1,773 research outputs found

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper

    The future of computing beyond Moore's Law.

    Get PDF
    Moore's Law is a techno-economic model that has enabled the information technology industry to double the performance and functionality of digital electronics roughly every 2 years within a fixed cost, power and area. Advances in silicon lithography have enabled this exponential miniaturization of electronics, but, as transistors reach atomic scale and fabrication costs continue to rise, the classical technological driver that has underpinned Moore's Law for 50 years is failing and is anticipated to flatten by 2025. This article provides an updated view of what a post-exascale system will look like and the challenges ahead, based on our most recent understanding of technology roadmaps. It also discusses the tapering of historical improvements, and how it affects options available to continue scaling of successors to the first exascale machine. Lastly, this article covers the many different opportunities and strategies available to continue computing performance improvements in the absence of historical technology drivers. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'

    BigDataBench: a Big Data Benchmark Suite from Internet Services

    Full text link
    As architecture, systems, and data management communities pay greater attention to innovative big data systems and architectures, the pressure of benchmarking and evaluating these systems rises. Considering the broad use of big data systems, big data benchmarks must include diversity of data and workloads. Most of the state-of-the-art big data benchmarking efforts target evaluating specific types of applications or system software stacks, and hence they are not qualified for serving the purposes mentioned above. This paper presents our joint research efforts on this issue with several industrial partners. Our big data benchmark suite BigDataBench not only covers broad application scenarios, but also includes diverse and representative data sets. BigDataBench is publicly available from http://prof.ict.ac.cn/BigDataBench . Also, we comprehensively characterize 19 big data workloads included in BigDataBench with varying data inputs. On a typical state-of-practice processor, Intel Xeon E5645, we have the following observations: First, in comparison with the traditional benchmarks: including PARSEC, HPCC, and SPECCPU, big data applications have very low operation intensity; Second, the volume of data input has non-negligible impact on micro-architecture characteristics, which may impose challenges for simulation-based big data architecture research; Last but not least, corroborating the observations in CloudSuite and DCBench (which use smaller data inputs), we find that the numbers of L1 instruction cache misses per 1000 instructions of the big data applications are higher than in the traditional benchmarks; also, we find that L3 caches are effective for the big data applications, corroborating the observation in DCBench.Comment: 12 pages, 6 figures, The 20th IEEE International Symposium On High Performance Computer Architecture (HPCA-2014), February 15-19, 2014, Orlando, Florida, US

    Energy Efficient Ethernet on MapReduce Clusters: Packet Coalescing To Improve 10GbE Links

    Get PDF
    An important challenge of modern data centers is to reduce energy consumption, of which a substantial proportion is due to the network. Switches and NICs supporting the recent energy efficient Ethernet (EEE) standard are now available, but current practice is to disable EEE in production use, since its effect on real world application performance is poorly understood. This paper contributes to this discussion by analyzing the impact of EEE on MapReduce workloads, in terms of performance overheads and energy savings. MapReduce is the central programming model of Apache Hadoop, one of the most widely used application frameworks in modern data centers. We find that, while 1GbE links (edge links) achieve good energy savings using the standard EEE implementation, optimum energy savings in the 10 GbE links (aggregation and core links) are only possible, if these links employ packet coalescing. Packet coalescing must, however, be carefully configured in order to avoid excessive performance degradation. With our new analysis of how the static parameters of packet coalescing perform under different cluster loads, we were able to cover both idle and heavy load periods that can exist on this type of environment. Finally, we evaluate our recommendation for packet coalescing for 10 GbE links using the energy-delay metric. This paper is an extension of our previous work [1], which was published in the Proceedings of the 40th Annual IEEE Conference on Local Computer Networks (LCN 2015).This work was supported in part by the European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant 610456 (EUROSERVER), in part by the Spanish Government through the Severo Ochoa programme (SEV-2011-00067 and SEV-2015-0493), in part by the Spanish Ministry of Economy a nd Competitiveness under Contract TIN2012-34557 and Contract TIN2015-65316-P, and in part by the Generalitat de Catalunya under Contract 2014-SGR-1051 and Contract 2014-SGR-1272.Peer ReviewedPostprint (author's final draft

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft
    • …
    corecore