3,739 research outputs found

    Evaluation and optimization of Big Data Processing on High Performance Computing Systems

    Get PDF
    Programa Oficial de Doutoramento en Investigación en Tecnoloxías da Información. 524V01[Resumo] Hoxe en día, moitas organizacións empregan tecnoloxías Big Data para extraer información de grandes volumes de datos. A medida que o tamaño destes volumes crece, satisfacer as demandas de rendemento das aplicacións de procesamento de datos masivos faise máis difícil. Esta Tese céntrase en avaliar e optimizar estas aplicacións, presentando dúas novas ferramentas chamadas BDEv e Flame-MR. Por unha banda, BDEv analiza o comportamento de frameworks de procesamento Big Data como Hadoop, Spark e Flink, moi populares na actualidade. BDEv xestiona a súa configuración e despregamento, xerando os conxuntos de datos de entrada e executando cargas de traballo previamente elixidas polo usuario. Durante cada execución, BDEv extrae diversas métricas de avaliación que inclúen rendemento, uso de recursos, eficiencia enerxética e comportamento a nivel de microarquitectura. Doutra banda, Flame-MR permite optimizar o rendemento de aplicacións Hadoop MapReduce. En xeral, o seu deseño baséase nunha arquitectura dirixida por eventos capaz de mellorar a eficiencia dos recursos do sistema mediante o solapamento da computación coas comunicacións. Ademais de reducir o número de copias en memoria que presenta Hadoop, emprega algoritmos eficientes para ordenar e mesturar os datos. Flame-MR substitúe o motor de procesamento de datos MapReduce de xeito totalmente transparente, polo que non é necesario modificar o código de aplicacións xa existentes. A mellora de rendemento de Flame-MR foi avaliada de maneira exhaustiva en sistemas clúster e cloud, executando tanto benchmarks estándar coma aplicacións pertencentes a casos de uso reais. Os resultados amosan unha redución de entre un 40% e un 90% do tempo de execución das aplicacións. Esta Tese proporciona aos usuarios e desenvolvedores de Big Data dúas potentes ferramentas para analizar e comprender o comportamento de frameworks de procesamento de datos e reducir o tempo de execución das aplicacións sen necesidade de contar con coñecemento experto para elo.[Resumen] Hoy en día, muchas organizaciones utilizan tecnologías Big Data para extraer información de grandes volúmenes de datos. A medida que el tamaño de estos volúmenes crece, satisfacer las demandas de rendimiento de las aplicaciones de procesamiento de datos masivos se vuelve más difícil. Esta Tesis se centra en evaluar y optimizar estas aplicaciones, presentando dos nuevas herramientas llamadas BDEv y Flame-MR. Por un lado, BDEv analiza el comportamiento de frameworks de procesamiento Big Data como Hadoop, Spark y Flink, muy populares en la actualidad. BDEv gestiona su configuración y despliegue, generando los conjuntos de datos de entrada y ejecutando cargas de trabajo previamente elegidas por el usuario. Durante cada ejecución, BDEv extrae diversas métricas de evaluación que incluyen rendimiento, uso de recursos, eficiencia energética y comportamiento a nivel de microarquitectura. Por otro lado, Flame-MR permite optimizar el rendimiento de aplicaciones Hadoop MapReduce. En general, su diseño se basa en una arquitectura dirigida por eventos capaz de mejorar la eficiencia de los recursos del sistema mediante el solapamiento de la computación con las comunicaciones. Además de reducir el número de copias en memoria que presenta Hadoop, utiliza algoritmos eficientes para ordenar y mezclar los datos. Flame-MR reemplaza el motor de procesamiento de datos MapReduce de manera totalmente transparente, por lo que no se necesita modificar el código de aplicaciones ya existentes. La mejora de rendimiento de Flame-MR ha sido evaluada de manera exhaustiva en sistemas clúster y cloud, ejecutando tanto benchmarks estándar como aplicaciones pertenecientes a casos de uso reales. Los resultados muestran una reducción de entre un 40% y un 90% del tiempo de ejecución de las aplicaciones. Esta Tesis proporciona a los usuarios y desarrolladores de Big Data dos potentes herramientas para analizar y comprender el comportamiento de frameworks de procesamiento de datos y reducir el tiempo de ejecución de las aplicaciones sin necesidad de contar con conocimiento experto para ello.[Abstract] Nowadays, Big Data technologies are used by many organizations to extract valuable information from large-scale datasets. As the size of these datasets increases, meeting the huge performance requirements of data processing applications becomes more challenging. This Thesis focuses on evaluating and optimizing these applications by proposing two new tools, namely BDEv and Flame-MR. On the one hand, BDEv allows to thoroughly assess the behavior of widespread Big Data processing frameworks such as Hadoop, Spark and Flink. It manages the configuration and deployment of the frameworks, generating the input datasets and launching the workloads specified by the user. During each workload, it automatically extracts several evaluation metrics that include performance, resource utilization, energy efficiency and microarchitectural behavior. On the other hand, Flame-MR optimizes the performance of existing Hadoop MapReduce applications. Its overall design is based on an event-driven architecture that improves the efficiency of the system resources by pipelining data movements and computation. Moreover, it avoids redundant memory copies present in Hadoop, while also using efficient sort and merge algorithms for data processing. Flame-MR replaces the underlying MapReduce data processing engine in a transparent way and thus the source code of existing applications does not require to be modified. The performance benefits provided by Flame- MR have been thoroughly evaluated on cluster and cloud systems by using both standard benchmarks and real-world applications, showing reductions in execution time that range from 40% to 90%. This Thesis provides Big Data users with powerful tools to analyze and understand the behavior of data processing frameworks and reduce the execution time of the applications without requiring expert knowledge

    An evaluation of galaxy and ruffus-scripting workflows system for DNA-seq analysis

    Get PDF
    >Magister Scientiae - MScFunctional genomics determines the biological functions of genes on a global scale by using large volumes of data obtained through techniques including next-generation sequencing (NGS). The application of NGS in biomedical research is gaining in momentum, and with its adoption becoming more widespread, there is an increasing need for access to customizable computational workflows that can simplify, and offer access to, computer intensive analyses of genomic data. In this study, the Galaxy and Ruffus frameworks were designed and implemented with a view to address the challenges faced in biomedical research. Galaxy, a graphical web-based framework, allows researchers to build a graphical NGS data analysis pipeline for accessible, reproducible, and collaborative data-sharing. Ruffus, a UNIX command-line framework used by bioinformaticians as Python library to write scripts in object-oriented style, allows for building a workflow in terms of task dependencies and execution logic. In this study, a dual data analysis technique was explored which focuses on a comparative evaluation of Galaxy and Ruffus frameworks that are used in composing analysis pipelines. To this end, we developed an analysis pipeline in Galaxy, and Ruffus, for the analysis of Mycobacterium tuberculosis sequence data. Furthermore, this study aimed to compare the Galaxy framework to Ruffus with preliminary analysis revealing that the analysis pipeline in Galaxy displayed a higher percentage of load and store instructions. In comparison, pipelines in Ruffus tended to be CPU bound and memory intensive. The CPU usage, memory utilization, and runtime execution are graphically represented in this study. Our evaluation suggests that workflow frameworks have distinctly different features from ease of use, flexibility, and portability, to architectural designs

    Framework for Supporting Genomic Operations

    Get PDF
    Next Generation Sequencing (NGS) is a family of technologies for reading the DNA or RNA, capable of producing whole genome sequences at an impressive speed, and causing a revolution of both biological research and medical practice. In this exciting scenario, while a huge number of specialized bio-informatics programs extract information from sequences, there is an increasing need for a new generation of systems and frameworks capable of integrating such information, providing holistic answers to the needs of biologists and clinicians. To respond to this need, we developed GMQL, a new query language for genomic data management that operates on heterogeneous genomic datasets. In this paper, we focus on three domain-specific operations of GMQL used for the efficient processing of operations on genomic regions, and we describe their efficient implementation; the paper develops a theory of binning strategies as a generic approach to parallel execution of genomic operations, and then describes how binning is embedded into two efficient implementations of the operations using Flink and Spark, two emerging frameworks for data management on the cloud

    Conceptual models and databases for searching the genome

    Get PDF
    Genomics is an extremely complex domain, in terms of concepts, their relations, and their representations in data. This tutorial introduces the use of ER models in the context of genomic systems: conceptual models are of great help for simplifying this domain and making it actionable. We carry out a review of successful models presented in the literature for representing biologically relevant entities and grounding them in databases. We draw a difference between conceptual models that aim to explain the domain and conceptual models that aim to support database design and heterogeneous data integration. Genomic experiments and/or sequences are described by several metadata, specifying information on the sampled organism, the used technology, and the organizational process behind the experiment. Instead, we call data the actual regions of the genome that have been read by sequencing technologies and encoded into a machiner readable representation. First, we show how data and metadata can be modeled, then we exploit the proposed models for designing search systems, visualizers, and analysis environments. Both domains of human genomics and viral genomics are addressed, surveying several use cases and applications of broader public interest. The tutorial is relevant to the EDBT community because it demonstrates the usefulness of conceptual models’ principles within very current domains; in addition, it offers a concrete example of conceptual models’ use, setting the premises for interdisciplinary collaboration with a greater public (possibly including life science researchers)
    corecore