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Abstract  

An Evaluation of Galaxy and Ruffus-Scripting Workflows Systems for DNA-seq 

Analysis 

O.O AJAYI 
MSc in Bioinformatics (Full Thesis), South Africa National Bioinformatics Institute, 
University of the Western Cape, Bellville, South Africa 

Functional genomics determines the biological functions of genes on a global scale by 

using large volumes of data obtained through techniques including next-generation 

sequencing (NGS). The application of NGS in biomedical research is gaining in 

momentum, and with its adoption becoming more widespread, there is an increasing 

need for access to customizable computational workflows that can simplify, and offer 

access to, computer intensive analyses of genomic data. In this study, the Galaxy and 

Ruffus frameworks were designed and implemented with a view to address the 

challenges faced in biomedical research. Galaxy, a graphical web-based framework, 

allows researchers to build a graphical NGS data analysis pipeline for accessible, 

reproducible, and collaborative data-sharing. Ruffus, a UNIX command-line framework 

used by bioinformaticians as Python library to write scripts in object-oriented style, 

allows for building a workflow in terms of task dependencies and execution logic. In 

this study, a dual data analysis technique was explored which focuses on a comparative 

evaluation of Galaxy and Ruffus frameworks that are used in composing analysis 

pipelines. To this end, we developed an analysis pipeline in Galaxy, and Ruffus, for the 

analysis of Mycobacterium tuberculosis sequence data. Furthermore, this study aimed 

to compare the Galaxy framework to Ruffus with preliminary analysis revealing that the 

analysis pipeline in Galaxy displayed a higher percentage of load and store instructions. 

In comparison, pipelines in Ruffus tended to be CPU bound and memory intensive. The 

CPU usage, memory utilization, and runtime execution are graphically represented in 

this study. Our evaluation suggests that workflow frameworks have distinctly different 

features from ease of use, flexibility, and portability, to architectural designs. 
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 1 

 Thesis Rationale 

Functional genomics is a field of molecular biology that determines the biological functions 

of genes on a global scale, using large volumes of data obtained through techniques such 

as next-generation sequencing (NGS). NGS technology has been a key driver in 

accelerating knowledge gains in functional genomics, and molecular biology research. 

With data from the genomics field constantly increasing, the scientific community is 

finding the processing, analysis, and the discovery of research based on the datasets more 

challenging (Goble and Stevens, 2008).  

The advent of new sequencing technology systems by companies such as Illumina, Oxford 

Nanopore, and PacBio (as illustrated in Figure 1), has resulted in an exponential growth of 

NGS data output, with the advantages of a reduction in the time and cost expenditure 

associated with sequencing projects (Metzker, 2010; Loman et al., 2012). A recent advance 

in NGS technology has allowed scientists to re-sequence Deoxyribonucleic Acid (DNA) 

and Ribonucleic Acid (RNA) in a quick and affordable manner (Korpelainen et al., 2014). 

Furthermore, the NGS process involves the input of biological samples from different 

organisms as well as the same organisms into NGS sequencer machine, which then 

produces a computer representation of genomic datasets as the output (Glenn, 2011). Due 

to the large volume of genomic datasets produced in NGS projects, an extraordinary 

demand has been placed on bioinformatics workflow systems (Stein, 2010). Consequently, 

there is an increased requirement for efficient data analysis pipelines for a multitude of 

applications in functional genomic research, before they can be routinely used by 

researchers.  
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Figure 1: Plot of the actual and predicted growth of DNA sequencing from 2001 to 2015.  

The plot illustrates the actual and predicted evolution of DNA sequencing together in the total figure of 
human genomes sequenced (left axis) as well as the worldwide annual sequencing capacity (right axis: 
terabase pairs (tbp), peta-base pairs (pbp), exa-base pair (ebp) (Stephens et al., 2015).   

 

Considering that the logic to manually extract and transform this data requires considerable 

human effort, it has become a necessity to develop and utilize an automated, yet simple, 

workflow system that can serve biomedical researchers. Workflow steps that are 

particularly prone to errors and repetitions, and that need manual intervention from 

biomedical researchers, should be the specific targets for effective software solutions. One 

such solution which addresses the above-mentioned workflow problems is an analysis 

pipeline in the bioinformatics workflow framework. More research is needed to inform the 

development of the pipeline analysis techniques that include data quality checking, 

analysis, processing and interpretation of genomic data (Zhang et al., 2010).     
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Curcin and Ghanem (2008), indicated that workflow systems have become a requirement 

for functional genomics. However, the complex nature of functional genomics datasets, 

and the bioinformatics workflows systems used to analyze and process these large volumes 

of genomics datasets from many resources, makes efficient processing difficult with 

standard environments (Schulz et al., 2016). In general, -omics’ research, including the 

field of proteomics, relies heavily on workflows containing relevant pipelines for data 

analysis (Fisch et al., 2015). The notion of a genomic data analysis workflow systems 

becomes increasingly relevant when biomedical researchers start to use more than one 

bioinformatics tool (Torri et al., 2012). Moreover, biomedical researchers often need to 

connect two or more bioinformatics tools to 1) assess the quality or feature of the genomic 

data sets, 2) convert the data to other formats, 3) visualize the data, 4) compare results and 

5) perform other operations in a logical manner. For these reasons, a data analysis pipeline 

consists of different programs which are integrated together to perform tasks of varying 

complexity (Sanner, 1999). Bartlett and Toms (2005), developed a protocol that 

demonstrated the unique process which may be employed by an expert researcher using 

bioinformatics resources to address a specific research problem. For example, logical 

thinking and attention to detail may be utilized by a researcher to define acceptable input 

file-types, parameter values and resource management, as well as exception behavior, in 

an effort to answer specific bioinformatics research questions (Neron et al., 2009).  

Automation of frequently executed tasks can be incorporated into complex workflows, 

thereby decreasing time and effort spent by biomedical researchers in command-line 

sessions, non-reusable script writing, and general time-consuming software (Guimera, 

2012). Workflow management systems manage workflow processes through software 

execution, the order of which, is driven by the software application which is installed on a 

local computer system, or clusters (Brown et al., 2015). Efficient and comprehensive data 

analysis pipelines require these workflow management capabilities (Liu et al., 2014). A 

workflow procedure consists of multiple steps (any repeatable series of steps that include 

creating, managing and providing output information experimental investigation) that are 

used to execute and automate a workflow process, thereby instituting a set of procedural 

https://etd.uwc.ac.za
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rules to allow for the flow of tasks and information from one action to the next (Romano, 

2008). In one step, the workflow outputs serve as input to the next step, according to a 

predefined network or graph topology that synchronizes the movement of data (i.e., 

extracting, transforming and loading as shown in Figure 2). 

 

 

 

 

 

 

 

 

 

 

Figure 2: Example of a simple workflow diagram.  

The diagram represents a flowchart that shows workflow starting point (i.e., staging), connecting step 1 to 
step 2. The output from one step is for further dissemination to the other steps. The database (such as MySQL 
data keep), is a relational database management system (RDBMS) for retrieving and storing biological data. 
The database can form part of the major requirement that support a workflow system development 
(Bhagwanani, 2005).  

 

Workflow processes coordinate multiple workflow tasks. Workflow processes are further 

defined as sequences of activities that are necessary to complete tasks. A task can be 

defined as a process that cannot be split up any further (Van Der Aalst and Van Hee, 2004). 
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Alternatively, a task, also known as an activity, is an automated activity performed at the 

user-level of any workflow system.  

A study by Spjuth et al. (2015) explains the idea of using workflow systems to assist 

researchers in their studies. They describe a workflow system as a multi-step procedure or 

task that runs on a distributed computing platform. In this way, a task represents the 

execution of a workflow process, such as integrating bioinformatics tools, submitting a 

query to a database server, submitting a job to on-premises high performance computing 

(HPC) systems, as well as cloud-based computing or invoking a service over the web-

browser to use a remote resource (Goble and De Roure, 2009). HPC (or cluster) systems, 

is a cluster of parallel computers that are connected together to support data-intensive 

scientific applications on a large global scale (Spjuth et al., 2015). Workflow frameworks 

are important enablers for such capabilities (Kang et al., 1999).  

Bioinformatics workflow systems, and its logic, are driven by software applications 

developed and written in different computer programming languages. Workflow activities 

are automated by compositions using the available open source packages or proprietary 

software (Deelman et al., 2009). Bioinformatics workflow protocols are therefore ideal 

vehicles for biological data extraction and are becoming a standard for use in supporting 

functional genomics research worldwide, by managing genomics data pre-processing, and 

post-processing. Other benefits of bioinformatics workflow systems include; 

a) Data automation, data format conversion, and pipeline analysis integration.   

b) Provisioning of a graphical user interface (GUI) that manages experimental steps 

that enable biomedical researchers to build custom pipeline analysis for 

genomics data analysis or the use of predefined use cases. 

c) Provisioning of a command-line interface to support scripting programs  

(Hinchcliffe et al., 2014). 

d) Provisioning of data management that include analysis tracking and pipeline 

staging (Deelman, 2010). 

e) Offering access to tools that manage and execute pipelines. 
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f) Offering an efficient means of conducting sequencing analysis across diverse 

‘omics datasets and applications (Goble and De Roure, 2009). 

g) Allowing for both experienced and novice researchers to build analysis 

pipelines, without knowledge of complex programming language. 

h) Serving as a platform for managing the growing pool of genomics data and 

i) Allowing for independent computational analysis.  

The overall purpose of this study was to evaluate the Galaxy and Ruffus workflow 

frameworks to assist biomedical researchers in processing and analyzing the 

Mycobacterium tuberculosis (MTB) genomic datasets to obtain high quality variant calls. 

The approach used in this study was to adapt an already existing open source genomics 

workflow framework with the view that utilizing different middleware software 

components on the cluster, and extending the analysis pipeline for re-use in a clear manner 

that simplify the automation of bioinformatics analysis, would: 1) solve challenges of 

large-scale data analysis 2) develop best practice workflows, and 3) fill the current gap 

amid computing infrastructure and bioinformatics applications (as discussed in Chapter 3). 

In addition, the assembled analysis pipeline would be a completely open source project and 

the workflow framework was benchmarked against each other based on system complexity 

and support for data storage management, provenance, and data retention policy.  Here, the 

benchmarking activities for the bioinformatics workflows included the exploration of 

different design choices and metric gathering for systems performance and scalability, data 

storage, analysis pipeline process time and transfer speed. The abovementioned metrics are 

an essential consideration for both current and future workflow frameworks requirements. 

Moreover, predicting future bioinformatics workflows updates and how the metrics could 

affect the underlying infrastructure technology is of great importance to anticipate proper 

workflow system design and its limitations (Van Der Aalst and Van Hee, 2004; Furtaw, 

2016). A further aspect of this study was to establish the genomic data source collaboration 

plan and source code control versioning system where data analysis pipeline development 

can continue-on a quick-changing running system. While system requirements can change 

at any time they require simplification, and a team of biomedical researchers require quick 
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analysis results, thereby imposing added pressure on analysis pipeline design decisions. 

Therefore, additional care must be taken when developing/or building, testing and 

deploying the data analysis pipeline within the bioinformatics workflow frameworks. As 

such, this approach, accompanied with best practices was explored in-depth in this thesis. 

Finally, in this study, proof of concept was demonstrated using experimental data sets. 

Different in-house research tools (i.e., open source bioinformatics tools in the computing 

environment) that solve particular needs were integrated into the bioinformatics workflow 

frameworks presented herein, using the methods developed in this study. 
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 Literature Review 

This chapter presents the historical background of bioinformatics workflow systems 

which are currently available for biomedical researchers, as well as the challenges faced 

by researchers when deciding on which workflow frameworks to utilize. This chapter 

describes, with examples, several workflow systems, particularly graphical user 

interface or command-line interfaces as well as the underlying infrastructure 

technology, that currently exist for analyzing genomics data. The chapter also tabulates 

workflow features and compares each feature to one another and concludes by 

motivating the rationale for choosing and evaluating the Galaxy and Ruffus workflow 

systems for processing of genomics data.  

2.1: Historical Background of Bioinformatics Workflow Systems   

The historical development and knowledge behind the study of scientific workflow 

management systems has expanded to the fields of bioinformatics and biomedical 

science. Clinicians and research scientists have seen the development of bioinformatics 

workflows as an essential part of research to compliment the traditional patterns of 

theory and wet-bench experiments. Next generation sequencing (NGS), also known as 

high throughput sequencing technologies, have led to sequencing at unprecedented 

speed, and in combination with low sequencing costs per base pair, has produced a huge 

amount of genomic data, that overwhelms the current workflow systems and resources 

(Altintas et al., 2012; Kodama et al., 2012). 

This growing volume of genomics data being generated from NGS technology needs to 

be analyzed using bioinformatics workflows (Goesmann et al., 2003; Wilke et al., 

2003). Genomics data analysis involves the processing of data files through a series of 

computational steps and transformations, referred to as an analysis pipeline. These steps 

can usually be achieved by installing third party GUI- or CLI- based software that can 

execute the data analysis pipelines (Hinchcliffe et al., 2014). As suggested by Li and 
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Chen, the bioinformatics research field requires robust, accurate and precise workflow 

systems (Li and Chen, 2014). In addition, the authors took into consideration factors 

relating to big data and suggested that data volume, data processing velocity, data source 

variability, as well as data quality veracity or authenticity requires special technology 

and workflow management systems (Li and Chen, 2014). 

The ability to actively incorporate genomic datasets into modern studies strongly 

depends on effective bioinformatics workflows with capabilities to handle downstream 

analyses and give interpretable results. Therefore, the concept of workflow systems or 

frameworks, requires significant informatics knowledge and expertise to design a 

pipeline for detailed analysis and interpretation of sequencing data that can be applied 

in clinical settings (Kanwal et al., 2017). Moreover, a workflow framework is regarded 

as a platform for managing workflow activities, as well as coordinating computing 

resources and behaviors (Zhao et al., 2005). A workflow framework provides an 

enabling meta-environment that has gained increased interest in the fields of genomic 

science and technology. It has further been indicated that workflow frameworks have 

assisted in rapid development of distributed and parallel data analysis pipelines (Zhao 

et al., 2005; Deelman et al., 2009; Spjuth et al., 2015). 

A typical biological sequencing data analysis pipeline in bioinformatics workflow 

systems has several phases that include experimental design and sample collection, 

sequencing and data processing for subsequent downstream analysis (Kanwal et al., 

2017). For instance, an analysis pipeline in bioinformatics workflows consists of a series 

of connected steps that transform raw input (e.g. a FASTQ file from an NGS sequencer) 

into meaningful or interpretable outputs (e.g. variant call-sets).  

To understand a complex system (such as Kepler), it is necessary to have a birds-eye 

view in order to determine how the different pieces fit together (Altintas et al., 2004). 

Bioinformatics workflow systems require software applications to prosper, and to build 

bioinformatics pipelines, encapsulation is needed, which can be used as basic building 
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blocks for another bioinformatics project. This generates knowledge in the effective use 

of workflows. 

2.2: Systems Infrastructure for Bioinformatics Workflow Systems  

Due to the high demand of bioinformatics workflows for analyzing the vast amounts of 

data generated by NGS, the systems infrastructure for workflow integration has become 

a vital requirement in biomedical research. This demand is further confounded by the 

significant cost reduction in sequencing which has allowed instrument manufacturers to 

decrease the cost per genome produced by NGS machines, thereby increasing the 

feasibility of including this technology in biomedical research (Anderson and Schrijver, 

2010). While the complexity of workflows varies significantly in different applications, 

a data analysis pipeline in bioinformatics workflow frameworks may typically require 

days of computing time and a great amount of computing power (Brown et al., 2015). 

Brown et al. (2015), explains that setting up a bioinformatics workflow system is not a 

straightforward process, and often require extensive technical skills and coding 

experience to setup. Furthermore, finding an accessible method to keep and process 

genomics data in the most efficient, metadata-rich, secure and transparent way is not a 

simple task (Kanwal et al., 2017). Likewise, the challenges of integrating bioinformatics 

workflow management systems with personal computer functionality, such as system 

resource and data storage, are increasing (Figure 3). Therefore, high performance 

computing (HPC) and cloud computing facilities have been introduced as solutions to 

challenges faced by biomedical researchers and are shaping new developments in the 

bioinformatics field (Jamalian and Rajaei, 2015; Nishanth and Kihoon, 2015). 

2.2.1: High-Performance Computing Environments  

HPC is increasingly becoming an important tool in biomedical research, and currently 

enables researchers and computer scientists to solve complex problems requiring several 

computing capabilities, to increase the pace of research discovery (Alyssa, 2016; 

Leading, 2016; Liu, 2016). HPC subsequently reduces the time and cost that scientists 
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spend on analyzing genomics data. HPC coupled with bioinformatics workflow systems 

are essential for analyzing genomics data to obtain meaningful results, while 

additionally, maintaining the processing time and  speed at which genomic data outputs 

are being generated (Nishanth and Kihoon, 2015). In a scientific research environment 

for example, HPC resources generally consist of compute nodes with a greater level of 

computing performance when compared to general purpose computers. HPC with 

hundreds of thousands of ‘off-the-shelf’ processors run a Linux-based operating system 

with a batch queueing system (i.e., batch-queuing system is a scheduling system that 

helps to plan the execution of batch jobs) for scheduling jobs (Jamalian and Rajaei, 

2015). Studies by Di Tommaso et al. (2017) have shown that the most efficient and 

effective bioinformatics frameworks are workflow systems, supported by these batch-

queuing systems (e.g., PBS/Torque, SLURM, Sun Grid Engine). The components used 

to support a HPC environment, such as computer memory, cores, compute node and 

storage, as well as fabric and software (Figure 3), have been changing at unprecedented 

rates over the past two decades (Huang et al., 2006). This has resulted in systems 

bottlenecks that are becoming increasingly imbalanced (Alyssa, 2016; Leading, 2016). 

Some bioinformatics analysis jobs, with highly specific resource needs, have forced the 

biomedical research community to implement discrete clusters which are dedicated to 

these jobs (Nyrönen et al., 2012; Bianchi et al., 2016). This has however contributed 

significantly to the overall development of workflow systems. 
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Figure 3: The fundamentals of HPC system infrastructures.  

The diagram describes the several components of HPC functionality on a typical computing lab 
environment. The HPC system is made up of many processors and cores, high-speed networking, and 
large compute nodes for data stores (Alyssa, 2016). At the central of HPC is the manageable resource 
manager (e.g., hardware and systems software), which allow system administrator to dedicate energy to 
managing the HPC environment. The HPC allows software stack that supports the bioinformatics 
workflow systems. 

 

2.2.2: HPC in a Cloud Environment  

Cloud computing has recently emerged as a supplemental technology, which offers 

virtualize environments (such as virtual machine and Dockers), and the capability to run 

custom virtual machine images (VMI) or containers (Afgan et al., 2012; Spjuth et al., 

2015). Despite the advent of cloud computing, setting up virtual cloud server clusters 

for biomedical research requires knowledge about the pros and cons associated with 

different bioinformatics tools (O’driscoll et al., 2013). Cloud compute storage solutions 

for biological data have been developed to tackle the challenges when implementing 
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platforms for data-intensive NGS analyses (Doctorow, 2008; Li and Chen, 2014; Luna 

et al., 2014; Stephens et al., 2015), (Figure 3).  

Since the volume of genomic data being generated is increasing exponentially, many 

biomedical research labs or institutes are considering cloud computing as a cost-

effective alternative for the storage and processing of large volumes of biological 

datasets (Liu et al., 2014). Fusaro et al. (2011) summarized that a cloud computing 

platform could be implemented and utilized as a platform for storing biological data, 

thereby facilitating analysis of petabyte sized datasets, in a more effective way (Figure 

5). Cloud computing also enables the application of new data processing models, such 

as the MapReduce framework (Dean and Ghemawat, 2008; Afgan et al., 2010) and its 

variants, which have been successfully implemented on processing large-scale clinical 

genomic data using virtual cloud clusters (Zaharia et al., 2010; Zou et al., 2013).  

A study by Armbrust et al. (2010) found that cloud computing systems provide users 

with full control over virtual compute resources, by using virtualization technologies. 

Cloud computing includes hardware, software and systems infrastructure, and these are 

provided as services over the internet. In addition, Chine (2010) identified three major 

classes of cloud computing providers, which include Infrastructure-as-a-service (IaaS), 

Platform-as-a-service (PaaS) and Software-as-a service (SaaS) (Bhardwaj et al., 2010). 

IaaS offers only virtual machines and compute storage systems for any purpose, whereas 

PaaS offers platforms for developing software applications. SaaS on the other hand, 

offers available software that can be used as is, or customized for an application (Stein, 

2010).  

As shown in Figure 4, analyzing and processing biological data using the bioinformatics 

resource in the cloud HPC cluster environment can be very challenging. Without correct 

automation, the setup and fine-tuning of virtual cloud clusters may become a difficult 

task, as there is a requirement for systems administrators to have considerable 

knowledge with regards to installation and configuration of different software tools. 

Organizing the different bioinformatics workflow frameworks that are developed and 
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integrated in a cloud based system, is at the discretion of the system administrator or 

user if there are no best practice or operating procedures to guide it (Schindelin et al., 

2012).  Deployment and provisioning scripts are therefore essential for the cloud 

computing model to be successful.  

 

 

 

 

 

 

 

 

Figure 4: A cloud-based framework for creating a scalable NGS workflow system.  

The diagram illustrated the step-wise cloud workflow framework for establishing a scalable NGS 
workflow system. A user, using a local computer can ssh into an instance of a virtual machine running 
in AWS cloud. Installing software programs, developing a scalable bioinformatics application tools 
together with utilities cloud cluster management software and testing the instance pipeline all depends 
on cost and consumption usage. The costs are representative of actual development time, data transfer 
into and out of the cloud, and the compute time (Fusaro et al., 2011). 

 

Currently, there are existing ‘off-the-shelf’ bioinformatics workflow management 

system installations in the form of cloud virtual machine images that can be used to 

mitigate the otherwise steep learning curve experienced by biomedical researchers 

(Afgan et al., 2012). This cloud virtual machine image is, in essence, a virtual 

representation of a physical hard disk drive, containing preinstalled data and 

bioinformatics software tools (Schindelin et al., 2012). An added advantage of the 
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virtual image is that depending on the experimental load requirement, multiple instances 

of this cloud machine can be made.  

Unfortunately, several known concerns impacting the standard utilization of cloud HPC 

clusters exist and are still driving biomedical research labs or institutions away from 

utilizing the cloud model. For instance, HPC compute nodes are virtualized, and this has 

raised concerns with regards to virtualization overhead as well as virtual machine co-

location. Moreover, a pay service to implement a cloud model for creating a scalable 

workflow application to fit small and large project is essential for the sustainability of 

HPC clouds (Curcin and Ghanem, 2008; Netto et al., 2018). There are some institutions 

that cannot afford the cost of the cloud services, and therefore the burden of cost 

associated with investing in the required expertise can be inhibitory (Fusaro et al., 2011). 

One of the most persistent problems facing biomedical researchers is not having access 

to working system infrastructure that facilitates progressive, sustainable and qualitative 

research outputs (Deelman, 2010; Truong and Dustdar, 2011; Emeakaroha et al., 2013).   

Another recurrent issue which has been raised by many experts relates to the latency 

and bandwidth of the network used by cloud infrastructure. For example, Amazon Web 

Service’s Elastic Compute Cloud (EC2) functions differently compare to a typical, 

dedicated HPC cluster in national laboratories (Garfinkel, 2007; Jackson et al., 2010; 

Marathe et al., 2013). These differences can lead to new performance issues that 

necessitate different bioinformatics tools to gain prominence into the workflow systems 

and its underlying cloud-based infrastructure. In this way, bandwidth impacts the time 

it takes for transmission of big data to and from the cloud and has been a major setback 

for many research labs (Liu et al., 2014; Luna et al., 2014; Netto et al., 2018). At the 

time of writing this thesis, existing resources were traditionally HPC clusters, and as 

such, the focus and limitations of this study fall within this area.  
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2.3: Bioinformatics Workflow Frameworks Reality  

There are various bioinformatics workflow frameworks that aim to address issues that 

exist in the building of data analysis pipelines for the extraction of valuable genetic 

insights from large amounts of genomics data. A bioinformatics workflow framework 

enables integration of several bioinformatics tools, and the development of data analysis 

pipelines for annotating and exploring NGS datasets. This process can range from 

creation and composing data analysis pipelines, to evaluating usability in biomedical 

research.  

Numerous bioinformatics workflow frameworks for composing pipelines have already 

been developed (e.g., Taverna is used for building bioinformatics data analysis 

pipelines) (Oinn et al., 2004). However, due to the lack of continuous software 

development and community support, not all bioinformatics frameworks have all the 

features required to develop high-throughput data analysis pipelines (Taura et al., 2013). 

Therefore, lessening barriers to entry on development and deployment for developers 

and user communities will significantly aid in building overall reusable and 

interoperable pipeline analyses (Stein, 1996).  

The bioinformatics workflow frameworks employed by biomedical research labs for 

composing an analysis pipeline are essential when selecting which frameworks to use. 

According to Plale et al. (2011), a bioinformatics workflow framework is an integral 

platform that encourages pipeline configurations. There are frameworks that encourage 

biomedical research labs or institutes to share analysis pipelines and collaborate with 

other researchers around the world. For instance, the Taverna (Oinn et al., 2004) and 

Kepler (Altintas et al., 2004) interfaces have common characteristics that allow easy 

sharing of analysis pipelines, protocols and standard operating procedures (SOPs). 

Unfortunately, analysis pipelines reproducibility in the biomedical field is a goal hard 

to accomplish due to the complexity of workflow systems, usually involving series of 

analysis steps and protocols (Di Tommaso et al., 2017). For instance, Taverna and 

SnakeMake frameworks follows different language patterns and as such biomedical 
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researchers, depending on experience, may wish to replicate or reproduce the CLI 

workflow framework over the GUI workflow framework (Oinn et al., 2004; Koster and 

Rahmann, 2012; Spjuth et al., 2015).  

Another important factor to take into consideration when choosing a framework is the 

underlying technologies and process specification model languages, such as Yet 

Another Workflow Language (YAWL), which handles complex data transformations, 

and complete integration with HPC resources and external web services (Van Der Aalst 

and Ter Hofstede, 2005). Data model handling, such as the extensible mark-up language 

(XML) schema, allows for  native data handling that adheres to specific standards and 

conventions (Aldred, 2011). A typical example is the Arvados framework (Arvados, 

2016) that starts with raw genomics data processing files such as FASTQ files, and after 

a number of steps, actions and commands, ultimately results in variants being called 

(Depristo et al., 2011; Van Der Auwera et al., 2013; Pabinger et al., 2014).  

A study by Mckenna et al. (2010), demonstrated an efficient, features-rich, and robust 

analysis pipelines for processing massive data sets generated by NGS machines. 

Pipelines for genome datasets follow a specific order of biological procedures from 

beginning to end. Most of the activities in the pipeline are performed by humans 

interacting with computer systems (Gorelick and Ozsvald, 2014). Many research labs, 

or institutes, are restricted by the difficulty of accessing and manipulating the data 

produced by NGS machines, and may not be aware of the possibilities and simplicity 

with which they can answer technical questions (Ison et al., 2015). Therefore, workflow 

frameworks that make routine tasks and procedures, support pipeline reproducibility 

and offer measures for fault-tolerance are possible solutions which can be utilized in 

research settings (Spjuth et al., 2015). Pipelines in the bioinformatics workflow 

frameworks combine knowledge from different areas of genomic fields and it is 

important for researchers in the biomedical field to understand the concepts related to 

composing pipelines. There are bioinformatics workflow frameworks that require in-

depth knowledge of detailed documentation related to workflow design and modelling 

(Tolvanen and Kelly, 2008; Liu et al., 2014). Moreover, a bioinformatics workflow 
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framework is consider to be good framework if certain design criteria such as 

extensibility, restorability, ease of use and deployment and pipeline reproducibility are 

met (Lamprecht, 2013). Novice biomedical researchers lack the capabilities to identify 

efficient, yet simple workflows, and may not have the expertise to recognize the 

workflow systems design criteria (Williams et al., 2014). 

2.4: Command Line Interface Blueprint 

Command line interface bioinformatics frameworks consist of collections of scripts 

written specifically to run on a modern GNU/Linux distribution terminal and that allows 

researchers to run commands in a shell terminal, or console window, that ultimately 

work together within an operating system. Researchers reply to a shell command prompt 

by typing a command on an identified line and accept a reply from the system, or series 

of shell commands for individual tasks that they want to implement. In this way, 

command line enables automation and execution of scripts through the terminal 

(Stevens and Rago, 2013; Oracle, 2017). Computer scripting languages such as Python 

(Foundation, 2016) and Perl (Perl, 2016) enable developers to write custom scripts and 

develop software applications for a special run-time. Scripts are sequences of commands 

written to accomplish a task and assist in executing already developed software tools. 

In the functional genomics field, computer scripting languages enables packaging of 

bioinformatics tools that automate tasks, or execute tasks one-by-one during workflow 

processes and allows integration of bioinformatics tools within the pipeline frameworks 

(Stein, 1996; Sanner, 1999). For instance, workflow frameworks, such as Bpipe 

(Sadedin et al., 2012), SnakeMake (Koster and Rahmann, 2012), GXP Make (Taura et 

al., 2013) (Taura et al., 2013b), Omics Pipe (Fisch et al., 2015)) and Nextflow (Di 

Tommaso et al., 2017) are CLI programs written specifically for the UNIX run-time 

environment. 
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2.5: Graphical User Interface Blueprint  

Graphical user interface is a type of user interface that enables users to interact with a 

computer by utilizing graphics, in combination with hardware (a keyboard and a 

mouse), to provide an easy-to-use interface to a program (Michael and William, 2014). 

A GUI provides wizards, windows, buttons, iconic images, pull-down menus, 

scrollbars, other icons, and in general, allows users to interact with the computer 

operating system or application (Lefkowitz, 2000; Oracle, 2017). GUI-based 

bioinformatics workflow, using a drag-and-drop graphical interface allows biomedical 

researchers to design data analysis pipeline by selecting and connecting integrated 

bioinformatics tools. A number of GUI-bioinformatics workflow frameworks exist, 

such as Arvados (Arvados, 2016) and Mobyle (Neron et al., 2009), which have been 

developed mainly for application in the life sciences field. Arvados is a GUI-

bioinformatics workflow that makes it easier for biomedical researchers to build 

analysis pipelines, allows bioinformatics software developers to create genomic web 

applications and system administrators to manage large-scale compute and storage 

resources (Arvados, 2016; Calabrese, 2018). Taverna (Abouelhoda et al., 2012), a 

workflow management system, offers services that allow access to bioinformatics tools 

and/or permits the building complex analysis pipelines which are distributed across 

web-services, or local computing infrastructure. Other examples of GUI workflows 

include Kepler (Altintas et al., 2004) and Chipster, which are used for composing and 

analyzing NGS generated datasets. Chipster, for example, is utilized in studies where 

RNA-seq  data is analyzed in order to determine differential expression of genes (Wang 

et al., 2011). A GUI workflow platform enables researchers to share, publish, find and 

download workflows, with the goal of making the re-use of existing workflows as easy 

as possible (Lamprecht, 2013).   

2.6: Comparison of Bioinformatics Frameworks Features  

In the bioinformatics domain, workflow frameworks already exist and can be used to 

explore and analyze genomic datasets. Workflow frameworks such as Nextflow 
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workbench enable biomedical researchers to build pipeline analysis to control the data 

analysis activities for large genomic projects (Kurs et al., 2016). Even with the rapid 

change in workflow frameworks, which has been maddened by new technological 

developments, existing frameworks have been used successfully in a number of studies 

(Leipzig, 2016).  On the other hand, some workflow frameworks have failed due to 

missing features and consequently, the biomedical research community has had trouble 

in deciding which framework to employ. In Table 1 below, a summary of the ten-

different bioinformatics workflow framework features is demonstrated. 

Table 1: Bioinformatics workflow frameworks feature comparisons  

 

Arvados, Chipster, Galaxy, PegaSys and Taverna, workflow frameworks enable 

researchers with a limited background in computing, as well as limited technical 

resources and support, to still perform tasks effectively. These workflow frameworks 

Tool names 
Workflow 

syntax 

Online 

analysis 

integration 

Interface 

interaction 

Web 

services 

support 

Built in 

cloud 

support 

Built in 

distributed 

cluster 

support 

Arvados Explicit Yes GUI Yes Yes Yes 

Chipster Explicit Yes GUI Yes Yes No 

Galaxy Explicit Yes GUI Yes Yes Yes 

PegaSys Explicit Yes GUI Yes Yes Yes 

Taverna Explicit Yes GUI Yes Yes Yes 

Bpipe Explicit No CLI No No No 

GXP Make Implicit No CLI No Yes No 

Omics Pipe Implicit No CLI No No No 

Ruffus Explicit No CLI No No No 

SnakeMake Implicit No CLI No Yes No 
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together with resources that are public, and are used to construct highly complex 

biological sequence analysis pipelines for investigating the genomics data, all from a 

normal UNIX PC, or  with support from built-in distribute cluster (or HPC) (Oinn et al., 

2004; Nishanth and Kihoon, 2015). 

Furthermore, Bpipe, GXP Make, Omics Pipe, Ruffus and SnakeMake provide platform 

for running bioinformatics jobs. What differentiates each framework is the fact they are 

written in different programming language and have different design philosophy and 

limitations (Kircher and Kelso, 2010). All of the abovementioned workflow frameworks 

support job parallelism, but lack the built-in support for cloud and distributed compute 

clusters (Di Tommaso et al., 2017). GXP Make and SnakeMake extend their platforms 

from single node systems to cluster and cloud. An observed disadvantage of 

SnakeMake, however, is that processing of a job associated metadata becomes slow 

when more than a 1000 job have been submitted to the cluster. Bpipe, SnakeMake, GXP 

Make, and OmicPipe are not ideal for performance evaluation. Ruffus, however, is able 

to execute task on multiple nodes, with a common task scheduler keeping track of 

dependencies and support for automatic reporting of parameters used, execution 

runtimes and tool and data versions (Biostars, 2010; Koster and Rahmann, 2012; Taura 

et al., 2013; Ruffus, 2016). None of the CLI tools mentioned in the table supports online 

analysis integration (Table 1), whereas GUI workflow frameworks, Arvados, Taverna, 

PegaSys and Chipster have established integration of web services in bioinformatics 

(Spjuth et al., 2015). However, the Galaxy project maintains a larger research 

community and offers the most popular web browser-based platform. 

Many research labs or institutions have scripting language experience and use custom 

scripts to assist in job parallelization (i.e., linking compute nodes) as well as integration 

with HPC resource managers such as PBS, SLURM etc. possibly via DRMAAv1 or 2 

(Neron et al., 2009; Biostars, 2015; Jamalian and Rajaei, 2015; Netto et al., 2018). The 

study by Spjuth et al. (2015) suggested that working with custom scripts should be fast 

and easy to learn as shell scripts are considered to be very simple and flexible (Vince, 

2015). Experienced biomedical researchers working with workflows in bioinformatics 
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may prefer writing their own custom scripts when constructing data analysis pipelines 

and in this way may find working with custom script much easier, and quicker to deploy 

on a local or HPC cluster environment, despite a possible non-optimal process of 

workflow automation (Nishanth and Kihoon, 2015). Desirable advanced features, such 

as workflow replicability and reproducibility of analyses couple with HPC cluster 

resource environment and integration may require development from scratch using 

established framework (Biostars, 2015; Santana-Perez and Pérez-Hernández, 2015) 

(Table 2). 

Table 2: Bioinformatics workflow framework design philosophy 

 

2.7: Analysis Pipeline Options 

The wide variety of workflow frameworks which are currently available may inundate 

non-experienced biomedical researchers, ultimately leading to difficulties in selecting 

Tool 

Names 

Ease 

of 

Use 

Workflows 

Track and 

Commands 

 

Reliability 

 

Ease 

of 

Development 

Workflow 

Complexity 

and 

Robustness 

Workflow 

Reproducible 

Arvados No Yes Yes No Yes Yes 

Chipster Yes Yes Yes No No Yes 

Galaxy Yes Yes Yes No Yes Yes 

PegaSys Yes Yes Yes No Yes Yes 

Taverna Yes Yes Yes No Yes Yes 

Bpipe Yes Yes Yes Yes Yes No 

GXP Make Yes No No Yes No No 

Omics Pipe No Yes Yes Yes Yes No 

Ruffus Yes Yes Yes Yes Yes No 

SnakeMake Yes Yes Yes Yes Yes No 

https://etd.uwc.ac.za



 23 

suitable workflow frameworks to analyze genomic datasets (Bianchi et al., 2016). A 

variety of analysis pipelines, such as RNA-seq  (for evaluation of gene expression 

studies), Chip-seq, (for evaluation of the binding of regulatory elements to genomic 

locations), and DNA-seq or Exome or Whole-Exome (to evaluate encoding of structural 

or genetic variants such as short Indels, large-scale genomic rearrangements, single 

nucleotide polymorphisms (SNPs)), requires an efficient workflow framework 

combined with the HPC systems capability (Pepke et al., 2009; Mckenna et al., 2010; 

Nagalakshmi et al., 2010). Pabinger et al. (2014), suggested that the best way to better 

manage the large volume of genomics data is to choose the most appropriate frameworks 

among the existing available computational and analysis tools. Bioinformatics 

workflow frameworks are non-static, and biomedical researchers around the world are 

faced with an evolving need to produce analysis pipelines for investigating genomic 

datasets.  

Comparative evaluation of the different workflow frameworks has therefore become a 

crucial requirement to choose, and implement, the most appropriate framework for a 

particular-problem. Bioinformatics frameworks often include support for extending 

functionality and features by using dedicated scripting programming languages, such as 

Python (Foundation, 2016), and this allows for easy integration of systems and other 

additional workflow features, to promote workflow flexibility, efficiency and 

scalability. Workflow framework strength is in simplifying the management of 

workflow control and dataflow structure, while the weakness lies in its lower level 

features which are not easily programmable since it requires experienced programmers.  

In a study by Curcin and Ghanem (2008) a high-level framework for comparing 

workflow systems, based on control and data flow properties is provided. A 

disadvantage of workflow system was illustrated by Hillman-Jackson and co-workers 

(2012). Here, the authors suggest that novice users may experience difficulty with 

creating and modifying workflows. Furthermore, libraries which need to be 

implemented in workflows to develop tool wrappers does require bioinformatics 

experience and as such, it is recommended that users make use of informative tools 
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(such as instructional videos) to gain an understanding of workflow features (Hillman-

Jackson et al., 2012).  

2.8: Conclusion to the literature review 

This research review’s purpose is to help an inexperienced biomedical researcher with 

less computer programing knowledge understand different kinds of bioinformatics 

workflow frameworks that exist out there. This is important because working with a 

bioinformatics workflow system can be overwhelming and choosing among GUI or 

CLI workflow frameworks is totally a question of personal choice. Moreover, the 

choice of workflow framework should be well-informed both by the demands of 

bioinformatics pipeline analysis and the needs of those using it. The use of a 

bioinformatics workflow system is ultimately tied to reproducible research (Kurs et al., 

2016). Reusable analysis that can be easily implemented and run in the HPC are often 

desirable in terms of full resource control and management, reproducible research and 

the type of collaborative work in modern NGS studies.  

Within the local setting that this project will be carried out, the demand for 

bioinformatics workflow systems that support the exploration of MTB genomic 

datasets should be made available. This literature review confirmed that bioinformatics 

workflow frameworks have different features and compositions. Pipeline analysis 

construction is often developed within the frameworks. Having determined an exact 

focus for the project on an evaluation of workflow frameworks, further investigation 

of the workflow frameworks revealed that there is a need for efficient and customizable 

bioinformatics workflow systems, or compute facilities that support biological 

sequence analysis and data-provenance for data-intensive computational analysis, to 

build NGS data analysis pipeline. Examination of the existing state of workflow 

frameworks has confirmed that there exists a gap in workflow constructions that could 

feasibly be addressed by implementing a SNP-based analysis pipeline that can process 

and analyze MTB genomic datasets. Therefore, this study aims to: 
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1) Address these challenges by presenting a concise evaluation of NGS data 

analysis pipelines embedded in the Galaxy and Ruffus frameworks. The feature 

set and performance of the investigated workflow frameworks are demonstrated 

in this study with the aim to assist biomedical researchers in making informed 

decisions related to the frameworks.  

2) Evaluate Galaxy and Ruffus performance using state-of-the-art variant calling 

pipeline tools for MTB datasets. 

3) Report the performance of an NGS analysis pipeline in the bioinformatics 

workflow systems for processing, analyzing and annotating of regularly 

generated MTB genomic datasets and that efficiently manage the analysis of 

large genomic datasets. 

In this thesis, Chapter 3: describes research design and methods, Chapter 4: describe the 

pipeline integration and benchmark of Galaxy and Ruffus workflow frameworks, and 

Chapter 5: Concluding with remarks. Source code is described in appendices A-F. 
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 Designs and Methodologies 

 This chapter details the different software tools and methods which were used for 

implementing the workflow frameworks (Galaxy and Ruffus). Each workflow 

framework was setup and organized on the South National Bioinformatics Institute 

(SANBI) HPC system environment. Furthermore, the chapter describes the case study; 

how a SNP-based analysis pipeline was integrated in the Galaxy and Ruffus 

environment, and the criteria necessary for the benchmarking. The pipeline-based 

frameworks and the bioinformatics tools employed in this study are reported and an 

assessment of cluster resource management was also conducted to determine how the 

Galaxy and Ruffus frameworks function. The assessment included the investigation of 

the way the HPC resource manager controls the basic computational units and system 

resources on (page 12) (Figure 3). It also enabled the setup of the Sun Grid Engine 

(SGE) job manager for the virtual working environment (Nocq et al., 2013) which uses 

the computing nodes on the cluster facilities (Van Deventer, 2014).  

Additionally, the Distributed Resource Management Application API (DRMAA), a 

global cluster resource manager that enables higher levels of system integration, was 

also deployed (Brown et al., 2015). Git, which tracks changes made in open source 

projects, was initialized and set up into our cluster virtual working environment. We 

used GitHub as the source code-based repository to store, track changes, and apply 

logs of version control to the software and libraries we implemented in this project. To 

this end, the work on integration of Galaxy and Ruffus frameworks with the SANBI 

HPC cluster facilities has enabled novel, stimulating, productive and simplified ways 

to launch bioinformatics computing workflows. An HPC infrastructure enables 

scientists and researchers to perform workflow tasks that require large amount of 

computing capabilities to process and solve complex genomic problems. HPC typically 

utilizes a message passing interface (MPI) to communicate between different nodes 

(Alyssa, 2016). That is, MPI allow data to be transfer from location (one process) to 
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that of another process through two-way operations on each process. Therefore, we 

assembled a coherent and reusable SNP analysis pipeline for processing, analyzing and 

annotating genomic data sets. The following subsections illustrate the steps taken to 

organize the workflow working environment.  

3.1: Distributed Software Control Version Systems  

Distributed software control version systems allow easy access to source code 

repositories (Blischak et al., 2016). GitHub as a control version platform assists in the 

management of the project software source code. Tracking code level changes is both 

a shared and required activity of today’s open source community. For instance, in a 

software development environment, tracking of software source code is as essential as 

meticulous record keeping of lab procedures and protocols in the biomedical 

environment (Heller et al., 2011). However, not all biomedical researchers are aware 

of the existence, or of the advantages using the distributed software control version 

systems as opposed to the traditional methods of source code repository (O'sullivan, 

2009; Rother et al., 2011; Altintas et al., 2012). In this study, the Galaxy and Ruffus 

framework source code were derived from an existing open source repository 

(Appendix A, B and C). 

3.2: Hardware Resource  

In table 3, the technical hardware resources used in this study are summarized. The 

basics setup including the number of cores (processors), disk, and memory is illustrated.  

Table 3: Overall hardware resource used for the workflow frameworks 
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3.3: Virtual Working Environment  

When working in a virtual distributed and shared HPC environment, there are several 

limitations when it comes to software integration, configuration, versioning, and 

management. A virtual environment (i.e. also known as virtualenv) is a toolbox, or 

container, that keeps the dependencies required by a project in separate places. Due to 

technical limitations in the study, Python virtualenv (Hale and Stanney, 2014) was the 

only viable system at our disposal, however, other options could be used outside of 

traditional HPC environments. With virtualenv we created isolated Python 

environments and avoided installing Python packages globally. That is, we installed the 

virtualenv using Python installer tools. The virtualenv allows us to create a folder called 

venv that contains all the necessary executables, Python libraries and packages needed 

in this study (Appendix A, B, C). The venv libraries provided support for creating a 

lightweight program, and also enabled us to integrate file systems with globally installed 

modules on the base system (Afgan et al., 2012). The Python libraries and executable 

files used for building the workflows were kept within the virtual environment (Gorelick 

and Ozsvald, 2014). The workflow frameworks virtualenv was set up on HPC cluster 

(i.e., Linux base system integration) for software capabilities and compatibilities 

(Mcgough et al., 2005; Kurs et al., 2016). The workflow framework virtualenv provides 

support for batch queuing system such as Sun Grid Engine resource manager (Jamalian 

and Rajaei, 2015; Nishanth and Kihoon, 2015). The working environment resource is 

summarized in Table 4 (Appendix D). 

Table 4: Overall virtual working environment summaries 
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3.3.1: Virtualenv Setup for Sun Grid Engine 

This study required mandatory decoupling of the reliance on a pre-defined computing 

environment to allow for switching between different HPC resources, without 

infrastructure constraints. To this end, a virtual Sun grid engine (SGE) was set up for 

the development and running of the SNP analysis pipeline on an HPC environment 

(Gorelick and Ozsvald, 2014). The SGE was configured to support execution on an HPC 

system. Furthermore, the SGE allowed for jobs to be scheduled and automatically 

distributed across the cluster resources. While ongoing jobs are running in the 

background on the HPC environments, jobs submitted to HPC resource may require 

continuous system integration, updates, and maintenance. SGE scheduler monitors all 

submitted jobs on cluster nodes and its deployment ensures that the cluster node does 

not get overloaded. SGE provides support for the Galaxy and Ruffus workflow 

frameworks. The distributed resource management application programming interface 

(DRMAA/PI) with SGE enabled jobs submission to the cluster. The DRMAA is a high 

level open grid that controls job submissions by using a distributed resource 

management (DRM) system, such as a Cluster or Grid computing infrastructure (Sun, 

2007; Deelman, 2010). The DRMAA covers all the high-level functionality required for 

the Galaxy and Ruffus framework applications to control, query, submit and monitor 

jobs on execution resources in the DRM system (Guimera, 2012; Alyssa, 2016).The 

virtual machine setup is graphically represented in figure 5 (Appendix D). 
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Figure 5: The virtual cloud infrastructure to physical layers. 

The virtual manager consists of a central management virtual node that runs the cloud controller and a 
number of cloud nodes that each run a supported hypervisor. The virtual manager interfaces with Virtual 
Machine (VM) that housed the virtual Python environment either libvirt, a Linux library that provides an 
abstract VM management interface, or the Amazon EC2 interface. At SANBI cloud nodes run CentOS 
6.2 with the KVM hypervisor. The Dell PowerEdge M710HD blade server store the VM images on a 
Storage Area Network (SAN), accessed via iSCSI over a 10 gigabit Ethernet network (Van Heusden et 
al., 2012). 

  

3.4: Implementation of MTB SNP Based Pipeline Analysis in Galaxy 

and Ruffus 

The process overview of the data analysis workflow steps for the Mycobacteria datasets 

is presented below (Raman et al., 2008). The SNP-based pipeline analysis allows for the 

raw reads coming off the sequencing machine to undergo numerous steps, ultimately 

generating variant call-sets. Each pipeline component phase was composed to execute a 

set of bioinformatics tools, using the distributed data-parallel execution patterns 
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(Altintas et al., 2012). Each step in the analysis pipeline which is capable of processing 

and analyzing the genomic data (e.g., MTB datasets) is presented in Figure 6.   

 

 

 

 

 

 

 

 

Figure 6: Overview of the MTB NGS data analysis pipeline. 

We use the following standard to build the bioinformatics analysis workflow in the selected workflow 
frameworks (i.e., Galaxy and Ruffus). The analysis workflow consists of 10 major steps for exploring and 
annotating the MTB genomic data sets. The variant discovery step includes variant calling and annotation 
which leads to variant post-processing. 

  

The analysis pipeline includes 11 tools, and performs data quality control and quality 

checking, filtering and trimming of sequence reads, alignment to a reference genome, 

post alignment analysis, and statistical evaluation and annotation of the detected variants 

(D'antonio et al., 2013). To aid data analysis pipeline reproducibility, the analysis 

pipeline in the frameworks were saved as separate workflows in the Galaxy and Ruffus 

distributions installed on the HPC virtual environment.  
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3.4.1: Sample Data and Reference Genomic Data  

Ten illumina NGS datasets from MTB (Tygerberg Medical School) were used in the 

SNP variant calling analysis pipeline. The MTB H37Rv strain (URL) was used as the 

reference genome for alignment and mapping in this study. The reference genome 

dataset was set to the instance of each workflow framework in the data libraries. The 

reference genome data was added to the instance using the administrative mode 

(Bretaudeau et al., 2015) or admin write permission. The reference data for Galaxy 

analysis pipeline can be access from the data libraries menu on the Galaxy portal and 

imported to the histories for the downstream analysis. The reference data for Ruffus 

analysis pipeline was configured as list which formed part of the Ruffus configuration 

files and libraries.  

3.4.2: Data Quality Assessment   

Data quality control check and processes including data cleaning and formatting was 

seamlessly performed. Data quality analysis was performed using FASTQC on the short 

sequence reads and the subsequent results were evaluated prior to downstream analysis 

in page 92 (i.e., in Appendix E) (Pabinger et al., 2014).  

3.4.3: Secondary Analysis (Pre- and Post-Alignment)   

Pre- and post-processing analyses were performed on per-sample data in three stages; 

1) alignment to the known reference genome, 2) assembly, and 3) variant calling. The 

project use H37Rv decoy FASTQ dataset as reference file. The reference file (i.e., 

H37Rv) was indexed in order to ensure accurate alignment and mapping. Different 

mapping tools and algorithms (e.g., GATK best practice workflow) were used for 

different data types and results were captured and stored to files as variants calls file 

format (VCF) (Van Der Auwera et al., 2013) (Appendix E).    
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3.5: Setting up Tools for the Galaxy and Ruffus Framework  

The bioinformatics tools and versions integrated into the Galaxy and Ruffus framework 

are summarized in Table 5. The tools installation and the environment module files 

configurations were carried out within the cluster virtual environment. Python Conda 

modules were also setup in the virtual Python environment (Appendix A, B and C) 

(Sanner, 1999). The bioinformatics frameworks together with the integration of the data 

analysis pipeline consisted of additional external software and associated dependencies 

distributed within the cluster. Maintenance and updating of tools were performed and 

setup using the Git, a version control system to avoid conflict and out-of-date software 

issues when interrogating and manipulating the MTB datasets. 

Table 5: Tools used in the analysis pipeline 

 

 

 

 

 

 

 

 

3.6: Setting up Module System Environment within the HPC  

Installing, configuring, and maintaining environment modules package via modulefiles 

enables bioinformaticians to choose which bioinformatics software tools to use. 
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Moreover, from a technical point of view, packaging system modules is a time-

consuming task which should not be a concern to biomedical researchers. Similarly, 

from a biomedical researcher’s point of view, writing modules does not add any 

expertise to the biomedical software toolbox. An existing module environment was used 

in this study, and where required, missing modules were re-packaged and installed in 

the HPC cluster (i.e., the Python virtual environment on page 28).  

3.7: Setting up the DRMAA to Interface with SGE on HPC 

Figure 7 illustrates how the Sun Grid Engine (SGE) was setup for the host cluster to 

manage and control job submissions in the HPC environment (Appendix D). Using 

DRMAA, grid applications builders and portals, developers can use the same high-level 

API to link software with different cluster/resource management systems (Booth., 

2013). The SGE-DRMAA software allows multi-user access and policy-based job 

control routines by the SGE queuing systems that manage the local computational 

resources (Deelman, 2010; Prajapati and Shah, 2014; Brown et al., 2015). In this study, 

SGE + DRMAA usage provides an excellent tool for all the capabilities of the grid 

engine. The grid engine was administered via commands issued at the shell prompt and 

called within shell script. This was found to be a more flexible, rapid, and powerful 

strategy to change Grid Engine settings.  
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Figure 7: Overview of the sun grid engine- distribution resource manager. 

We integrated some scripts detailing the SGE+DRMAA implementation within the Galaxy and Ruffus 
framework. The SGE-DRMAA control the analysis pipeline jobs submission as well as monitoring in the 
queue and reporting on both cluster usage and execution. The SGE+DRMAA manage the resource in the 
Python virtual environment and ensure resource and cluster management, profiling and tracing.  

3.8: Service in the Pipeline Framework  

Prior to commencing this study, building of an analysis pipeline involving several 

bioinformatics tools and pipeline frameworks was discussed. The analysis pipeline 

process (Figure 6 on page 31) involved six phases, including the quality control, 

alignment and format conversion, variant pre-processing, variant discovery or call sets 

and post-processing. The software programs that formed the bioinformatics toolkit 

would allow researchers to analyze and extract and/or transform the genomic data to 

glean information for the genetic study. The pipeline tools and their dependencies were 

specified using an integrated module system environment. The pipeline specifications 

consist of references to a range of software packages to be installed without specifying 

the execution environment (Möller et al., 2017). In addition to Galaxy/Ruffus 
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framework setup on the virtual Python environment and execution of SGE in 

combination with DRMAA, the pipeline framework stored the genomics data as files or 

objects, in data storage (on the SANBI HPC cluster). The overall virtual environment, 

the resource requirement for seamless running the pipeline framework, and the 

provisioning of user interface access for researchers to the analysis pipeline, is 

illustrated in figure 8.  

  

 

 

 

 

 

 

 

 

 

Figure 8: Overall pipeline framework and setup service. 

This represents the pipeline framework and setup service components. The framework consists of third-
party bioinformatics tools.   

 

The analysis pipeline was formulated and established for downstream analysis, and jobs 

submission to the virtual cluster was monitored, and as such this established a process 

for accounting for the jobs profile. An accounting record for each job profile in the 

Galaxy and Ruffus workflow frameworks was set up and written to an SGE accounting 
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file. The information in the accounting file included records that track analysis pipeline 

resource usage as well as the amount of data transferred in input and output pipeline 

operation (Booth., 2013; Prajapati and Shah, 2014). The SGE accounting parameters 

used in this study was the qacct command which enabled direct access to the complete 

resource usage information stored by the SGE (Oracle, 2017).  

3.9: Benchmarking Criteria  

As workflow features advanced, the difficulty in performance comparisons between the 

various workflow frameworks increased. In this study, we used tools to monitor the 

Galaxy and Ruffus workflow activities and the benchmarks used were Collectl-

Util/Colplot pipeline response time and runtime execution. Furthermore, with the view 

to benchmark the cluster-based workflows in this study, the performance of the analysis 

pipelines in the two frameworks was conducted using standard tests (such as real time 

testing, system time, and user time). The benchmark process includes obtaining the 

total execution time (i.e., by considering the up-to-date completion time of the previous 

pipeline step to the latest completion time of the current pipeline step as described in 

Figure 6) for each pipeline step in the dataflow design during the implementation and 

execution of the DNA-seq analysis pipeline (Appendix E). Each stage in the 

implementation design provided steps enabling tool integration within the Galaxy and 

Ruffus frameworks and furthermore, each step allowed for both the processing and 

analysis of the MTB genomic dataset. Chapter 4 explains in detail the time measurement 

for each analysis pipeline step. 

3.9.1: Performance Measurement  

This study characterized each step of the analysis pipeline using Collectl-Utility, a tool 

used to measure the performance of a system, in order to create a pipeline profile that 

determines typical execution of tools within the workflow frameworks (Kelly et al., 

2015). The Collectl-Utility allows for transitory and/or comprehensive measurements 

for both Galaxy and Ruffus compute node. The transitory measurements allow for an 
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aggregate view of the CPU usage in the system and the same techniques were employed 

to measure the disk performance and network performance. Comprehensive 

measurements provided further detail into the individual parts assessed (Layton, 2017). 

For example, CPU usage could be measured for each individual CPU using a 

comprehensive mode in Collectl. This analysis was also applied to disk and network 

performance and Colplot, and the addition with GNU plot, allowed for graphical 

representation of the findings (Appendix F). 

3.10: Continuous Integration System  

Galaxy and Ruffus frameworks components have software checks as quality control 

checks. It is therefore important to routinely run software update checks whenever 

changes are introduced into any of the framework’s components. The rationale for 

introducing the continuous integration system is to certify that Galaxy and Ruffus 

workflow framework component modules continue functioning correctly after any 

developer has introduced changes (Sanner, 1999; Pabinger et al., 2014). To this end, 

this study utilized buildbot (a Python-based approach) and Git for the software 

continuous integration and notification (Brian and Dustin, 2009; Gray et al., 2010). 

Following the selected configuration in the Galaxy and Ruffus frameworks, the Git 

agent was used to monitor the remote repository, and as soon as changes were identified, 

Git agent fetched the changes and sent notification. Subsequently, the changes were 

evaluated in the software test suite in order to warn against potential software breaks 

(Blischak et al., 2016).  

3.10.1: Contributing Code on GitHub 

Tracking changes made to the bioinformatics software tools utilized in this study was a 

vital component of the project success. To this end, software control versioning was 

used, which essentially allowed for the concurrent control the software versions, and the 

project source code. For sharing and collaboration amongst the open source community 

(Heller et al., 2011), the source code for this project is made available on GitHub and 
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can be found using the following link: https://github.com/boratonAJ/SNPs_Analysis 

(Figure 9) (Schall, 2015). Our contributing software tools utilized in this study can be 

found in Appendix A, B, C, D, and E. 

 

 

 

 

 

 

 

 

 

Figure 9: GitHub contribution and commit activity. 

The diagram represents the activity of our implementation at SANBI labs. The contribution timeline 
shows the way we contributed to the open source project.  

 

3.11: Distributing SNP Analysis Packages on Python Package 

Website 

SNP Analysis used Setup.py to setup the Python package from Python Package Index 

(Pypi). The Setup.py is a Python file that tells operating system the module to install 

with the assistance of Python distribution utilities (Distutils). The Distutils is the 

standard for distributing Python Module. The SNP Analysis project setup was as 

follows; 
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a) Package - A folder/directory that contains __init__.py file. 

b) Module - A valid Python file with .py extension. 

c) Distribution – Package that is related to the project. 

More so, the following steps highlighted how the package was built and distributed; 

a) The layout of the project files 

b) directory structure 

c) creating the project distribution file and  

d) the project package name was registered at the Python Package Index (PyPI). 

 

 

 

 

 

 

 

 

 

Figure 10: An illustration of the SNP Analysis pipeline published on Python 

packages with the Python package index. 

An account was created on (https://pypi.org/) and we publish the developed Python package with the 

Python Package index at (https://pypi.org/project/SNPs_Analysis/) for sharing the project package 

distribution. Figure 10 show the SNP Analysis package page on Pypi. This helps the biomedical 

researcher find and install the developed package. 
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 Pipeline Integration and Benchmarking 

Knowledge gained from the Chapter 2 and 3 was implemented in a practical case. As 

the need for access to an efficient workflow framework in high performance computing 

environment has increased, so has the requirement for the development of 

bioinformatics workflow systems in South Africa, across the Africa continent and on a 

global level. With an aim to contribute to the bioinformatics open-source community, 

the addition of new pipeline analyses to the bioinformatics workflow systems would 

also allow for biomedical researchers to perform tasks that are impossible. This means 

that bioinformaticians can use the workflow systems to build analysis pipelines, 

allowing biomedical researcher to run the pipeline, for example, without ever leaving 

the workflow framework environment. Galaxy and Ruffus integration with computing 

resources at SANBI were benchmarked. This benchmarking process was criterial to 

address factors such as pipeline flexibility, ease of use, execution time, processing time, 

solvability and reproducible and community support. It further motivated the relevance 

of the framework in the biomedical research community. The tabulated features 

demonstrated measurable performance and metrics. A short discussion on how the 

Distributed Resource Management Application API (DRMAA), a generalized resource 

manager, enabled higher levels of integration, and, our modifications to it. An evaluation 

of the management of the Galaxy and Ruffus framework on cluster resources (how the 

pipeline frameworks handle the basic computational units during execution of the 

analysis pipeline) was required to provide knowledge of how our setup works in terms 

of data storage, network capabilities and processing time and accuracy.  

4.1: Genetic Data Processing  

A total number of 10 MTB genomic datasets from Tygerberg Medical School, South 

Africa was used for the downstream analysis. The analysis includes data processing, 

manipulation, filtering, assembly and annotation using Galaxy and Ruffus workflow 

framework. In this study, we implemented analysis pipelines in the Galaxy and Ruffus 

https://etd.uwc.ac.za



 42 

framework, custom-made specifically for identification of a SNP (Figure 13) based on 

genetic variations. The genetic variation was detected by using reference sequences to 

identify variant at a given position in an individual genome or transcriptome. The 

variant were characterizing to be either synonymous or non-synonymous, together with 

insertions and deletions (Cohen et al., 2015). The output result from the downstream 

analysis on SANBI HPC facility was stored for interpretations and future retrieval. The 

project metadata datasets were managed within the pipeline framework and both the 

input and output data was stored as parallel filesystems on the HPC environment for 

pre- and post- data analysis. The reference genomes of MTB (H37Rv) used for 

alignment and mapping were downloaded from the NCBI database 

(ftp://ftp.ncbi.nih.gov/genomes/Bacteria/) and a PERL script was used to convert from 

GenBank format - to FASTA format, and generic feature format (GFF). The reference 

genome index was also integrated as part of our analysis pipeline. 

4.2: Galaxy Configuration  

Galaxy is a web-browser software system application for accessible, reproducible, and 

collaborative analysis of high-throughput ‘-omics’ data (Goecks et al., 2010). The 

Galaxy project aims to make computational analysis pipelines accessible to research 

scientists that do not have computer programming experience (Blankenberg et al., 2010, 

Atwood et al., 2015) and is widely supported by a large research community. Galaxy 

provides an intuitive user interface with which researchers can build pipelines or use 

existing pipelines to perform analysis on data such as genomic DNA sequences. In our 

Galaxy configuration, BWA-GATK and Freebaye-GATK for calling variants, the 

analysis pipeline was wrapped and configured based on the GATK recommended best 

practices, to demonstrate the SNP analysis pipeline on the HPC cluster. The SNP 

analysis pipeline selectively calls variants by grouping Synonymous and Non-

Synonymous variant call sets. A concise description on source code structure is 

published as part of the official Galaxy documentation and can be found using the 

following URL: https://github.com/galaxyproject. The project structure overview is 

provided in appendix C. 
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4.3: Ruffus Configuration 

The design and architectural goals of the Ruffus module is to be simple, intuitive, 

lightweight, powerful and flexible (Ruffus, 2016). Integrating and configuring the 

Ruffus framework on HPCs, provides a way to develop scripting data analysis pipelines 

that work together with a suite of predefined bioinformatics software tools, and are 

customized as modular Python scripts. The framework has enabled the building of an 

easily accessible and reproducible in-house SNP data analysis pipeline and dataflow 

management system. To this end, the Ruffus framework manages the computational 

analysis operations of each stage of the SNP analysis pipeline that are written in separate 

Python scripts. The analysis pipeline has input sample files that includes the pair-end 

read sample number (e.g. assigning "_R1" and "_R2" as prefix to the sample files) and 

the file extension “. fastq", all in lower-case. The input sample files to the workflow are 

gzip-compressed with the file extension “. fastq.gz". In addition, three simple phases 

were used to build this in-house Ruffus SNP analysis pipeline and include: 1) importing 

ruffus, 2) “Decorating” functions that are part of the pipeline, and 3) running the 

pipeline. With Ruffus framework, the process of executing the analysis pipeline is 

managed and ensure that the dependencies software and file names of the dataset as it 

flows across the analysis pipeline stages are specified in advance. The pipeline stage 

functions are specified in the correct order, with the precise parameters, running in 

parallel with the SGE + DRMAA that assist in splitting the HPC central processing units 

(CPUs) into several processes and jobs submission. The Ruffus environment which is 

utilized at SANBI uses a Python function in the script which performs the analysis 

staging. The source code for this project can be found using this URL 

(https://github.com/boratonAJ/SNPs_Analysis,) and the source code structure overview 

is provided in appendices A and B.  
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4.4: Galaxy and Ruffus deployment on HPC?  

We deployed each workflow framework on an HPC cluster, in a virtual environment by 

following the instructions on the official Galaxy and Ruffus webpages to setup the 

framework instances. In addition to the setup processes and as outlined in section 3.3 

and 3.4 (page 28 and 29), the following steps were also considered;  

a) A clean VM environment and a dedicated user account was provided 

b) A local SQLite database to a dedicated VM server instance (e.g., PostgreSQL) 

was set up to ensure for concurrent connections to stored metadata and to 

increase the response time of the Python virtual environment on the HPC. 

c) SSH and FTP mechanisms to access and send data off-browser were enabled 

d) Different performance tuning aimed at ensuring a better user experience was 

ensured with Collectl-Util, a resource monitor that dynamically monitor the 

performance of the Galaxy and Ruffus framework. 

4.5: Implementation of the SNP Analysis pipeline in Galaxy and 

Ruffus  

Following extensive considerations of the above-mentioned steps, the SNP analysis 

pipeline was tested and deployed. The analysis pipeline follows best practices as 

outlined by the Broad Institute (Mckenna et al., 2010)  (Appendix E). The downstream 

analysis tools used in the pipeline include quality data format tool (FastQC), aligners 

and sorting (BWA-MEM and SAM tools), mark and remove duplicate (Picard tools), 

variant callers (GATK Haplotype Caller) and SNP effect predictors (SNPEff). Genome 

Analysis Toolkit (GATK) is one of the most popular variant calling application tools, 

and together with BWA-MEM enabled the project to compose a data analysis pipeline 

focusing on SNP and insertions/deletions (INDELs) discovery (Mckenna et al., 2010; 

Depristo et al., 2011). In this project, we did not use one approach to configure all tools, 

but we utilized dual processes, the optimal configurations for each of the variant analysis 

tools and parameter. In appendix E, we demonstrate a simplified step of the variant call 
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pipeline in which pre-processing alignment, post-processing alignment and variant 

discovery in the Galaxy and Ruffus frameworks were tested. The integration of the 

pipeline steps formed the SNP analysis pipeline implementation. From the overview 

above, the pipeline steps helped to format, convert, correct and identify the novel genetic 

variants that are associated with Mycobacterium tuberculosis drug resistance. The steps 

encompass phases that include quality control checks, alignment and mapping with 

reference genome (MTB-H37Rv), local realignment, discovery of single nucleotide 

polymorphisms (SNPs) and annotation of the variants using the GATK Haplotype Caller 

(Mckenna et al., 2010) or Freebayes (Pabinger et al., 2014). The general flowchart for 

the analysis pipeline model in the workflow frameworks is represented in the figure 

below (Figure 11).  

 

 

 

 

 

 

 

 

Figure 11: A generic unify flow model for SNP discovery analysis pipeline.  

The following diagram illustrated the strategy we used to set up the pipeline analysis in the pipeline 

frameworks. The flow model represents the general the analysis pipeline process we established for this 

project.Several bioinformatics tools were incorporated. 

https://doi.org/10.1371/journal.pone.0075619.g001.  
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4.5.1: SNP Analysis Pipeline Implementation in Galaxy 

Galaxy SNP analysis pipeline and bioinformatics tools combines the power of genomics 

annotation catalogs with a web portal (Blankenberg et al., 2010). A variety of 

bioinformatics tools and algorithms were implemented with the aim to enable 

researchers to search local and remote resources. Following this, the SNP analysis 

pipeline in the Galaxy framework was created and deployed (Figure 12). The advantage 

of the SNP analysis pipeline in Galaxy is that it enables researchers to perform an 

analysis on the genomic data using the large suite of available bioinformatics tools, from 

beginning to end, and, allows for interaction with selected genomic results through 

browsing Galaxy history. The history generated in Galaxy serves as an analysis record 

which can be used to demonstrate result reproducibility. Galaxy output files obtained 

were detailed PDF reports with results in the form of tables, text and graphic files. The 

Galaxy framework tracks an individual’s job runs, along with features that enable the 

researchers to perform independent data queries, prepare, manipulate and visualize, 

share, publicly post, delete, or archive results. Galaxy uses a shared file system between 

its application server and the cluster nodes. This ensures that researchers can create and 

share pipelines/workflows of their analysis with each other. The Galaxy tool utilized 

additional scripts that allowed for the upload of the genomics data sets from the in-house 

storage server. In this study, not all parameters were set and as such the flexibility of 

Galaxy made it unique to deliver a highly automated solution. The workflows can be 

created in one of two ways; 1) Using the installed tools to create the required analysis 

pipeline prior to generating the grid flowchart workflows, or 2) Using the grid 

workspace to directly create and connect the GUI flowchart workflows steps (Appendix 

C). Although Galaxy is in late-stage beta testing, over 600 users have created almost 

2500 workflows since August 2008 (Project, 2016). However, further testing of Galaxy 

is underway in order to address serious application issues, such as the simplest way to 

build and automate the Galaxy application tools (Piras et al., 2017) 
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Figure 12: Diagram showing the Galaxy SNP analysis pipeline steps. 

A grid workflow diagram which represents an overview of the Galaxy SNP analysis pipeline employed 
in this study is provided below. The Print reads command option write out sequence read data from the 
BAM file after the BQSR and was used as part of BQSR for filtering, merging, and subsetting etc. 

 

4.5.2: SNP Analysis Pipeline Implementation in Ruffus 

SNP analysis pipelines using the Ruffus framework library allows a biomedical 

researcher to carry-out variant calling data analysis with specific sets of bioinformatics 

tools (Appendix A, B, and E) (Leipzig, 2016). Ruffus framework ensures that the correct 

data flows down the analysis pipeline in the correct way at the right time. With Ruffus 

library, the SNP analysis pipeline permits the automation of tasks in parallel, alongside 

management of task execution and visualization. The Python scripts at each stage of the 

SNP analysis pipeline implementation take single inputs at a time (except for pre-

processing data analysis stage which takes paired-end input data) when configuring the 

pipeline. All jobs parallelism is handled by the integration of SGE + DRMAA with 

Ruffus framework. The Ruffus SNP analysis scripts enables discrepancy checking 
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between tools and job checkpoints to ensure that tasks have been completed. In addition, 

the Ruffus SNP analysis pipeline provides several enhancements, including a 

convenient command-line syntax with configuration files that helps the biomedical 

researcher to describe the pipeline parameters, as well as the ability to run jobs either 

locally or on HPC cluster systems (Bao et al., 2014; Kurs et al., 2016). In this study, the 

SNP analysis pipeline was based entirely on standard Ruffus metadata libraries for 

variant call sets, SNP-transcripts, and genomic reference-based data. Ruffus libraries in 

combination with Graphviz software (i.e., “a utility programs useful in graph 

visualization; and libraries for attributed graphs”) were among the various software 

tools integrated in this project (Ellson et al., 2001). The Graphviz software was utilized 

to generate an automatic analysis pipeline flowchart graph which provides an overview 

of the SNP analysis pipeline in the Ruffus framework (Figure 13).  

 

 

 

 

 

 

 

 

Figure 13: Diagram showing the Ruffus SNP analysis pipeline steps.  

The graph illustrates the overview of the steps executed in the SNP analysis pipeline. The flow chart was 
generated using the pipeline_printout_graph function from Ruffus. Other tools, such as SNPEff 
automatically generated a statistical summary report in html format following annotation of the VCF file. 
The base quality recalibration (BQSR) was avoided in this project due to direct detection of haplotypes. 
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Therefore, the integration and implementation of Galaxy and Ruffus SNP analysis 

pipeline together with bioinformatics software tools allows this project to integrate and 

test the framework with the mycobacteria genomic datasets in an automatic, reliable, 

and disk space-saving way.  

4.6: Comparative Analysis  

In Chapter 3, the case study which involved a customized data analysis pipeline for 

calling variants (i.e. SNP) (with jobs running from start to end) in both Galaxy and 

Ruffus, was presented. The pipeline is customized around several bioinformatics tools 

(e.g., BWA, Freebaye and GATK) and is routinely utilized for analyzing and annotating 

the bacterial genome datasets (e.g., MTB). Logical techniques were applied when 

constructing the pipeline for discovery of variant call sets and the bioinformatics tools 

utilized on the cluster working environment were parallelized to speed up analyses in 

each framework virtual manager environment on page 30. In the Galaxy virtual 

environment, scripts such as XML, were incorporated and wrapped around the various 

bioinformatics tools in the virtual cluster manager. On the other hand, in the Ruffus 

virtual environment, the analysis pipeline was developed by integrating the Ruffus 

library together with configuration module files which called all the bioinformatics tools 

in the HPC cluster virtual environment. An advantage of using the Galaxy framework 

is that experimental biologists (i.e., naïve scientists) that have no knowledge of 

computer science and programming but want to develop a variant calling analysis 

pipeline to find genomic region targets for experimental validation can interact with 

Galaxy workflow with a focus on workflow reproducibility and collaboration between 

biomedical research labs or institutes that may experience difficulty in developing 

and/or building analysis pipelines. On the other hand, the advantages of using Ruffus 

analysis pipeline is that the framework can accommodate both basic Python scripts and 

production level data analysis pipelines, which includes features such as, serial and 

parallel steps, dependency checking, data transformation and good naming convention 

for input and output files, as well as user-defined parameters that are fixed and 
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deliverable, and automatic failure recovery (Ruffus, 2016). The following sections give 

more insight on the comparative evaluation;  

4.7: Galaxy Framework features versus Ruffus features  

A unique feature of Galaxy is the large number of tools for operations on a number of 

DNA-seq   files (*.fasta) (e.g., multiple sequence alignment) based on the bx-Python 

project, a Python library for manipulating biological data with associated set of scripts 

developed by the Galaxy Team for fast implementation of rapid genome scale analyses 

(Sinclair, 2010; Blankenberg et al., 2011). These scripts include intersect, subtract, 

complement, merge, concatenate, cluster, coverage, base coverage, and join. Galaxy 

users may benefit from the Galaxy project in the cloud, particularly when ‘on-demand’, 

fast, and inexpensive resources are required. As with many other workflow servers (e.g., 

Taverna), there is no restriction on data file size, nor on the amount of storage space 

available for each user on Galaxy. There are however practical limitations for large file 

movement from one genome server to the next. Galaxy “history” tracks all analyses 

performed by a user and it is continually recorded, and never deleted (unless the user 

deletes the history). In a case where history has been deleted, records are retained for 60 

days prior to permanent deletion from the main server. A disadvantage of Galaxy was 

illustrated by Hillman-Jackson and co-workers (2012). Here, the authors suggest that 

novice users may experience difficulty with creating and modifying workflows. 

Furthermore, libraries which need to be implemented in Galaxy to develop tool 

wrappers does require bioinformatics experience and as such, it is recommended that 

informative tools (such as instructional videos) are utilized by users to gain an 

understanding of Galaxy’s features. Galaxy, as a web-based framework makes the 

analysis pipeline, tools and genomic data available to any biomedical researcher that has 

access to the internet. In contrast, Ruffus framework provides built-in features that 

supports and manage file naming as well as efficiently assist bioinformaticians to 

combine multiple bioinformatics tools together in an analysis chain. Ruffus framework 

uses standard Python syntax and decorators. As such, the SNP analysis pipeline as a 

series of Python scripts uses the Ruffus framework library for data extraction, 
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manipulation, moving and transformation. The advantage of using Ruffus framework is 

having a consistent naming convention (i.e., input and output files) for the analysis 

pipeline. By using the Ruffus “@transform”, the decorator enables us to specify the files 

moving through the SNP analysis pipeline. With Ruffus managing the SNP pipeline 

parameters, the following features were checked: 1) out-of-date parts of the pipeline 

were re-run 2) Multiple jobs were run in parallel (on different processors on the HPC 

cluster) 3) Pipeline stages were bound together automatically (i.e., apply the pipeline to 

more than 10 files at a time). A workflow framework specification requirement and 

comparative analysis summary based on customized analysis pipeline application tests 

and validations in this study, is represented in Table 6 and 7 below (Pabinger et al., 

2014; Leipzig, 2016; Ruffus, 2016). 

Table 6: Workflow Framework Summary 

The table shows Galaxy/Ruffus application differences. 

 

 

Criteria  Galaxy   Ruffus  

Programming  

Language  

Written in Python. Written in Python. 

Task   

Management  

Pipeline task can be paused and restarted 

with the history refresh button. 

Task cannot be stopped. Run from 

start to end.  

 DRM  Galaxy framework accommodates more 

than one engine e.g., Torque, Slurm, and 

DRMAA etc.   

Only tested on SGE plus Ruffus 

drmaa wrapper for job 

submission.  

Target   

Audience  

Computational and Experimental  

Scientists.  

Computational and  

Experimental Scientists. 

Hardware  Windows, Mac, & Linux. Linux Only. 
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Table 7: Comparative Feature Analysis Summary 

The table shows the analysis difference in the Galaxy and Ruffus features.  

 

4.8: Galaxy Implementation and deployment Pitfalls  

In this project, the Galaxy framework does not support automation of the analysis 

pipeline and as such the workflow requires constant intervention where users have to 

restart the analysis pipeline. The Galaxy application programming interface (API) 

Criteria  Galaxy   Ruffus  

Analysis  

Pipeline  

Good for beginners and advanced 

users. Possibility of integrating 

custom workflow solutions. 

Complex to create (good for advance 

developers). Custom scripting workflow 

solution recommended with the use of 

Ruffus library (Python integration).   

User  

Interface  

Easy to use; Galaxy menus are 

clearer, designed to meets basic to 

advanced user expectations. 

Complex to use (require large learning 

curve and extensive programming 

knowledge). Meets advanced user 

expectations.  

Data Size  No restriction of data size of files. 

No limit to storage space.  

No restriction of data size of files. No 

limit to storage space. 

Accessibility  Doesn’t support windows client 

download, offer as web-browser as 

service for all operating systems. 

Available on GitHub. 

Ruffus framework application is strictly 

UNIX/Linux package, and is available as 

a pip or an easy-install. 

Audit  

History  

Tracks all analysis performed by 

user and is never deleted.  

Tracks all analysis performed by user and 

is never deleted.  

Information  

Managing  

Custom generated workflows are 

shareable and can be published. 

Not available. Only use shared memory 

for data/output share. 
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access requires expert knowledge of bioinformatics for installation, implementation, and 

deployment on HPC cluster for data-intensive analysis and may present a steep learning 

curve for novice users. More so, at the time writing this thesis, Galaxy does not 

specifically support SGE, but rather was design to support SLURM grid engine (i.e., a 

batch management system for jobs submission to the HPC cluster for data-intensive 

analysis)(Guimera, 2012; Reuther et al., 2016). Other pitfalls we encountered include;   

a) The host on which the Galaxy application server processes run can only be 

configured in the DRM as a submit host.  

b) The use of Galaxy from basic to advanced developers must have a root or super 

permission for Galaxy API to write in the hosting virtual manager environment 

(i.e., /etc/passwd, LDAP).  

c) The Galaxy virtual environment requires configuration of disabled shells like 

/bin/false in Debian/Ubuntu.  

d) The Galaxy application server and worker nodes require the same version of 

Python 

e) The Galaxy shared filesystem and absolute pathname also are limitations in this 

project since the project does not have full write permission, which however, 

delay the project software development process.    

f) Host manager debugging and network latency limitation.  

4.9: Ruffus Implementation and deployment Pitfalls 

The pitfalls of implementing and deploying Ruffus on HPC cluster can be seen as the 

aspects related to the community support and understanding the workflow syntax and 

modules. Most Ruffus libraries are object-oriented decorator syntax which requires in-

depth knowledge of Python programming language. The Ruffus framework does not 

provide customization of database but rather, provides support for only a single database 

called SQLite. There is no way to read and write directly from the database except 

through file configuration. Other pitfalls include extensive use of regular expression and 

wildcards for file matching (i.e., file naming convention), lack of file cleanup and 
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preservation of history. In this project, we explicitly handle the restarting of failed jobs, 

hence, rebooting and/or restarting the entire pipeline again when tasks failed. Therefore, 

Ruffus library is case sensitive and are quick to both sematic and syntax errors when 

tasks encountered errors at any instance of ambiguity in analysis steps.  

4.10: Benefit of Galaxy over Ruffus on HPC Cluster  

In this project, the Galaxy framework rendered easy user interaction through the use of 

web browsers. Galaxy has a respectable community of users, developers and currently, 

several biomedical research labs have adopted this platform (Blankenberg et al., 2010; 

Goecks et al., 2010). On the other hand, Ruffus framework lacks the community 

supports and its uses in research or institute labs. Ruffus frameworks lacks a pipeline 

analysis progress bar and a way to query jobs that are being run on the HPC cluster. 

Another discrepancy in Ruffus is the lack of dynamic control (e.g., switching on/off the 

tasks, priorities changes, etc.) during the execution of the analysis pipeline. The use of 

Ruffus is regarded as running any other tool on the HPC cluster. Therefore, if the 

researchers have agreed with the term of service and have accepted responsibility and 

liability, the same rules apply to any other users in a cluster, willing to run any type of 

software. When running the analysis pipeline in Ruffus, there is a possibility to enable 

audit trails for logging the analysis pipeline history. This assist with controlling the 

pipeline bugs and the underlying method used by the HPC cluster facility. 

Consequently, Ruffus libraries have advantages, but do not offer an overall solution that 

allows a bioinformatics tool to be easily integrated in an analysis chain and run by 

biomedical researchers without programming experience. 

4.11: Testing and Deployment of Workflow Frameworks  

In this study, the framework efficiency and by extension, the possible relevance to the 

biomedical research field was tested. Test driven processes which included the analysis 

pipeline integration and implementation, and the logger, pipeline state, and tools 

integrated to run on the cluster, were reported. The benchmarking criteria which serve 
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as building block for testing and deployment of the SNP analysis pipelines are explained 

and illustrated (Table 8). Scopes used to plan and assess the Galaxy and Ruffus 

framework include; 

a) Solvability: analysis pipeline should have the ability to read data in a variety of 

different formats, and the support for data provenance, storage and file 

management systems that allowed the movement of both data input and output 

(Shannon et al., 2006). 

b) Performance: analysis pipeline should meet performance criterion. For 

instance, collectl-utilities evaluation on response time, runtime, and hardware 

usage (Furtaw, 2016). 

c) Scalability: Analysis pipeline should be scalable. That is, evaluation based on 

jobs running on HPC cluster are scaled (Nishanth and Kihoon, 2015). 

d) Evolution: Continuous software integration, usability of the analysis pipeline as 

well as community users and developers support. 

e) Reproducible: Workflow framework should be able to reproduce previous 

analysis results when pipeline is re-running (Leipzig, 2016). 

f) Efficient: Each step in the analysis pipeline should be as fast as possible, from 

data formatting, converting, and processing to discovery without interruption of 

any form. In other words, analysis pipeline should utilize the full HPC resources 

(Leipzig, 2016). 

g) Easy to use: Researchers should be able to interact with the workflow 

framework easier in a spontaneous way (Blankenberg et al., 2010).  
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Table 8: Scope summary difference between the Galaxy and Ruffus framework 

Table 8 summarizes the scope difference between the Galaxy framework and Ruffus 

libraries that aim to explain the problem of mining valuable scientific insights from large 

amounts of genomic data on next-generation sequencing experiments (i.e., DNA-seq 

experimentation). 

4.12: Benchmarks Process    

The following sections describe the benchmarking processes. In this project, we 

documented the CPU utilization profile as well as the performance of the base operating 

system (i.e., HPC Linux System) using the Collectl-Utility (White, 2016). During the 

execution of the analysis, the CPU, memory, disk, and network usage were measured at 

intervals of 30-seconds. The output result was then parsed and plotted using the Colplot, 

Benchmarks 

criteria 

Galaxy Ruffus 

Solvability Yes  Yes  

Performance  Yes  Yes  

Scalability Yes  No  

Evolution Yes  No  

Reproducible Analysis pipeline can easily be 

reproducible. Suitable for beginners 

to advance user knowledge of 

programming. 

Require good programing 

knowledge to reproduce pipeline. 

Not suitable for beginners. 

Efficient Very efficient for processing large 

dataset. Take long to process larger 

dataset. 

Take long to process large dataset. 

Not as fast as expected. 

 

Easy to use Yes Not for beginners. 
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a simple web-based application tools for graph visualization (Awasthi et al., 2015; 

Chhanga and Shukla, 2016) (Appendix F). 

4.12.1: HPC Point of Reference  

The basic points of reference evaluated included the number of cores (processors), disk, 

and memory. When researchers give reference to the size of a high-performance 

computing (HPC) cluster they are referring to how many processors or cores, it has. 

Each core needs memory attached with it, to provide a place for the processor to 

perform. The amount of memory on the cluster which was required for this study was 

driven by the requirements of the workflow frameworks and as such, had to be 

comprehensively benchmarked. Galaxy and Ruffus framework requirements varied 

with the variant calling pipeline. Each step in the SNP analysis pipeline step utilized 

memory that ranged from 1 gigabyte of RAM per core to 10 gigabytes (not processor) 

on the SANBI HPC cluster. The memory (RAM) on the cluster provided a temporary 

workspace for job execution on cluster core. Once the analysis jobs in both Galaxy and 

Ruffus (i.e., parallel jobs submission) on the HPC cluster were completed, the memory 

was permanently written on the HPC hard disks. The result of the analysis was then 

transferred to another shared storage on the HPC file system. Setting up the analysis 

pipeline architecture on HPC was a complex process, and as such, required the advice 

from the cluster administrators. Factors that influenced the SNP analysis pipelines 

included; 1) the number of memory (RAM) present on the cluster processors (CPU) to 

support each analysis step (one process or two processes at a time), 2) disk management 

requirement and 3) the framework application and research problem (Nishanth and 

Kihoon, 2015; Netto et al., 2018). 

4.12.2: Collectl-Utility in Practice (Parallel Benchmark)  

The rationale for the use of collectl-utilities over other tools is due to its superior 

capabilities and usefulness for diagnosing or debugging (White, 2016). Collectl-

Util/Colplot demonstrated how the Galaxy and Ruffus compute node operate by 
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enabling the monitoring of components such as memory and CPU utilization (Kelly et 

al., 2015). The Collectl-Util gathered the performance of the base operating system 

(UNIX/Linux OS), processors and the CPU utilization. The logged data from activities 

of the pipeline were then parsed and plotted. Figures 14, 15 and 16 are graphs plotted 

using the Colplot tool. From these graphs, we illustrate the manner in which Galaxy and 

Ruffus write to disk input/output (diskio), memory consumption and CPU utilization for 

total of 2 to 4 cores per analysis step, with CPU speed of 4527.066 MHz minimum for 

successive virtual cores (Kelly et al., 2015). When we execute and test the SNP analysis 

pipeline, we captured the diskio metric and plotted the rate at which the compute node 

disk writes input and output. From the plot one can see that diskio is very high over the 

time.  

 

 

 

 

Figure 14: Disk utilization summary. 

The plot shows the rate at which writing to disk increases over time. The more the input data supplied, 
the bigger the file generated. 

 

 

 

 

 

Figure 15: Memory consumptions. 

The plot shows how the compute node memory was divided among the cached, buffered, dirty, and slab 
memory during SNP analysis pipelines execution on HPC cluster.  
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Figure 16: CPU utilization. 

The plot shows the real time series of our compute node CPU utilization. Thus, both Galaxy and Ruffus 
framework CPU usage are monitored in both brief and detailed daemon mode.  

  

4.12.3: Tools Runtime Measurement in Galaxy and Ruffus 

The analysis pipeline total execution run time is the elapsed wall time from the initial 

start of the analysis steps (i.e., from the earliest start of Step 1 to the latest completion 

of Step 2 of the analysis on page 31) (Appendix E). To this end, time measurement for 

each SNP analysis pipeline (in the Galaxy and Ruffus framework) step is from the 

newest completion time of the earlier step to the latest completion time of the current 

step as described below (Figure 17) (Torri et al., 2012; Spjuth et al., 2015; Piras et al., 

2017). 
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Figure 17: Graph of Galaxy Real time against the Ruffus. 

The plot illustrates the total execution run time for each analysis pipeline step in the Galaxy and Ruffus 
framework. 

 

Table 9: A summary table showing the tools running time for each data set. 

 

 

 

 

 

 

 

 

In this study, the running time for each SNP analysis pipeline is summarized in Table 

12. The data input size, size of DNA-sequence read files and the reference genomes are 

the most important factors affecting the analysis pipeline execution run time on the 

framework. For instance, during the mapping and alignment process/step on Galaxy and 
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Ruffus workflow framework, the reference genome size plays a major role while the 

GATK Haplotype caller step in the SNP analysis pipeline is affected by the size of the 

variant calls set.  

4.12.4: Execution Time and Memory  

The Galaxy/Ruffus framework computational time and the HPC resource manager (e.g., 

CPU, memory etc.) required to execute the SNP analysis pipeline are considered to be 

critical evaluators of efficiency. For example, if Galaxy/Ruffus framework’s 

requirement for memory is high in the system requirement specification and the HPC 

resource (e.g., compute node available for implementing, testing and deploying the 

Galaxy and Ruffus) is low in memory for data intensive analysis, then the workflow 

framework will not be very useful. In addition, a workflow framework is not useful if it 

does not support multi-parallel for data processing and jobs handling and submission. 

Ideally, a workflow framework should be able to balance both CPU and memory usage 

during analysis pipeline execution. To this end, the computational response time of 

Galaxy and Ruffus during processing, analyzing and annotating MTB genomics data, 

was measured. Five runs were used to assess the impact of the analysis pipeline in 

Galaxy and Ruffus, to evaluate the response time, computational speed and memory 

usage. The response time is the total amount of time it takes Galaxy and Ruffus analysis 

pipelines to process and analyze the genomics data and is the sum of time it takes the 

cluster to respond to a request during the execution of the analysis pipeline on the 

computer node. The pipeline request includes; memory (RAM) request, number of cores 

(CPU), reading and writing to a disk input/output (diskio), data retrieval, and storing 

and database queries. Galaxy response time analysis pipeline execution includes loading 

a web browser that includes the HTTP GET and POST method (i.e., a process that 

enable communications between the client’s computer and HPC servers), pipeline 

shared and executed with user-defined data and parameters (Blankenberg et al., 2010; 

Hillman-Jackson et al., 2012). On the other hand, Ruffus response time analysis pipeline 

execution includes building a flow chart of the pipeline tasks, beginning with the most 

recent ancestral pipeline task (i.e., with less dependencies) and calling each Python 
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function in parallel to run multiple jobs (Ruffus, 2016). The response time for Galaxy 

analysis pipeline is compared to that of the Ruffus analysis pipeline as shown below in 

Figure 18 below. 

 

 

 

 

 

 

 

Figure 18:  Graph of Galaxy real time against the Ruffus analysis. 

The plot shows the response time of the pipeline analysis in the Galaxy and Ruffus framework (as 
discussed in section 4.7.4 above). The figure shows difference in execution run-time for each 
bioinformatics pipeline analysis.  

 

From the graph, the Galaxy execution time (also referred to system real time) decreases 

over time per runs and superseded that of Ruffus runtime execution per run. Figure 19 

shows the maximum (Max) coefficient and average (Mean) run time of Galaxy (as 

captured by the Colplot tool).  
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Figure 19: Statistical Analysis Summary. 

The figure above shows the statistics summary of the execution time of the Galaxy and Ruffus analysis 
pipeline. The stats for Galaxy indicate more efficient values over that of Ruffus values. 

 

Analysis in Galaxy framework utilized less time, on average, compared to the analysis 

pipeline in Ruffus framework. However, caution must be exercised, and it cannot be 

concluded that Galaxy out-performs Ruffus as both pipeline framework design is 

different in term of algorithm, concept, internal architecture and requirement 

specification for processing and analyzing genomic dataset, as well as for creating or 

composing analysis pipeline. Each framework has one or more limitations. As at the 

time writing this thesis, Galaxy was seen to be the preferred option by researchers to 

perform computational analysis. 

4.12.5: Features Evaluation Matrix 

We prioritized 7 criteria and a scale of 1 to 5 was used to summarize the Galaxy and 

Ruffus workflow frameworks and features during the framework deployment and 

testing (Table 10). An appropriate rule was set so that each rating criteria outline in the 

table below was used once. That is, the greater the importance or value of a criterion, 

the higher the value assigned. A “Very Good, Good, Poor, Fair, Not Applicable and 

Not Available” scale was used with numeric representation for each criterion (e.g., 

0=Not Available, 1= Very Poor, 2 = Poor, 3 = Fair (or Available), 4 = Good, 5 = Very 

Good, N/A = Not Applicable). The evaluation matrix shows the ratings between the 

frameworks. Based on these features set, one can see that some workflow features and 

functionality scales well and fairly.  In the table, the active development status for 
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Galaxy framework was higher in scale (Very Good = 5) compare to Ruffus which was 

fair. This means that Galaxy framework have larger community support than Ruffus 

and are constantly changing in terms of software development. Ruffus, on the other 

hand, failed to meet active development status and are less supported. Extensibility 

criteria show that both frameworks can easily be extended. Installation and 

maintenance for both framework, each had scores of 4. Integration ease and usability 

for Galaxy had a significantly higher weighted score of 5 compare to Ruffus. This 

greater score indicates that the integration ease and usability for Galaxy fulfils more 

criteria that have been determined to be of greater importance. In the below table, the 

latter explanation applies. More so, since all features/functionality have been scored 

for all criteria, the individual feature score was summed by the appropriate criterion 

weighting. The total score was then calculated for Galaxy and Ruffus. The greater the 

score, the better the workflow frameworks satisfies the evaluation criteria. Our 

evaluation show that the two-workflow framework and features are different in design 

and usability. Based on these features, Galaxy is the preferred choice of workflow 

system that accommodate biomedical researchers with less programming knowledge. 

A summarize of their contribution to the workflow frameworks when building analysis 

pipeline and executing jobs can be seen in Table 9. 

Table 10: Evaluation Matrix 

Evaluation Criteria (Features/Functionality)  Galaxy  Ruffus  

Active Development Status  5  3  

User base  4  3  

Extensibility  5  5  

Installation & Maintenance  4  4  

Integration ease & Usability  5  3  

Other features  5  3  

Total Score  28  21  
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4.13: Summary  

 In this chapter, a functional SNP analysis pipeline was built in the Galaxy and Ruffus 

frameworks to give an overview of biological data analysis. Each analysis pipeline was 

represented by a flowchart model. Each analysis pipeline executes and run jobs 

differently. For instance, the Galaxy used dynamic job configuration for configuring the 

pipeline execution, monitoring, and jobs scheduling. On the other hand, Ruffus uses a 

pipeline configuration file that interfaces with the Ruffus library for jobs runner 

configuration. We performed a performance evaluation of individual framework. The 

results show that in general, workflows tend to be CPU bound and memory intensive, 

and as such this study set up and utilized performance monitoring tools to assists in 

capturing the metrics and system logs. The logs were analyzed to determine system 

requirements or demonstrate the usefulness of the respective frameworks. The 

performance monitoring was an essential part of the process of system optimization, and 

if no testing was performed, pipeline framework bottlenecks would not have been 

identified.  The Galaxy and Ruffus benchmark assessments were based on job 

submission and monitoring, parallelization of tasks, error logging and statistical 

summaries. Furthermore, SGE qccount and Collectl-Util/Colplot were used to create 

pipeline profiles which detailed information for file system temp space, diskio, memory 

and CPU utilization. In addition, the analysis pipeline response time and execution 

runtime of Galaxy was compared to that of Ruffus and allows us to identify the time 

when the analysis pipeline was ready to run and the time when the analysis finished its 

job. Logs collected gives more detailed information about the Galaxy and Ruffus 

framework.  
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 Final Remarks 

5.1: Conclusions  

The use of bioinformatics workflows platforms has transformed biomedical research, 

by allowing a comprehensive analysis of NGS datasets. Choosing which computational 

workflow system to use to analyze the genomics data remains a challenge. 

Understanding bioinformatics workflow features can be helpful in addressing these 

challenges, providing a certain amount of computerization, and thus, enable advance 

more complex studies in the life sciences.  

This thesis evaluated the theoretical and practical application of Galaxy and Ruffus 

workflow frameworks for annotation and analysis of MTB genomic datasets in an HPC 

facility. The Galaxy framework allows users with limited knowledge of bioinformatics 

and computational skills to set up and build an analysis pipeline. This thesis noted that 

Galaxy workflow execution and core requires Python and web programming language 

and tools to work. Galaxy project remains the preferred choice of workflow framework 

without biomedical researchers getting to know the major technical details of 

execution. In contrast, Ruffus requires intermediate, to advanced knowledge of Python 

programming language in order to use the framework library to carry out research in 

the genomics field. Ruffus workflow execution works well with environment module 

which handles the project details paths and the bioinformatics software package. The 

bioinformatics software tools used becomes explicit and were monitored with Linux 

Collectl Util and other job schedulers.  

Furthermore, the use of the evaluation matrix in this study helps us to consider the most 

appropriate and feasible workflow features/functionality for questions identified in our 

aims and objectives. That is, the evaluation matrix provides an answer to the question 

and shows a reasonable comparison based on research finding, discussion and analysis 

in Chapter 3 and 4. The matrix table was systematically used to identify the workflow 
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features by distinguishing the functionality between Galaxy and Ruffus. The workflow 

functionality selection of this matrix shows evaluation based on certain feature criteria 

for comparisons. 

The workflow frameworks for building pipeline analysis requires adequate computing 

infrastructures and availabilities of resources to achieve satisfactory high performance 

and successful running of pipeline analysis from start to execution completion. Lack 

of computational resources and workflow frameworks logic and abstraction disrupt the 

building of pipeline analysis, causing a waste of time and money. Traditional local 

computing infrastructure and environment with limited resources are not well suited 

for building and running data-intensive analysis. Fully functional HPC or cloud 

computing is a very useful complement to the traditional local computing infrastructure 

and environment. 

When building biological data analysis pipeline in Galaxy and Ruffus frameworks, we 

suggest that researchers ensure that the input genomic datasets are of high quality to 

facilitate the pipeline framework reliable for variant discovery and annotations. 

Furthermore, a higher storage capacity for further downstream analysis is 

recommended and will assist in faster, and more accurate variant detection and 

discovery.   

To alleviate the workload of system administrators during the installation of a new 

update or developed bioinformatics software packages, tools sharing via GitHub has 

been set up at the organizational level. In this way, researchers, software developers 

and system managers can actively be contributing to the open source project and make 

it available to better a wider audience. Adding to the open source project is a great way 

to learn more about collaborative research on GitHub and as such, new genomics 

analysis pipelines are made available on the GitHub repository every day. In our 

particular case, we published the in-house tools and analysis pipeline which can be 

obtained using the URL; https://github.com/SANBI-SA. In doing so, the frameworks 

can be expanded and should be a consideration for future research. Our future work 
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will examine the possible way of dockerizing the Galaxy and Ruffus frameworks to fit 

our development working environment. 

5.2: Challenges and Limitations   

During the development and implementation of the SNP analysis pipeline used in this 

study, computational challenges (such as high to low latency and workflow requirement 

inconsistency) were encountered. Furthermore, the following points describe the 

challenges encountered during the Galaxy/Ruffus frameworks implementation, 

deployment, as well as testing (i.e., the SNP analysis pipeline) on the HPC cluster: 

a) Some sets of bioinformatics tools were problematic during the customization of 

the workflow frameworks in that they gave some programming syntax and 

semantics errors.  

b) The benchmarking processes was not a straightforward one and often involved 

several iterative rounds to arrive at predictable and valuable conclusions. 

c) Collecting the metric for the run time execution of the analysis pipeline in the 

Galaxy and Ruffus frameworks was not a straight forward process.  

d) There existed a level of complexity in constant application debugging and 

pipeline profiling before capturing the performance of the workflow 

frameworks analysis.  

e) Another complexity was that, Galaxy and Ruffus application utilized 

shared parallel filesystems on the HPC between their HPC compute nodes, and 

a head node that enable the submission of jobs to the HPC worker nodes (i.e., a 

multi-parallel interface (MPI) enabler). Hence, capturing and interpreting the 

workflows performance was a challenging exercise as there were other HPC 

applications utilizing the system resources. Other challenges were encountered 

during the process of integrating the analysis pipeline due to the limited 

administrator rights to the HPC facility.  
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f) Due to the requirements to satisfy best practices, the evaluation of Galaxy and 

Ruffus to other workflow systems was a rigorous process, and such, the 

evaluation was time consuming.  

g) Other challenges encountered in this study included considerations with respect 

to the differences in Galaxy and Ruffus workflow features as well as the 

requirement for setting up the workflow platform. The Galaxy frameworks 

hardware installation requirements were completely different from that of the 

Ruffus requirements since each framework has different parameters and operates 

differently.  

h) Both frameworks consist of multiple sub-layers of tasks that are not visible to 

end users and as such, require good programming knowledge to prevent 

unstructured objects, syntax and semantics errors when coding. In addition, 

when executing the analysis pipeline, some functions affect the system setup 

environment and files, and on occasion, may lead to system instability and 

breakdown. 

i) Managing higher workflow layers such as workflow execution and 

management was not a completely solved problem. 

 

5.3: Recommendations  

In this thesis, we have evaluated the Galaxy and Ruffus framework by building 

biological data analysis pipelines using different bioinformatics tools and strategies to 

benchmark the frameworks. We have shown how different workflow features and 

functionalities impacted the frameworks, and the resource bottlenecks at runtime. To 

properly manage and decide which framework to use when a biomedical researcher try 

to build bioinformatics pipelines to carry-out omics analyses, this thesis recommends 

that an intuitive, a code-free workflow feature is needed to better understand the 

utilization of Galaxy and Ruffus framework. Furthermore, to understand the underlying 

infrastructure technologies and workflow abstractions, we suggest the implementation 
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and configuration of Galaxy and Ruffus in Singularity environment. Singularity 

packages the workflow systems, the required dependencies and bioinformatics tools in 

a single Docker container. In so doing, it will assist biomedical researchers to have full 

control in pre-configured and ready to use workflow environment. In addition, it will 

reduce the turn-around time for installing and configuring bioinformatics software 

packages. Furthermore, emergence of newly developed workflow features may make it 

easier for a novice bioinformatics analyst to understand and acquire practical 

bioinformatics knowledge, thereby increasing a pool of expertise to further expand the 

field.  

5.4: Future works   

In the future, we intend to enhance our workflow features such as the jobs monitoring 

tools following good coding practices in Galaxy and Ruffus framework. The 

enhancement will allow a biomedical researcher to visualize workflow processes and 

then understand the automation of bioinformatics pipelines. Furthermore, we plan to 

enhance the Galaxy and Ruffus application programming interface (API) tools for 

seamless conditional execution of tasks. In doing so, it will help the biomedical 

researcher to stop the execution of a pipeline analysis and resume it later. We intend to 

enhance the integration of Galaxy and Ruffus for balance and performance (e.g., jobs 

submission and execution runtime) through tighter system level-integration, while 

maintaining workflow portability. Furthermore, we plan on upgrading our high-

performance computing environment such as compute nodes, memory, and the 

bioinformatics tools, to allow us to overcome the barriers pertaining to workloads and 

deployments on cloud-based systems. We plan to make available the customized SNP 

analysis pipeline in the Galaxy and Ruffus to have its own Docker container that can be 

deploy on HPC or cloud-based system. Furthermore, the method utilized to customize 

the SNP analysis pipeline will be further expand for whole genome data analysis 

together with using the latest or newly created bioinformatics software tools. Other plans 

including; to explore other workflow management system (such as integration of bcbio-
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nextgen with Common Workflow Language (CWL) framework) and comparing their 

features to Galaxy and Ruffus framework. We also plan on creating a learning platform 

for novice biomedical researchers to learn Galaxy and Ruffus workflow engine and 

pipeline development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://etd.uwc.ac.za



 72 

References 

Abouelhoda, M., Issa, S. A. & Ghanem, M. 2012. Tavaxy: Integrating Taverna and 
Galaxy workflows with cloud computing support. BMC Bioinformatics, 13, 1. 

Afgan, E., Baker, D., Coraor, N. et al. 2010. Galaxy CloudMan: delivering cloud 
compute clusters. BMC Bioinformatics, 11, S4. 

Afgan, E., Baker, D., Nekrutenko, A. & Taylor, J. 2012. A reference model for 
deploying applications in virtualized environments. Concurrency and 
Computation: Practice and Experience, 24, 1349-1361. 

Aldred, L. J. 2011. Fundamentals of process integration. 

Altintas, I., Berkley, C., Jaeger, E. et al. Kepler: an extensible system for design and 
execution of scientific workflows.  Scientific and Statistical Database 
Management, 2004. Proceedings. 16th International Conference on, 2004. 
IEEE, 423-424. 

Altintas, I., Wang, J., Crawl, D. & Li, W. Challenges and approaches for distributed 
workflow-driven analysis of large-scale biological data: vision paper.  
Proceedings of the 2012 Joint EDBT/ICDT Workshops, 2012. ACM, 73-78. 

Alyssa, H. 2016. High Performance Computing Cluster in a Cloud Environment 
[Online]. Available: https://support.rackspace.com/whitepapers/ [Accessed]. 

Anderson, M. W. & Schrijver, I. 2010. Next generation DNA sequencing and the future 
of genomic medicine. Genes (Basel), 1, 38-69. 

Armbrust, M., Fox, A., Griffith, R. et al. 2010. A view of cloud computing. 
Communications of the ACM, 53, 50-58. 

Arvados. 2016. Arvados | Open Source Big Data Processing and Bioinformatics 
[Online]. Available: https://arvados.org/ [Accessed 14 June, 2016 2016]. 

Awasthi, M., Suri, T., Guz, Z. et al. System-level characterization of datacenter 
applications.  Proceedings of the 6th ACM/SPEC International Conference on 
Performance Engineering, 2015. ACM, 27-38. 

Bao, R., Huang, L., Andrade, J. et al. 2014. Review of current methods, applications, 
and data management for the bioinformatics analysis of whole exome 
sequencing. Cancer Inform., 67-83. 

https://etd.uwc.ac.za



 73 

Bartlett, J. C. & Toms, E. G. 2005. Developing a protocol for bioinformatics analysis: 
An integrated information behavior and task analysis approach. Journal of the 
Association for Information Science and Technology, 56, 469-482. 

Bhagwanani, S. 2005. An evaluation of end-user interfaces of scientific workflow 
management systems. 

Bhardwaj, S., Jain, L. & Jain, S. 2010. Cloud computing: A study of infrastructure as 
a service (IAAS). International Journal of engineering and information 
Technology, 2, 60-63. 

Bianchi, V., Ceol, A., Ogier, A. G. et al. 2016. Integrated Systems for NGS Data 
Management and Analysis: Open Issues and Available Solutions. Front Genet, 
7, 75. 

Biostars. 2010. How To Organize A Pipeline Of Small Scripts Together? [Online]. 
Available: https://www.biostars.org/p/79/ [Accessed 14th March 2018]. 

Biostars. 2015. Workflow management software for pipeline development in NGS 
[Online]. Biostars. Available: https://www.biostars.org/p/115745/ [Accessed 
14th March 2018]. 

Blankenberg, D., Taylor, J., Nekrutenko, A. & Team, G. 2011. Making whole genome 
multiple alignments usable for biologists. Bioinformatics, 27, 2426-2428. 

Blankenberg, D., Von Kuster, G., Coraor, N. et al. 2010. Galaxy: a web-based genome 
analysis tool for experimentalists. Curr. Protoc. Mol. Biol., Chapter 19, Unit 
19 10 1-21. 

Blischak, J. D., Davenport, E. R. & Wilson, G. 2016. A Quick Introduction to Version 
Control with Git and GitHub. PLoS Comput. Biol., 12, e1004668. 

Booth., G. 2013. Open Grid Scheduler/Grid Engine [Online]. 2012. Available: 
http://gridscheduler.sourceforge.net [Accessed June 6th 2017]. 

Bretaudeau, A., Monjeaud, C., Le Bras, Y., Legeai, F. & Collin, O. 2015. 
BioMAJ2Galaxy: automatic update of reference data in Galaxy using BioMAJ. 
GigaScience, 4, 22. 

Brian, W. & Dustin, M. J. 2009. Buildbot: The Continuous Integration Framework 
[Online]. Available: http://buildbot.net/index.html#basics [Accessed 9th 
September 2017]. 

Brown, D. K., Musyoka, T. M., Penkler, D. L. & Bishop, Ö. T. 2015. JMS: A workflow 
management system and web-based cluster front-end for the Torque resource 
manager. arXiv preprint arXiv:1501.06907. 

https://etd.uwc.ac.za



 74 

Calabrese, B. 2018. Cloud-Based Bioinformatics Platforms. Reference Module in Life 
Sciences. Elsevier. 

Chhanga, D. & Shukla, X. 2016. FOSSICK: An Implementation of Federated Search 
Engine. International Journal Of Computer Science Engineering And 
Information Technology Research (IJCSEITR), 6, 69-78. 

Chine, K. 2010. Open science in the cloud: towards a universal platform for scientific 
and statistical computing. Handbook of cloud computing. Springer. 

Cohen, K. A., Abeel, T., Manson Mcguire, A. et al. 2015. Evolution of Extensively 
Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing 
and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-
Natal. PLoS Med., 12, e1001880. 

Curcin, V. & Ghanem, M. Scientific workflow systems-can one size fit all?  2008 Cairo 
International Biomedical Engineering Conference, 2008. IEEE, 1-9. 

D'antonio, M., De Meo, P. D. O., Paoletti, D. et al. 2013. WEP: a high-performance 
analysis pipeline for whole-exome data. BMC Bioinformatics, 14, S11. 

Dean, J. & Ghemawat, S. 2008. MapReduce: simplified data processing on large 
clusters. Communications of the ACM, 51, 107-113. 

Deelman, E. 2010. Grids and clouds: Making workflow applications work in 
heterogeneous distributed environments. The International Journal of High 
Performance Computing Applications, 24, 284-298. 

Deelman, E., Gannon, D., Shields, M. & Taylor, I. 2009. Workflows and e-Science: 
An overview of workflow system features and capabilities. Future Generation 
Computer Systems, 25, 528-540. 

Depristo, M. A., Banks, E., Poplin, R. et al. 2011. A framework for variation discovery 
and genotyping using next-generation DNA sequencing data. Nat. Genet., 43, 
491-8. 

Di Tommaso, P., Chatzou, M., Floden, E. W. et al. 2017. Nextflow enables 
reproducible computational workflows. Nat. Biotechnol., 35, 316-319. 

Doctorow, C. 2008. Big data: welcome to the petacentre. Nature News, 455, 16-21. 

Ellson, J., Gansner, E., Koutsofios, L., North, S. C. & Woodhull, G. Graphviz—open 
source graph drawing tools.  International Symposium on Graph Drawing, 
2001. Springer, 483-484. 

https://etd.uwc.ac.za



 75 

Emeakaroha, V. C., Maurer, M., Stern, P. et al. 2013. Managing and optimizing 
bioinformatics workflows for data analysis in clouds. Journal of grid 
computing, 11, 407-428. 

Fisch, K. M., Meißner, T., Gioia, L. et al. 2015. Omics Pipe: a community-based 
framework for reproducible multi-omics data analysis. Bioinformatics, btv061. 

Foundation, P. S. 2016. The Python Programming Languages [Online]. Available: 
https://www.python.org/ [Accessed 14 June, 2016]. 

Furtaw, B. 2016. High performance data analytics in precision medicine using scale-
up and hybrid supercomputing solutions. 

Fusaro, V. A., Patil, P., Gafni, E., Wall, D. P. & Tonellato, P. J. 2011. Biomedical 
cloud computing with amazon web services. PLoS Comput. Biol., 7, e1002147. 

Garfinkel, S. 2007. An evaluation of amazon's grid computing services: EC2, S3, and 
SQS. 

Glenn, T. C. 2011. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour., 
11, 759-769. 

Goble, C. & De Roure, D. 2009. The impact of workflow tools on data-centric research. 

Goble, C. & Stevens, R. 2008. State of the nation in data integration for bioinformatics. 
J. Biomed. Inf., 41, 687-693. 

Goecks, J., Nekrutenko, A. & Taylor, J. 2010. Galaxy: a comprehensive approach for 
supporting accessible, reproducible, and transparent computational research in 
the life sciences. Genome Biol., 11, R86. 

Goesmann, A., Linke, B., Rupp, O. et al. 2003. Building a BRIDGE for the integration 
of heterogeneous data from functional genomics into a platform for systems 
biology. J. Biotechnol., 106, 157-167. 

Gorelick, M. & Ozsvald, I. 2014. High Performance Python: Practical Performant 
Programming for Humans, " O'Reilly Media, Inc.". 

Gray, J., Moore, K. T. & Naylor, B. A. OpenMDAO: An open source framework for 
multidisciplinary analysis and optimization.  AIAA/ISSMO Multidisciplinary 
Analysis Optimization Conference Proceedings, 2010. 

Guimera, R. V. 2012. Enabling Automatic Data Analysis in Bioinformatics Core 
Facilities. 

https://etd.uwc.ac.za



 76 

Hale, K. S. & Stanney, K. M. 2014. Handbook of virtual environments: Design, 
implementation, and applications, CRC Press. 

Heller, B., Marschner, E., Rosenfeld, E. & Heer, J. Visualizing collaboration and 
influence in the open-source software community.  Proceedings of the 8th 
working conference on mining software repositories, 2011. ACM, 223-226. 

Hillman-Jackson, J., Clements, D., Blankenberg, D. et al. 2012. Using galaxy to 
perform large-scale interactive data analyses. Current protocols in 
bioinformatics, 10.5. 1-10.5. 47. 

Hinchcliffe, M., Le, H., Fimmel, A. et al. 2014. Diagnostic validation of a familial 
hypercholesterolaemia cohort provides a model for using targeted next 
generation DNA sequencing in the clinical setting. Pathology, 46, 60-8. 

Huang, W., Liu, J., Abali, B. & Panda, D. K. A case for high performance computing 
with virtual machines.  Proceedings of the 20th annual international conference 
on Supercomputing, 2006. ACM, 125-134. 

Ison, J., Rapacki, K., Menager, H. et al. 2015. Tools and data services registry: a 
community effort to document bioinformatics resources. Nucleic Acids Res. 

Jackson, K. R., Ramakrishnan, L., Muriki, K. et al. Performance analysis of high 
performance computing applications on the amazon web services cloud.  Cloud 
Computing Technology and Science (CloudCom), 2010 IEEE Second 
International Conference on, 2010. IEEE, 159-168. 

Jamalian, S. & Rajaei, H. ASETS: A SDN Empowered Task Scheduling System for 
HPCaaS on the Cloud.  Cloud Engineering (IC2E), 2015 IEEE International 
Conference on, 2015. IEEE, 329-334. 

Kang, M. H., Froscher, J. N., Sheth, A. P., Kochut, K. J. & Miller, J. A. A multilevel 
secure workflow management system.  Advanced Information Systems 
Engineering, 1999. Springer, 271-285. 

Kanwal, S., Khan, F. Z., Lonie, A. & Sinnott, R. O. 2017. Investigating reproducibility 
and tracking provenance–A genomic workflow case study. BMC 
Bioinformatics, 18, 337. 

Kelly, B. J., Fitch, J. R., Hu, Y. et al. 2015. Churchill: an ultra-fast, deterministic, 
highly scalable and balanced parallelization strategy for the discovery of human 
genetic variation in clinical and population-scale genomics. Genome Biol., 16, 
6. 

Kircher, M. & Kelso, J. 2010. High-throughput DNA sequencing–concepts and 
limitations. Bioessays, 32, 524-536. 

https://etd.uwc.ac.za



 77 

Kodama, Y., Shumway, M. & Leinonen, R. 2012. The Sequence Read Archive: 
explosive growth of sequencing data. Nucleic Acids Res., 40, D54-D56. 

Korpelainen, E., Tuimala, J., Somervuo, P., Huss, M. & Wong, G. 2014. RNA-seq Data 
Analysis: A Practical Approach, CRC Press. 

Koster, J. & Rahmann, S. 2012. Snakemake--a scalable bioinformatics workflow 
engine. Bioinformatics, 28, 2520-2. 

Kurs, J. P., Simi, M. & Campagne, F. 2016. NextflowWorkbench: Reproducible and 
Reusable Workflows for Beginners and Experts. bioRxiv. 

Lamprecht, A.-L. 2013. User-Level Workflow Design: A Bioinformatics Perspective, 
Springer. 

Layton, J. 2017. Monitor Your Nodes with collectl [Online]. Available: 
http://www.admin-magazine.com/index.php/HPC/Articles/Monitor-Your-
Nodes-with-collectl [Accessed 23rd October 2017]. 

Leading, D. C. S. 2016. it@ intel. 

Lefkowitz, H. M. 2000. Graphical user interface. Google Patents. 

Leipzig, J. 2016. A review of bioinformatic pipeline frameworks. Brief Bioinform. 

Li, Y. & Chen, L. 2014. Big biological data: challenges and opportunities. Genomics, 
proteomics & bioinformatics, 12, 187-189. 

Liu, B., Madduri, R. K., Sotomayor, B. et al. 2014. Cloud-based bioinformatics 
workflow platform for large-scale next-generation sequencing analyses. J 
Biomed Inform, 49, 119-33. 

Liu, J. 20 Years of teaching parallel processing to computer science seniors.  
Proceedings of the Workshop on Education for High Performance Computing, 
2016. IEEE Press, 7-13. 

Loman, N. J., Misra, R. V., Dallman, T. J. et al. 2012. Performance comparison of 
benchtop high-throughput sequencing platforms. Nat. Biotechnol., 30, 434-439. 

Luna, D., Mayan, J., García, M., Almerares, A. & Househ, M. 2014. Challenges and 
potential solutions for big data implementations in developing countries. Yearb. 
Med. Inform., 9, 36. 

Marathe, A., Harris, R., Lowenthal, D. K. et al. A comparative study of high-
performance computing on the cloud.  Proceedings of the 22nd international 

https://etd.uwc.ac.za



 78 

symposium on High-performance parallel and distributed computing, 2013. 
ACM, 239-250. 

Mcgough, A. S., Afzal, A., Darlington, J. et al. 2005. Making the grid predictable 
through reservations and performance modelling. The Computer Journal, 48, 
358-368. 

Mckenna, A., Hanna, M., Banks, E. et al. 2010. The Genome Analysis Toolkit: a 
MapReduce framework for analyzing next-generation DNA sequencing data. 
Genome Res., 20, 1297-303. 

Metzker, M. L. 2010. Sequencing technologies—the next generation. Nature reviews 
genetics, 11, 31-46. 

Michael, M. & William, J. F. 2014. Patent Application Publication [Online]. San 
Francisco, CA (US) United States. Available: 
https://patents.google.com/patent/US20140136968 [Accessed 15th March 
2018]. 

Möller, S., Prescott, S. W., Wirzenius, L. et al. 2017. Robust cross-platform 
workflows: how technical and scientific communities collaborate to develop, 
test and share best practices for data analysis. Data Science and Engineering, 
2, 232-244. 

Nagalakshmi, U., Waern, K. & Snyder, M. 2010. RNA-Seq: a method for 
comprehensive transcriptome analysis. Curr. Protoc. Mol. Biol., Chapter 4, 
Unit 4 11 1-13. 

Neron, B., Menager, H., Maufrais, C. et al. 2009. Mobyle: a new full web 
bioinformatics framework. Bioinformatics, 25, 3005-11. 

Netto, M. A., Calheiros, R. N., Rodrigues, E. R., Cunha, R. L. & Buyya, R. 2018. HPC 
Cloud for Scientific and Business Applications: Taxonomy, Vision, and 
Research Challenges. ACM Computing Surveys (CSUR), 51, 8. 

Nishanth, D. & Kihoon, Y. 2015. Dell HPC System for Genomics v2.0. Eng. J. 

Nocq, J., Celton, M., Gendron, P., Lemieux, S. & Wilhelm, B. T. 2013. Harnessing 
virtual machines to simplify next-generation DNA sequencing analysis. 
Bioinformatics, 29, 2075-83. 

Nyrönen, T. H., Laitinen, J., Tourunen, O. et al. Delivering ICT infrastructure for 
biomedical research.  Proceedings of the WICSA/ECSA 2012 Companion 
Volume, 2012. ACM, 37-44. 

https://etd.uwc.ac.za



 79 

O'sullivan, B. 2009. Making sense of revision-control systems. Communications of the 
ACM, 52, 56-62. 

O’driscoll, A., Daugelaite, J. & Sleator, R. D. 2013. ‘Big data’, Hadoop and cloud 
computing in genomics. J. Biomed. Inf., 46, 774-781. 

Oinn, T., Addis, M., Ferris, J. et al. 2004. Taverna: a tool for the composition and 
enactment of bioinformatics workflows. Bioinformatics, 20, 3045-54. 

Oracle. 2017. Solaris Advanced User's Guide [Online]. Available: 
https://docs.oracle.com/cd/E19683-01/806-7612/startup-78447/index.html 
[Accessed 5th May 2017]. 

Pabinger, S., Dander, A., Fischer, M. et al. 2014. A survey of tools for variant analysis 
of next-generation genome sequencing data. Brief Bioinform, 15, 256-78. 

Pepke, S., Wold, B. & Mortazavi, A. 2009. Computation for ChIP-seq and RNA-seq 
studies. Nat. Methods, 6, S22-32. 

Perl. 2016. The Perl Programming Language - www.perl.org [Online]. Perl.org. 
Available: https://www.perl.org/ [Accessed 14 June, 2016 2016]. 

Piras, M. E., Pireddu, L. & Zanetti, G. 2017. wft4galaxy: a workflow testing tool for 
galaxy. Bioinformatics, 33, 3805-3807. 

Prajapati, H. B. & Shah, V. A. Scheduling in grid computing environment.  Advanced 
Computing & Communication Technologies (ACCT), 2014 Fourth 
International Conference on, 2014. IEEE, 315-324. 

Project, G. 2016. The Galaxy Project: Online bioinformatics analysis for everyone 
[Online]. Available: https://galaxyproject.org/ [Accessed 14 June, 2016 2016]. 

Raman, K., Yeturu, K. & Chandra, N. 2008. targetTB: a target identification pipeline 
for Mycobacterium tuberculosis through an interactome, reactome and 
genome-scale structural analysis. BMC Syst. Biol., 2, 1. 

Reuther, A., Byun, C., Arcand, W. et al. Scheduler technologies in support of high 
performance data analysis.  High Performance Extreme Computing Conference 
(HPEC), 2016 IEEE, 2016. IEEE, 1-6. 

Romano, P. 2008. Automation of in-silico data analysis processes through workflow 
management systems. Briefings in Bioinformatics, 9, 57-68. 

Rother, K., Potrzebowski, W., Puton, T. et al. 2011. A toolbox for developing 
bioinformatics software. Briefings in bioinformatics, 13, 244-257. 

https://etd.uwc.ac.za



 80 

Ruffus. 2016. Ruffus — ruffus 2.6.3 documentation [Online]. Ruffus — ruffus 2.6.3 
documentation. Available: http://www.ruffus.org.uk/ [Accessed 14 June, 2016 
2016]. 

Sanner, M. F. 1999. Python: a programming language for software integration and 
development. J. Mol. Graph. Model., 17, 57-61. 

Santana-Perez, I. & Pérez-Hernández, M. S. 2015. Towards reproducibility in scientific 
workflows: An infrastructure-based approach. Scientific Programming, 2015. 

Schall, D. 2015. Social network-based recommender systems, Springer. 

Schindelin, J., Arganda-Carreras, I., Frise, E. et al. 2012. Fiji: an open-source platform 
for biological-image analysis. Nat. Methods, 9, 676-682. 

Schulz, W. L., Durant, T. J., Siddon, A. J. & Torres, R. 2016. Use of application 
containers and workflows for genomic data analysis. J. Pathol. Inform., 7. 

Shannon, P. T., Reiss, D. J., Bonneau, R. & Baliga, N. S. 2006. The Gaggle: an open-
source software system for integrating bioinformatics software and data 
sources. BMC Bioinformatics, 7, 176. 

Sinclair, L. 2010. Development Of An Interactive Genome Browser To Visualize And 
Analyse Large Scale Genomic Data. 

Spjuth, O., Bongcam-Rudloff, E., Hernandez, G. C. et al. 2015. Experiences with 
workflows for automating data-intensive bioinformatics. Biol. Direct, 10, 43. 

Stein, L. 1996. How Perl saved the human genome project. Dr Dobb’s Journal (July 
2001). 

Stein, L. D. 2010. The case for cloud computing in genome informatics. Genome Biol., 
11, 1. 

Stephens, Z. D., Lee, S. Y., Faghri, F. et al. 2015. Big Data: Astronomical or 
Genomical? PLoS Biol., 13, e1002195. 

Stevens, W. R. & Rago, S. A. 2013. Advanced programming in the UNIX environment, 
Addison-Wesley. 

Sun, M. 2007. Sun N1 Grid Engine 6.1 Administration Guide [Online]. USA: Oracle. 
Available: https://docs.oracle.com/cd/E19957-01/820-0698/book-
info/index.html [Accessed June 6th 2017]. 

https://etd.uwc.ac.za



 81 

Taura, K., Matsuzaki, T., Miwa, M. et al. 2013. Design and implementation of GXP 
make - A workflow system based on make. Future Gener. Comput. Syst., 29, 
662-672. 

Tolvanen, J.-P. & Kelly, S. 2008. Domain-Specific Modeling: Enabling Full Code 
Generation. Wiley-IEEE Computer Society, 444, 231. 

Torri, F., Dinov, I. D., Zamanyan, A. et al. 2012. Next generation sequence analysis 
and computational genomics using graphical pipeline workflows. Genes 
(Basel), 3, 545-75. 

Truong, H.-L. & Dustdar, S. 2011. Cloud computing for small research groups in 
computational science and engineering: current status and outlook. Computing, 
91, 75-91. 

Van Der Aalst, W. & Van Hee, K. M. 2004. Workflow management: models, methods, 
and systems, MIT press. 

Van Der Aalst, W. M. & Ter Hofstede, A. H. 2005. YAWL: yet another workflow 
language. Information systems, 30, 245-275. 

Van Der Auwera, G. A., Carneiro, M. O., Hartl, C. et al. 2013. From FastQ data to high 
confidence variant calls: the Genome Analysis Toolkit best practices pipeline. 
Curr Protoc Bioinformatics, 43, 11 10 1-33. 

Van Deventer, C. 2014. Expressed sequence tag clustering using commercial gaming 
hardware. University of Johannesburg. 

Van Heusden, P., Yi, L. & Christoffels, A. An OpenNebula-based cloud computing 
environment for bioinformatics. 2012. SATNAC. 

Vince, B. 2015. Remedial Unix Shell. In: JOLLYMORE, C. N. A. A. (ed.) 
Bioinformatics Data Skills. First Edition ed. 1005 Gravenstein Highway North, 
Sebastopol, CA 95472: O’Reilly Media. 

Wang, Y., Mehta, G., Mayani, R. et al. 2011. RseqFlow: workflows for RNA-Seq data 
analysis. Bioinformatics, 27, 2598-600. 

White, P. 2016. Peer Review Publication: GenomeNext's NGS Analysis Engine Per. 
Med. 

Wilke, A., Rückert, C., Bartels, D. et al. 2003. Bioinformatics support for high-
throughput proteomics. J. Biotechnol., 106, 147-156. 

https://etd.uwc.ac.za



 82 

Williams, A. G., Thomas, S., Wyman, S. K. & Holloway, A. K. 2014. RNA-seq Data: 
Challenges in and Recommendations for Experimental Design and Analysis. 
Curr Protoc Hum Genet, 83, 11 13 1-20. 

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. & Stoica, I. 2010. Spark: 
Cluster computing with working sets. HotCloud, 10, 95. 

Zhang, Q., Cheng, L. & Boutaba, R. 2010. Algorithms and architectures for parallel 
processing. J. Int. Serv. Appl, 1, 7-18. 

Zhao, Z., Belloum, A., Wibisono, A. et al. Scientific workflow management: between 
generality and applicability.  Quality Software, 2005.(QSIC 2005). Fifth 
International Conference on, 2005. IEEE, 357-364. 

Zou, Q., Li, X.-B., Jiang, W.-R. et al. 2013. Survey of MapReduce frame operation in 
bioinformatics. Briefings in bioinformatics, 15, 637-647. 

 

 

 

https://etd.uwc.ac.za



 83 

Appendix A 

Pipeline Framework Configuration for Variant Calling Pipeline 

The SNP analysis pipeline was designed for 100 base pair or greater Illumina short read 

MTB sequence data with Illumina 1.9 quality encoding and uses Illumina naming 

convention. The SNP Analysis pipeline is based on the Galaxy and Ruffus framework 

for building pipelines (Figure 22).  The Python libraries allow the integration of several 

bioinformatics tools and its dependencies. The project source code is made available on 

public domain (i.e., open source platform) hosted on GitHub. 

Pipeline features include:  

• Job submission on a cluster using DRMAA (currently only tested with 

SLURM).  

• Job dependency calculation and check pointing.  

• Pipeline can be displayed as a flowchart.  

• Re-running a pipeline will start from the most up-to-date stage. It will not redo 

previously completed tasks.   

License  

3 Clause BSD License. See LICENSE.txt in source repository.  

Installation: External dependencies  

SNP Analysis depends on the following programs and libraries:  

• Python (version 2.7.5), Galaxy and Ruffus and pyYaML  
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• DRMAA for submitting jobs to the cluster. The pipeline uses libdrama.so by 

running Python-drmaa for either local or cluster job submission system.  

• BWA for aligning reads to the reference genome (version 0.7.10)  

• NovoCraft  

• GATK Genome Analysis Toolkit (version 3.3-0)  

• SAMTOOLS (version 0.1.2)  

• PICARD (version 1.127)  

• FASTQC  version  0.10.1  

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)  

• VCFTOOLS (http://vcftools.sourceforge.net/)  

• VIRTUAL version 15.0.1 (2016-03-17))   

Input Data Source  

Genomic Dataset used in this project were from the Tygerberg Hospital Group. 10 paired 

end (PE) MTB samples data were used as input datasets for the pipeline. E.g.;  

• H37Rv1116_R1.fastq.gz  

• H37Rv1116_R2.fastq.gz 

Reference Genome (MTB):  

• human_g1k_v37_decoy. fasta  
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Appendix B 

Ruffus Framework Implementation Steps 

This section describes how we installed and configured the Ruffus framework in HPC 
Python virtual environment. We used the virtual Python environment to implement the 
SNP data analysis pipeline using our GitHub repository; the following steps illustrates 
the processes: 

  cd /place/to/install 

  virtualenv Ruffus_SNP_Analysis 

  source Ruffus_SNP_Analysis/bin/activate 

  pip install -U git+https://github.com/boratonAJ/ Ruffus_SNP_Analysis 

If you don't want to use a virtual environment, then you can just install with pip: 

  pip install -U git+https://github.com/boratonAJ/ Ruffus_SNP_Analysis 

Cloned Work  

The worked example directory in the source distribution contains the Mycobacterial 
dataset to illustrate the use of the pipeline.  

Get a copy of the source distribution 

  cd /path/to/test/directory 

  git clone https://github.com/boratonAJ/Ruffus_SNP_Analysis.git 

  Install `Ruffus_SNP_Analysis` as described above 

Get a reference genome. 

 cd Ruffus_SNP_Analysis/example 

 mkdir reference 

 copy your reference into this directory, or make a symbolic link call it 
reference/H37rv.fa 

DRMAA library 

We tell Python where our DRMAA library is. This is will depend on your local settings):  

export DRMAA_LIBRARY_PATH=/usr/local/slurm_drmaa/1.0.7/gcc/lib/libdrmaa.so 

Run Ruffus_SNP_Analysis and ask it what it will do next 
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Ruffus_SNP_Analysis -n --verbose 3 

Generate a flowchart diagram 

Ruffus_SNP_Analysis--flowchart pipeline_flow.png --flowchart_format png 

Run the pipeline 

Ruffus_SNP_Analysis --use_threads --log_file pipeline.log --jobs 2 --verbose 3 

Usage 

You can get a summary of the command line arguments like so: 

Ruffus_SNP_Analysis -h 

usage: Ruffus_SNP_Analysis   [-h] [--verbose [VERBOSE]] [-L FILE] [-T JOBNAME] 

                         [-j N] [--use_threads] [-n] [--touch_files_only] 

                         [--recreate_database] [--checksum_file_name FILE] 

                         [--flowchart FILE] [--key_legend_in_graph] 

                         [--draw_graph_horizontally] 

                         [--flowchart_format FORMAT] [--forced_tasks JOBNAME] 

                         [--config CONFIG] [--jobscripts JOBSCRIPTS] 

                         [--version] 

optional arguments: 

  -h, --help            show this help message and exit 

  --config CONFIG       Pipeline configuration file in YAML format, defaults 

                        to pipeline.config 

  --jobscripts JOBSCRIPTS 

                        Directory to store cluster job scripts created by the 

                        pipeline, defaults to jobscripts 

  --version             show program's version number and exit 

Common options: 

  --verbose [VERBOSE], -v [VERBOSE] 

                        Print more verbose messages for each additional 

                        verbose level. 
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  -L FILE, --log_file FILE 

                        Name and path of log file 

pipeline arguments: 

 -T JOBNAME, --target_tasks JOBNAME Target task(s) of pipeline. 

 -j N, --jobs N   Allow N jobs (commands) to run simultaneously. 

  --use_threads  Use multiple threads rather than processes. Needs --jobs N with N > 1 

  -n, --just_print  Don't actually run any commands; just print the pipeline. 

 --touch_files_only    Don't actually run any commands; just 'touch' the 

                        output for each task to make them appear up to date. 

 --recreate_database   Don't actually run any commands; just recreate the 

                        checksum database. 

 --checksum_file_name FILE  Path of the checksum file. 

--flowchart FILE      Don't run any commands; just print pipeline as a flowchart. 

--key_legend_in_graph 

                        Print out legend and key for dependency graph. 

 --draw_graph_horizontally 

                        Draw horizontal dependency graph. 

 --flowchart_format FORMAT 

                        format of dependency graph file. Can be 'svg', 'svgz', 

                        'png', 'jpg', 'psd', 'tif', 'eps', 'pdf', or 'dot'. 

                        Defaults to the file name extension of –flowchart FILE. 

  --forced_tasks JOBNAME 

                        Task(s) which will be included even if they are up to date. 

Configuration file: 

You must supply a configuration file for the pipeline in YAML format. Here is an 
example: 

        walltime: '10:00' 

        mem: 30 

        modules: 

https://etd.uwc.ac.za



 88 

            - 'snpeff/default' 

Reference: The Human Genome in FASTA format. 

ref_grch37:/usr/people/ajayi/test/ 
Ruffus_SNP_Analysis/example/reference/HumanTest500k_g1k_H37Rv_decoy.fasta 

index_file: /usr/people/ajayi/test/ Ruffus_SNP_Analysis /example/reference/*.nix 

The input FASTQ files. 

fastqs: 

   - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1117_R1.fastq.gz 

   - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1117_R2.fastq.gz 

   - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1118_R1.fastq.gz 

   - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1118_R2.fastq.gz 

   - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1119_R1.fastq.gz 

   - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1119_R2.fastq.gz 

   - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1120_R1.fastq.gz 

   - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1120_R2.fastq.gz 

   - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1121_R1.fastq.gz 

   - /cip0/research/scratch/ajayi/Input_fasta_files/H37Rv1121_R2.fastq.g 

pipeline_id: 'H37Rv' 
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Figure 20: This illustrates the command line interface for executing the Ruffus 
Pipeline analysis. 

The command line interface illustrates the Ruffus framework, a rule-based framework enactment system 

that uses declarative specifications of data dependences between workflow steps to routinely order the 

execution of other steps.  
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Appendix C 

Galaxy Framework Implementation Steps 

Galaxy workflow framework application detail is provided below. Screen shots are 

noted to provide a visual outlook of the framework. Galaxy is an open source project, 

developed by the Center for Comparative Genomics & Bioinformatics at Peninsula State 

University (Figure 23). The Galaxy project was funded by NSF, Eberly College of 

Science, and the Huck Institutes for the Life Sciences. 

Python Support  

The Galaxy framework supports Python 2.4 or higher. This is needed for biomedical 

researchers who manage/install the application. More so, Python is required in the 

virtual environment computer in order to support Galaxy.  

SNPs Analysis in Galaxy Virtual Environment  

This Galaxy framework used a virtual Python environment to implement the SNPs data 
analysis pipeline from the GitHub repository; 

cd /place/to/install 

virtualenv Galaxy SNP_Analysis 

source Galaxy_SNPs_Analysis/bin/activate 

pip install -U git+https://github.com/galaxyproject/galaxy.git 

If you don't want to use a virtual environment, then you can just install with pip: 

pip install -U git+https://github.com/galaxyproject/galaxy.git 
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Platform UNIX (Ubuntu) 

As at the time of writing this thesis, Galaxy framework can easily be downloadable for 

UNIX and MAC platforms. There is no support for Windows platform with distribution 

for building Python eggs. That is, modules specific to a Python version that have been 

compiled and packaged into a single file.  Users of Microsoft windows can directly 

access Galaxy web application from web browsers without downloading the application.  

Data Formats  

Galaxy framework accepts input data formats that follow to Browser Extensible Data 

format (or *.bed), Axt, fastqsolexa, fasta, gff3, gff, html, lav, maf, wiggle, tabular and 

interval and Other text (characterized by extension, *.txt) file, etc. Other data formats 

are accepted contingent upon changes of Galaxy framework source code for support of 

a new data type that is done by the application automatically via the format converters 

available in the application. 

Customized tools  

In this project the customized tool was coded in Python and XML and were integrated 

in the Galaxy framework. Figure 24 and 25 steps shows the integrated tools with our 

local instance of Galaxy application. The analyses were created prior to generating the 

GUI workflows. Figure 24 shows an example of how we started the process that 

include “Get A File,” or “upload a new file either from Hard Drive, Server Libraries or 

other browser data”. 
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Figure 21: Galaxy SNP analysis pipeline GUI Webpage. 

 

 

 

 

 

 

 

 

Figure 22: Datasets in the current history. 

The two figures above show the pipeline interface and history and the different stage of the file data 

formats. The SNPs analysis in Galaxy that run are managed in this interface and on the right show the 

status of the workflow tasks being run or in queue. 
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Appendix D  

Implementation of DRMAA for Ruffus and Galaxy   

Tell the Python Virtual Environment where your DRMAA library is:  

For example (this was depending on the HPC cloud settings):  

Export 

export DRMAA_LIBRARY_PATH=/usr/local/slurm_drmaa/1.0.7gcc/lib/libdrmaa.so  

 

Figure 23: This illustrates the cloud environment and VM configuration setting 
for genomic data storage, retrieval and analysis of genomics data. 

This project VM environment was managed by OpenNebula, and was partitioned to manage the 

operating system, code and database. The created virtual machines, with workloads ranging from web 

server to high performance computing nodes was also used to manage the workflow execution and 

management. 
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Appendix E  

Simplify SNPs Pipeline Steps 

A simplify walk-through steps for the SNPs Analysis Pipeline in Galaxy/Ruffus 

Framework. The following diagram illustrates the walk-through process for this 

project. 

  

 

 

 

 

 

 

 

Figure 24: A simplify and generic flowchart representing the flow of analysis steps. 

The diagram illustrates an optimized workflow step. Each tool and setting in the Galaxy and Ruffus were 

used to generate the variant calling pipeline. Galaxy/Ruffus allows an analysis to be started from any 

level of the process and with option of plugging virtually any bioinformatics tool or code.  

 

Aligning FASTQ files to reference genome with bwa and Sorting  

Aligned_FASTQ.sam: Sort SAM by coordinate and convert to bam using Picard:  
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a. Use the Picard tool: aligned_FASTQ.sam → FastqtoSam → SortSam → 

sorted_file.bam  

b. If read pairs, merge pairs sorted_file_R1.bam and sorted_file_R2.bam to 

file_R1_R2_sort.bam with Picard’s MergeSamFiles class: Picard 

MergeBamAlignment → sorted_file_R1_R2_.bam  

 

Step 1a. Alignment – Map to Reference Genome 

Tool  BWA-MEM  

Input  Fastq files, H37Rv Reference genome  

Output  Aligned_Reads.sam 

Command  bwa mem -M -R '@RG: Sample_1: Sample_1: ILLUMINA:  

HISEQ:Sample_1'human_g1k_v37_decoy.fasta Sample1_L1_R1. fq 

Sample1_L1_R2. fq | samtools view -bSho BAM_FILE – > 

Aligned_Reads.sam  

Step 1b. Sort SAM file by coordinate, convert to BAM  

Tool  Picard Tools  

Input  Aligned_Reads.sam  

Output  Sorted_Reads.bam 

Command  java -jar picard.jar SortSam INPUT=Aligned_Reads.sam  

OUTPUT=Sorted_Reads.bam SORT_ORDER=coordinate  
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Mark and Remove duplicates & Collect Alignment Metrics 

Picard MarkDeduplicates (sorted_file_R1_R2.bam) → bam without duplicates  

 

Step 2b Collect Alignment Metrics  

Tool  Picard Tools, Samtools  

Input  Sorted_Reads.bam, H37Rv Reference genome 

Output  alignment_metrics.txt, insert_metrics.txt, insert_size_histogram.pdf  

Command  java -jar picard.jar CollectAlignmentSummaryMetrics R= reference 
I=Sorted_Reads.bam O=alignment_metrics.txt  

 

Generate Realigning Targets 

This is the first step in a two-step process of realigning around indels.  

RealignerTargetCreator: Input (bam without duplicates, reference file) → Output (target 
list file). 

Step 3 Create Realignment Targets  

Tool  GATK  

Input  Dedup_Reads.bam, H37Rv Reference genome 

Output  Realignment_Targets. list  

Command  java -jar GenomeAnalysisTK.jar -T RealignerTargetCreator -R reference -I 

Dedup_Reads.bam -o Realignment_Targets. list  

Step 2a Mark Duplicates  

Tool  Picard Tools  

Input  Sorted_Reads.bam  

Output  Dedup_Reads.bam, metrics.txt  

Command  java -jar picard.jar MarkDuplicates INPUT=Sorted_Reads.bam 

OUTPUT=Dedup_Reads.bam METRICS_FILE=metrics.txt  
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Realigning around InDels:   

IndelRealigner: Input (bam without duplicates, target list file, reference file) → Output 

(realigned bam) 

 

Step 4 Realign Indels  

Tool  GATK  

Input  Dedup_Reads.bam, Realignment_Targets.list, H37Rv Reference genome 

Output  Realigned_Reads.bam  

Command  java -jar GenomeAnalysisTK.jar -T IndelRealigner -R reference -I 

Dedup_Reads.bam -targetIntervals Realignment_Targets. list -o 

Realigned_Reads.bam  

 

Base Recalibrate file 

GATK BaseRecalibrator: Input (realigned bam, reference) → Output (recalibrated data 

table). The variants identified in this step will be filtered and provided as input for Base 

Quality Score Recalibration (BQSR). The BQSR is performed twice. The second pass 

is optional but is required to produce a recalibration report. 

 

Step 5a Base Quality Score Recalibration (BQSR) #1  

Tool  GATK  

Input  Realigned_Reads.bam, filtered_snps.vcf, filtered_indels.vcf, H37Rv 

Reference genome 

Output  Recal_Data.table* 

Command  java -jar GenomeAnalysisTK.jar -T BaseRecalibrator -R reference -I 

Realigned_Reads.bam -knownSites filtered_snps.vcf -knownSites 

filtered_indels.vcf -o Recal_Data.table  
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GATK -T CountCovariates → Input (recalibrated data table, reference file) → Output 

(post recalibrated data table → recalibration report → recalibration report. The second 

time BQSR is run, it takes the output from the first run (Recal_Data.table) as input 

 

Step 5b  Base Quality Score Recalibration (BQSR) #2  

Tool  GATK  

Input  Recal_Data.table, Realigned_Reads.bam, filtered_snps.vcf, 

filtered_indels.vcf, H37Rv Reference genome 

Output  Post_Recal_Data.table  

Command  java -jar GenomeAnalysisTK.jar -T BaseRecalibrator -R reference -I 

Realigned_Reads.bam -knownSites filtered_snps.vcf -knownSites 

filtered_indels.vcf -BQSR Recal_Data.table -o Post_Recal_Data.table  

 

Recalibration quality report (PDF and CSV). This step produces a recalibration report 

based on the output from the two BQSR runs 

 

Step 5c Analyze Covariates  

Tool  GATK  

Input  Recal_Data.table, Post_Recal_Data.table, H37Rv Reference genome 

Output  Recalibration_Plots.pdf  

Command  java -jar GenomeAnalysisTK.jar -T AnalyzeCovariates -R reference before 

Recal_Data.table -after Post_Recal_Data.table -plots Recalibration_Plots.pdf  
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Variant Discovery – Calling variants: 

Extract SNPs & Indels: This step separates SNPs and Indels so they can be processed 

and used independently. 

 

Step 6a Extract SNPs & Indels  

Tool  GATK  

Input  Raw_Variants.vcf, H37Rv Reference genome 

Output  Raw_Indels.vcf, Raw_Snps.vcf  

Command  java -jar GenomeAnalysisTK.jar -T SelectVariants -R reference -V 

raw_variants.vcf -selectType SNP -o Raw_Snps.vcf java -jar 

GenomeAnalysisTK.jar -T SelectVariants -R reference -V Raw_Variants.vcf 

-selectType INDEL -o Raw_Indels.vcf  

 

GATK -T VariantFiltration → snp-filter.vcf. The SNPs which are ‘filtered out’ at this 

step will remain in the filtered_snps.vcf file, however they will be marked as 

‘basic_snp_filter’, while SNPs which passed the filter will be marked as ‘PASS’. The 

filtering criteria for SNPs are as follows: QD < 2.0, FS > 60.0, MQ < 40.0, MQRankSum 

< -12.5, ReadPosRankSum < -8.0, SOR > 4.0. 

 

Step 6b  Filter SNPs  

Tool  GATK  

Input  raw_snps.vcf, reference genome  

Output  filtered_snps.vcf  

Command  java -jar GenomeAnalysisTK.jar -T VariantFiltration -R reference -V 

raw_snps.vcf --filterExpression 'QD < 2.0  
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HaplotypeCaller and filter variants: GATK -T HaplotypeCaller → Input (recalibrated 

data table, reference file, recalibrated bam) → Output (variant call sets (snp.vcf)). 

 

Step 6c Call Variants  

Tool  GATK  

Input  Realigned_Reads.bam, H37Rv Reference genome 

Output  Raw_Variants.vcf  

Command  java -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R reference -I 

Realigned_Reads.bam -o Raw_Variants.vcf  

 

Evaluate Haplotype: GATK -T VariantEval → snpfilter.eval  

Calculate variation effects: java -jar snpEff.jar → snp-filtereffects.tsv 
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Appendix F 

Benchmarks: Collectl-Utility 

Collectl-Utility is a Perl programming code that attracts as much detail as possible from 

the /proc filesystem. This project used Collectl-Util in daemon mode and modified one 

line in /etc/Collectl.conf by adding the following the default statistics monitored.   

“The line in /etc/Collectl.conf is:  

DaemonCommands = -f /var/log/Collectl -r00:00,7 -m -F60 -s+YZCD –iosize”  

The above code options allow us to monitor the HPC virtual environment CPU, disk, 

and network in brief mode, and slab, processes, and disk in detailed mode. Furthermore, 

we added code to monitor disk input/outsize (iosizes). After the implementation of the 

workflow frameworks, the Collectt-Util testing was complete. We then grabbed the raw 

Collectl data file and copied it into a directory for post-processing. The file is named 

localhost-20120310133840.raw.gz. The data was processed with Collectl-ColPlot to 

create plot files for the various subsystems such as CPU, disk, and so on. The exact 

command is:  

“% Collectl -p localhost-20120310-133840.raw.gz -P -f ./PLOTFILES -ocz” 

The -p option tells Collectl to “play back” the data or, literally, to run the data back 

through Collectl, and it takes as an argument the name of the raw file. The -P option 

tells Collectl to create plot files. The -f option tells Collectl to use a specific directory in 

which to place the output (I created a subdirectory called PLOTFILES, where I stored 

the plot files). The option -ocz tells Collectl to open the plot files in create mode, which 

means it will overwrite existing files with the same name. The -z option tells Collectl 

not to compress the plot files. 
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Figure 25: The diagram illustrates colplot. 

We use the colplot to generate plots against captured logs files in our Galaxy/Ruffus directory that match 

the selected timeframe such as CPU, memory etc. 
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