079 416432 2.033−05

ces Czech 2756308 349505 371027 2.675−05 nor Norwegian 2941245 374161 392574 2.508−05

cha Chamorro 641087 66469 67935 1.032−04 pck Paite 3174091 404462 401042 1.784−05

chq Chinantec 1548993 174921 164087 4.502−05 plt Malagasy 3744462 468678 477671 1.705−05

cjp Cabecar 856441 100035 97246 8.256−05 pol Polish 2963005 374471 398263 2.088−05

cni Campa 1149737 133104 120600 3.990−05 por Portuguese 3010541 380551 404559 2.450−05

dan Danish 2774922 364278 385352 2.298−05 pot Potawatomi 212243 25336 24020 1.911−04

deu German 3195266 391700 417235 2.023−05 ppk Uma 1050858 115947 110127 5.090−05

dik Dinka 716411 84429 81572 6.800−05 quc K’iche’ 1153252 131623 127281 5.382−05

dje Zarma 3126629 372921 405747 1.767−05 quw Quichua 792834 93791 90930 8.593−05

djk Aukan 1083303 129770 124682 5.083−05 rom Romani 818094 91328 89036 7.912−05

dop Lukpa 864347 96068 95094 6.442−05 ron Romanian 3107966 394280 419241 1.760−05

eng English 3238389 418697 450324 1.509−05 shi Tachelhit 738833 82470 79965 5.659−05

epo Esperanto 3029361 391874 409980 1.514−05 slk Slovak 2821379 361684 385812 2.662−05

est Estonian 778681 177680 5329 8.007−05 slv Slovene 2883854 369397 381124 2.366−05

eus Basque 801072 94904 93712 7.073−05 sna Shona 3013970 384548 407708 2.154−05

ewe Ewe 870990 97081 94738 9.315−05 som Somali 3750398 468849 498051 1.314−05

fin Finnish 3195802 402386 426808 1.789−05 spa Spanish 3082800 388079 410641 2.190−05

fra French 3246315 404464 435820 2.129−05 srp Serbian 2503088 319878 341496 2.402−05

gbi Galela 1347199 144215 129606 4.442−05 ssw Swahili 763781 84855 82704 6.979−05

gla Gaelic 68110 6802 7167 5.848−04 swe Swedish 3206128 403712 427604 1.932−05

glv Manx 392897 58690 48239 1.360−04 tgl Tagalog 3848347 477839 505730 1.283−05

hat Creole 3332162 400606 440487 1.989−05 tmh Tuareg 270666 30146 31636 2.436−04

hrv Croatian 2594494 340781 359694 2.549−05 tur Turkish 2719803 318179 345666 2.601−05

hun Hungarian 3020721 376738 408697 2.391−05 usp Uspanteco 1134539 131631 125891 5.747−05

ind Indonesian 3528757 405822 454277 1.823−05 vie Vietnamese 3194226 379697 417496 4.635−05

isl Icelandic 2968652 376562 389091 2.517−05 wal Wolaytta 837506 98141 96951 6.004−05

ita Italian 2979890 388587 409629 2.091−05 wol Wolof 683480 80261 77575 8.201−05

jak Jakalteko 1116611 131793 122853 5.615−05 xho Xhosa 3005476 377342 399338 1.692−05

jiv Shuar 888886 98309 97483 5.624−05 zul Zulu 690644 80944 77975 8.946−05

kab Kabyle 798503 91677 87964 7.770−05

Table B.1 Stats for all languages part of the corpus: for each iso 639-3 code, I list (from
left to right) the language name, the character count (in the train, development, and
evaluation sets), and the type-to-token ratio.
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C.1 Detailed Translation Guidelines

Translation of the English COPA validation and test set instances into each of the 11
languages was carried out by a single translator per language, meeting the following
eligibility criteria: (i) a native speaker of the target language, (ii) fluent in English,
(iii) with minimum undergraduate education level. Each translator was presented with
translation guidelines and a spreadsheet accessible online, containing one English premise-
prompt-hypothesis triple per line, followed by an empty line where target translations
were entered. The task consisted in (a) identifying the correct alternative for the English
premise and (b) translating the premise and both alternative hypotheses into the target
language, preserving the causal relations present in the original. Each translator worked
independently (using any external resources, such as English-target language dictionaries,
if needed) and completed the task in its entirety, producing 100 validation and 500 test
instance translations, and a label for each. To ensure the output preserves the lexical,
temporal, and causal relations present in the original triples, the guidelines instructed to:

1. maintain the original correspondence relations between lexical items, i.e., if the
same English word appeared both in the premise and the alternatives (Premise:
The friends decided to share the hamburger.; A1: They cut the hamburger in half.;
A2: They ordered fries with the hamburger.), it was translated into the same
target-language equivalent in all three translated sentences;
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Figure C.1 Heatmap of the entropy of the distributions of WALS features (x axis) in
language samples from famous cross-lingual datasets outlined in Section 5.6 (y axis).

2. ensure that the original chronology and temporal extension of events is preserved
through appropriate choice of verbal tense and aspect in the target language, e.g.,
maintaining the distinction between perfective and imperfective aspect (Premise:
My eyes became red and puffy. [perf], A1: I was sobbing. [imperf], A2: I was
laughing. [imperf];

3. in case of English words with no exact translations in the target language or referring
to concepts absent from the target language culture (e.g., peach), the following
solutions were to be adopted, in order of preference: (1) using a common loanword
from another language, provided it is understood by the general population of
target-language speakers; (2) using a periphrasis to describe the same concept
(e.g., a juicy fruit); (3) substituting the original concept with a similar one that is
more familiar to the target language speaker community (e.g., santol), provided
that it can play a similar role in the causal relations captured by the original
premise-prompt-hypothesis triple;

The translators were encouraged to split the workload into multiple sessions with
breaks in between. On average, the task took 20 hours of work to complete. Additionally,
translators were encouraged to provide feedback, commenting on translation challenges
and chosen solutions.
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Setup Model EN ET HT ID IT QU SW TA TH TR VI ZH

CO-ZS

XLM-R 57.6 59.8 49.4 58 56 50.7 57.2 56.6 52.8 56.2 58.5 56.6
XLM-R-L 53 49.6 55.8 53 52.4 48 54 51.4 51.8 51 56 53
MBERT 62 50.6 51.4 55 53.8 54.7 53.6 52 53.2 56.8 55.4 59
USE 63 53.8 49.4 57.6 60 48.3 52.2 53 57.2 55 54.8 60.2

CO-TLV

XLM-R 57.6 57.8 48.6 60.8 54.4 49.5 55.4 55.8 54.2 54.8 57.6 57.2
XLM-R-L 53 49.4 47.8 51.4 53.6 54.2 50 47.8 53 50.6 58.2 51
MBERT 62 52 52.6 58.2 55 52.7 53 52 52.4 53.8 52.6 61.8
USE 63 49.4 49.6 57.6 62 54 50.8 53.6 58.6 56.2 51.4 59.2

SI-ZS

XLM-R 68 59.4 49.2 67.2 63.6 51 57.6 58.8 61.6 60.4 65.8 66
XLM-R-L 85 70.4 53.4 79.4 72.8 50.2 60.8 71 69.4 71.2 76 78.2
MBERT 62.2 55.2 51.4 57 57 50.2 51 52.2 51 53.2 59.2 64.4
USE 62.6 51.6 46.8 60.2 61.8 50.5 52.4 48.8 60.8 54.6 54.8 63

SI+CO-ZS

XLM-R 66.8 58 51.4 65 60.2 51.2 52 58.4 62 56.6 65.6 68.8
XLM-R-L 84.2 68.8 52.8 79.8 72.4 50.7 59.4 68.2 67.2 71.2 73.8 76.2
MBERT 63.2 52.2 54 59.4 57.2 48 56 54.6 51.2 57.4 58 65.6
USE 63.8 51.2 48.4 57.6 61.8 52 51.8 47 58 55.6 51 60.2

SI+CO-TLV

XLM-R 66.8 59.4 50 71 61.6 46 58.8 60 63.2 62.2 67.6 67.4
XLM-R-L 84.2 71.4 52.8 79.8 72.6 52 59.2 73 72.8 74.4 73.8 78.6
MBERT 63.2 52.2 51.8 58.2 57.2 53 51 57.2 52.6 54.6 57.8 52.4
USE 63.8 51.8 47.8 56.6 61.6 52.2 52.4 47 59.8 54.4 52.8 60.6

Table C.1 Detailed per-language XCOPA results. None of the models was exposed to ht
and qu in pretraining. USE was exposed in pretraining only to it, th, tr, and zh.

C.2 Grammatical Tense and Aspect in Translation

The scenarios included in COPA refer to events that took place in the past and are
formulated in what can be described as a narrative register (one of the sources from
which question topics were drawn was a corpus of personal stories published online
(Gordon and Swanson, 2009)). This is grammatically rendered exclusively by means of
past simple (preterite) or past continuous (imperfect) verb forms. Temporal anteriority
of a hypothesis sentence with respect to the premise is not grammatically marked (e.g.,
with a past perfect verb form) and can only be deduced based on the prompt (“What
was the cause of this?”). The preterite-imperfect contrast used in English to distinguish
background states (imperfective) from the main event (perfective) (e.g., I was expecting
company. imperf vs. I tidied up my house. perf) is not universally applicable and
different languages employ different discourse grounding strategies (Hopper, 1979), which
has interesting implications for the multilingual extension of COPA to XCOPA.
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In the languages with grammatical tense different strategies are employed to capture
the perfective-imperfective distinction, which is prominent in COPA. For example, in
Haitian Creole, the simple past marker te is used to indicate a bounded event in the
past, while the continuous aspect is signaled with an ap marker. Italian additionally
distinguishes between two perfective past tenses, expressed by means of a simple and
compound past (vidi - ho visto, ‘I saw’). The opposition is between completed actions
whose effects are detached from the present and those with persisting effects on the
present. Both contrast with the imperfect, which emphasises the event’s extension or
repetition in time. Given that the opposition is a matter of the speaker’s perspective on
events rather than based on deixis (remote versus proximate past), the translator opted
for the most natural choice given a specific context/situation.

C.3 Hyper-Parameter Search

For MBERT and XLM-R I searched the following hyperparameter grid in both SIQA
and COPA training: learning rate ∈ {5 · 10−6, 10−5, 3 · 10−5}, dropout rate (applied to
the output layer of the transformer and the hidden layer of the feed-forward scoring net)
∈ 0, 0.1, and batch size ∈ {4, 8}. For USE, I searched over different values for the learning
rate, {10−3, 10−4, 10−5}. I evaluated the performance on the respective development set
every 500 updates for SIQA and every 10 updates for COPA and stopped the training if
there was no improvement over 10 consecutive evaluations. In all setups, I optimised the
parameters with the Adam algorithm (Kingma and Ba, 2015) (ϵ = 10−8, no weight decay
nor warmup) and clipped the norms of gradients in single updates to 1.0.

C.4 Full Results (Per Language)

Table C.1 contains the detailed per language results for all XCOPA languages and all
five of the evaluation setups (CO-ZS, CO-TLV, SI-ZS, SI+CO-ZS, SI+CO-TLV).
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Name Lang Vocab Params URL

mBERT Multiling. 119K 125M https://huggingface.co/
bert-base-multilingual-cased

XLM-R Multiling. 250K 125M https://huggingface.co/xlm-roberta-base
XLM-R-L Multiling. 250K 355M https://huggingface.co/xlm-roberta-large

Table C.2 Pretrained transformers used in Chapter 4.

C.5 Code and Dependencies

The code is built on top of the HuggingFace Transformers framework: https://github.
com/huggingface/transformers. Table C.2 details the LM-pretrained transformer models
from this framework which I exploited in this work. For the experiments with USE, I
encoded the sequences with the pretrained multilingual (16 languages) encoder available
from: https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3. Besides
the Transformers library and USE, the code only relies on standard Python’s scientific
computing libraries (e.g., numpy).

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/xlm-roberta-base
https://huggingface.co/xlm-roberta-large
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3
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