590 research outputs found

    Communication of Digital Material Appearance Based on Human Perception

    Get PDF
    Im alltägliche Leben begegnen wir digitalen Materialien in einer Vielzahl von Situationen wie beispielsweise bei Computerspielen, Filmen, Reklamewänden in zB U-Bahn Stationen oder beim Online-Kauf von Kleidungen. Während einige dieser Materialien durch digitale Modelle repräsentiert werden, welche das Aussehen einer bestimmten Oberfläche in Abhängigkeit des Materials der Fläche sowie den Beleuchtungsbedingungen beschreiben, basieren andere digitale Darstellungen auf der simplen Verwendung von Fotos der realen Materialien, was zB bei Online-Shopping häufig verwendet wird. Die Verwendung von computer-generierten Materialien ist im Vergleich zu einzelnen Fotos besonders vorteilhaft, da diese realistische Erfahrungen im Rahmen von virtuellen Szenarien, kooperativem Produkt-Design, Marketing während der prototypischen Entwicklungsphase oder der Ausstellung von Möbeln oder Accesoires in spezifischen Umgebungen erlauben. Während mittels aktueller Digitalisierungsmethoden bereits eine beeindruckende Reproduktionsqualität erzielt wird, wird eine hochpräzise photorealistische digitale Reproduktion von Materialien für die große Vielfalt von Materialtypen nicht erreicht. Daher verwenden viele Materialkataloge immer noch Fotos oder sogar physikalische Materialproben um ihre Kollektionen zu repräsentieren. Ein wichtiger Grund für diese Lücke in der Genauigkeit des Aussehens von digitalen zu echten Materialien liegt darin, dass die Zusammenhänge zwischen physikalischen Materialeigenschaften und der vom Menschen wahrgenommenen visuellen Qualität noch weitgehend unbekannt sind. Die im Rahmen dieser Arbeit durchgeführten Untersuchungen adressieren diesen Aspekt. Zu diesem Zweck werden etablierte digitalie Materialmodellen bezüglich ihrer Eignung zur Kommunikation von physikalischen und sujektiven Materialeigenschaften untersucht, wobei Beobachtungen darauf hinweisen, dass ein Teil der fühlbaren/haptischen Informationen wie z.B. Materialstärke oder Härtegrad aufgrund der dem Modell anhaftenden geometrische Abstraktion verloren gehen. Folglich wird im Rahmen der Arbeit das Zusammenspiel der verschiedenen Sinneswahrnehmungen (mit Fokus auf die visuellen und akustischen Modalitäten) untersucht um festzustellen, welche Informationen während des Digitalisierungsprozesses verloren gehen. Es zeigt sich, dass insbesondere akustische Informationen in Kombination mit der visuellen Wahrnehmung die Einschätzung fühlbarer Materialeigenschaften erleichtert. Eines der Defizite bei der Analyse des Aussehens von Materialien ist der Mangel bezüglich sich an der Wahnehmung richtenden Metriken die eine Beantwortung von Fragen wie z.B. "Sind die Materialien A und B sich ähnlicher als die Materialien C und D?" erlauben, wie sie in vielen Anwendungen der Computergrafik auftreten. Daher widmen sich die im Rahmen dieser Arbeit durchgeführten Studien auch dem Vergleich von unterschiedlichen Materialrepräsentationen im Hinblick auf. Zu diesem Zweck wird eine Methodik zur Berechnung der wahrgenommenen paarweisen Ähnlichkeit von Material-Texturen eingeführt, welche auf der Verwendung von Textursyntheseverfahren beruht und sich an der Idee/dem Begriff der geradenoch-wahrnehmbaren Unterschiede orientiert. Der vorgeschlagene Ansatz erlaubt das Überwinden einiger Probleme zuvor veröffentlichter Methoden zur Bestimmung der Änhlichkeit von Texturen und führt zu sinnvollen/plausiblen Distanzen von Materialprobem. Zusammenfassend führen die im Rahmen dieser Dissertation dargestellten Inhalte/Verfahren zu einem tieferen Verständnis bezüglich der menschlichen Wahnehmung von digitalen bzw. realen Materialien über unterschiedliche Sinne, einem besseren Verständnis bzgl. der Bewertung der Ähnlichkeit von Texturen durch die Entwicklung einer neuen perzeptuellen Metrik und liefern grundlegende Einsichten für zukünftige Untersuchungen im Bereich der Perzeption von digitalen Materialien.In daily life, we encounter digital materials and interact with them in numerous situations, for instance when we play computer games, watch a movie, see billboard in the metro station or buy new clothes online. While some of these virtual materials are given by computational models that describe the appearance of a particular surface based on its material and the illumination conditions, some others are presented as simple digital photographs of real materials, as is usually the case for material samples from online retailing stores. The utilization of computer-generated materials entails significant advantages over plain images as they allow realistic experiences in virtual scenarios, cooperative product design, advertising in prototype phase or exhibition of furniture and wearables in specific environments. However, even though exceptional material reproduction quality has been achieved in the domain of computer graphics, current technology is still far away from highly accurate photo-realistic virtual material reproductions for the wide range of existing categories and, for this reason, many material catalogs still use pictures or even physical material samples to illustrate their collections. An important reason for this gap between digital and real material appearance is that the connections between physical material characteristics and the visual quality perceived by humans are far from well-understood. Our investigations intend to shed some light in this direction. Concretely, we explore the ability of state-of-the-art digital material models in communicating physical and subjective material qualities, observing that part of the tactile/haptic information (eg thickness, hardness) is missing due to the geometric abstractions intrinsic to the model. Consequently, in order to account for the information deteriorated during the digitization process, we investigate the interplay between different sensing modalities (vision and hearing) and discover that particular sound cues, in combination with visual information, facilitate the estimation of such tactile material qualities. One of the shortcomings when studying material appearance is the lack of perceptually-derived metrics able to answer questions like "are materials A and B more similar than C and D?", which arise in many computer graphics applications. In the absence of such metrics, our studies compare different appearance models in terms of how capable are they to depict/transmit a collection of meaningful perceptual qualities. To address this problem, we introduce a methodology to compute the perceived pairwise similarity between textures from material samples that makes use of patch-based texture synthesis algorithms and is inspired on the notion of Just-Noticeable Differences. Our technique is able to overcome some of the issues posed by previous texture similarity collection methods and produces meaningful distances between samples. In summary, with the contents presented in this thesis we are able to delve deeply in how humans perceive digital and real materials through different senses, acquire a better understanding of texture similarity by developing a perceptually-based metric and provide a groundwork for further investigations in the perception of digital materials

    Designing with and for people living with visual impairments: audio-tactile mock-ups, audio diaries and participatory prototyping

    Get PDF
    © 2015 Taylor & Francis. Methods used to engage users in the design process often rely on visual techniques, such as paper prototypes, to facilitate the expression and communication of design ideas. The visual nature of these tools makes them inaccessible to people living with visual impairments. In addition, while using visual means to express ideas for designing graphical interfaces is appropriate, it is harder to use them to articulate the design of non-visual displays. In this article, we present an approach to conducting participatory design with people living with visual impairments incorporating various techniques to help make the design process accessible. We reflect on the benefits and challenges that we encountered when employing these techniques in the context of designing cross-modal interactive tools

    The Graphical Access Challenge for People with Visual Impairments: Positions and Pathways Forward

    Get PDF
    Graphical access is one of the most pressing challenges for individuals who are blind or visually impaired. This chapter discusses some of the factors underlying the graphics access challenge, reviews prior approaches to addressing this long-standing information access barrier, and describes some promising new solutions. We specifically focus on touchscreen-based smart devices, a relatively new class of information access technologies, which our group believes represent an exemplary model of user-centered, needs-based design. We highlight both the challenges and the vast potential of these technologies for alleviating the graphics accessibility gap and share the latest results in this line of research. We close with recommendations on ideological shifts in mindset about how we approach solving this vexing access problem, which will complement both technological and perceptual advancements that are rapidly being uncovered through a growing research community in this domain

    Making Graphical Information Accessible Without Vision Using Touch-based Devices

    Get PDF
    Accessing graphical material such as graphs, figures, maps, and images is a major challenge for blind and visually impaired people. The traditional approaches that have addressed this issue have been plagued with various shortcomings (such as use of unintuitive sensory translation rules, prohibitive costs and limited portability), all hindering progress in reaching the blind and visually-impaired users. This thesis addresses aspects of these shortcomings, by designing and experimentally evaluating an intuitive approach —called a vibro-audio interface— for non-visual access to graphical material. The approach is based on commercially available touch-based devices (such as smartphones and tablets) where hand and finger movements over the display provide position and orientation cues by synchronously triggering vibration patterns, speech output and auditory cues, whenever an on-screen visual element is touched. Three human behavioral studies (Exp 1, 2, and 3) assessed usability of the vibro-audio interface by investigating whether its use leads to development of an accurate spatial representation of the graphical information being conveyed. Results demonstrated efficacy of the interface and importantly, showed that performance was functionally equivalent with that found using traditional hardcopy tactile graphics, which are the gold standard of non-visual graphical learning. One limitation of this approach is the limited screen real estate of commercial touch-screen devices. This means large and deep format graphics (e.g., maps) will not fit within the screen. Panning and zooming operations are traditional techniques to deal with this challenge but, performing these operations without vision (i.e., using touch) represents several computational challenges relating both to cognitive constraints of the user and technological constraints of the interface. To address these issues, two human behavioral experiments were conducted, that assessed the influence of panning (Exp 4) and zooming (Exp 5) operations in non-visual learning of graphical material and its related human factors. Results from experiments 4 and 5 indicated that the incorporation of panning and zooming operations enhances the non-visual learning process and leads to development of more accurate spatial representation. Together, this thesis demonstrates that the proposed approach —using a vibro-audio interface— is a viable multimodal solution for presenting dynamic graphical information to blind and visually-impaired persons and supporting development of accurate spatial representations of otherwise inaccessible graphical materials

    Amplifying Actions - Towards Enactive Sound Design

    Get PDF
    Recently, artists and designers have begun to use digital technologies in order to stimulate bodily interaction, while scientists keep revealing new findings about sensorimotor contingencies, changing the way in which we understand human knowledge. However, implicit knowledge generated in artistic projects can become difficult to transfer and scientific research frequently remains isolated due to specific disciplinary languages and methodologies. By mutually enriching holistic creative approaches and highly specific scientific ways of working, this doctoral dissertation aims to set the foundation for Enactive Sound Design. It is focused on sound that engages sensorimotor experience that has been neglected within the existing design practices. The premise is that such a foundation can be best developed if grounded in transdisciplinary methods that bring together scientific and design approaches. The methodology adopted to achieve this goal is practice-based and supported by theoretical research and project analysis. Three different methodologies were formulated and evaluated during this doctoral study, based on a convergence of existing methods from design, psychology and human-computer interaction. First, a basic design approach was used to engage in a reflective creation process and to extend the existing work on interaction gestalt through hands-on activities. Second, psychophysical experiments were carried out and adapted to suit the needed shift from reception-based tests to a performance-based quantitative evaluation. Last, a set of participatory workshops were developed and conducted, within which the enactive sound exercises were iteratively tested through direct and participatory observation, questionnaires and interviews. A foundation for Enactive Sound Design developed in this dissertation includes novel methods that have been generated by extensive explorations into the fertile ground between basic design education, psychophysical experiments and participatory design. Combining creative practices with traditional task analysis further developed this basic design approach. The results were a number of abstract sonic artefacts conceptualised as the experimental apparatuses that can allow psychologists to study enactive sound experience. Furthermore, a collaboration between designers and scientists on a psychophysical study produced a new methodology for the evaluation of sensorimotor performance with tangible sound interfaces.These performance experiments have revealed that sonic feedback can support enactive learning. Finally, participatory workshops resulted in a number of novel methods focused on a holistic perspective fostered through a subjective experience of self-producing sound. They indicated the influence that such an approach may have on both artists and scientists in the future. The role of designer, as a scientific collaborator within psychological research and as a facilitator of participatory workshops, has been evaluated. Thus, this dissertation recommends a number of collaborative methods and strategies that can help designers to understand and reflectively create enactive sound objects. It is hoped that the examples of successful collaborations between designers and scientists presented in this thesis will encourage further projects and connections between different disciplines, with the final goal of creating a more engaging and a more aware sonic future.European Commission 6th Framework and European Science Foundation (COST Action

    As light as your footsteps: altering walking sounds to change perceived body weight, emotional state and gait

    Get PDF
    An ever more sedentary lifestyle is a serious problem in our society. Enhancing people’s exercise adherence through technology remains an important research challenge. We propose a novel approach for a system supporting walking that draws from basic findings in neuroscience research. Our shoe-based prototype senses a person’s footsteps and alters in real-time the frequency spectra of the sound they produce while walking. The resulting sounds are consistent with those produced by either a lighter or heavier body. Our user study showed that modified walking sounds change one’s own perceived body weight and lead to a related gait pattern. In particular, augmenting the high frequencies of the sound leads to the perception of having a thinner body and enhances the motivation for physical activity inducing a more dynamic swing and a shorter heel strike. We here discuss the opportunities and the questions our findings open

    Safe and Sound: Proceedings of the 27th Annual International Conference on Auditory Display

    Get PDF
    Complete proceedings of the 27th International Conference on Auditory Display (ICAD2022), June 24-27. Online virtual conference
    • …
    corecore