8,100 research outputs found

    Engaging the Virtual Landscape: Toward an Experiential Approach to Exploring Place Through a Spatial Experience Engine

    Get PDF
    The utilization of Geographic Information Systems (GIS) and other geospatial technologies in historical inquiry and the humanities has led to a number of projects that are exploring digital representations of past landscapes and places as platforms for synthesizing and representing historical and geographic information. Recent advancements in geovisualization, immersive environments, and virtual reality offer the opportunity to generate digital representations of cultural and physical landscapes, and embed those virtual landscapes with information and knowledge from multiple GIS sources. The development of these technologies and their application to historical research has opened up new opportunities to synthesize historical records from disparate sources, represent these sources spatially in digital form, and to embed the qualitative data into those spatial representations that is often crucial to historical interpretation.;This dissertation explores the design and development of a serious game-based virtual engine, the Spatial Experience Engine (SEE), that provides an immersive and interactive platform for an experiential approach to exploring and understanding place. Through a case study focused on the late nineteenth-century urban landscape of Morgantown, West Virginia, the implementation of the SEE discussed in this dissertation demonstrates a compelling platform for building and exploring complex, virtual landscapes, enhanced with spatialized information and multimedia. The SEE not only provides an alternative approach for scholars exploring the spatial turn in history and a humanistic, experiential analysis of historical places, but its flexibility and extensibility also offer the potential for future implementations to explore a wide range of research questions related to the representation of geographic information within an immersive and interactive virtual landscape

    Geographical information retrieval with ontologies of place

    Get PDF
    Geographical context is required of many information retrieval tasks in which the target of the search may be documents, images or records which are referenced to geographical space only by means of place names. Often there may be an imprecise match between the query name and the names associated with candidate sources of information. There is a need therefore for geographical information retrieval facilities that can rank the relevance of candidate information with respect to geographical closeness of place as well as semantic closeness with respect to the information of interest. Here we present an ontology of place that combines limited coordinate data with semantic and qualitative spatial relationships between places. This parsimonious model of geographical place supports maintenance of knowledge of place names that relate to extensive regions of the Earth at multiple levels of granularity. The ontology has been implemented with a semantic modelling system linking non-spatial conceptual hierarchies with the place ontology. An hierarchical spatial distance measure is combined with Euclidean distance between place centroids to create a hybrid spatial distance measure. This is integrated with thematic distance, based on classification semantics, to create an integrated semantic closeness measure that can be used for a relevance ranking of retrieved objects

    The Role of GIS to Enable Public-Sector Decision Making Under Conditions of Uncertainty

    Get PDF
    Uncertainty is inherent in environmental planning and decision making. For example, water managers in arid regions are attuned to the uncertainty of water supply due to prolonged periods of drought. To contend with multiple sources and forms of uncertainty, resource managers implement strategies and tools to aid in the exploration and interpretation of data and scenarios. Various GIS capabilities, such as statistical analysis, modeling and visualization are available to decision makers who face the challenge of making decisions under conditions of deep uncertainty. While significant research has lead to the inclusion and representation of uncertainty in GIS, existing GIS literature does not address how decision makers implement and utilize GIS as an assistive technology to contend with deep uncertainty. We address this gap through a case study of water managers in the Phoenix Metropolitan Area, examining how they engage with GIS in making decisions and coping with uncertainty. Findings of a qualitative analysis of water mangers reveal the need to distinguish between implicit and explicit uncertainty. Implicit uncertainty is linked to the decision-making process, and while understood, it is not displayed or revealed separately from the data. In contrast, explicit uncertainty is conceived as separate from the process and is something that can be described or displayed. Developed from twelve interviews with Phoenix-area water managers in 2005, these distinctions of uncertainty clarify the use of GIS in decision making. Findings show that managers use the products of GIS for exploring uncertainty (e.g., cartographic products). Uncertainty visualization emerged as a current practice, but definitions of what constitutes such visualizations were not consistent across decision makers. Additionally, uncertainty was a common and even sometimes helpful element of decision making; rather than being a hindrance, it is seen as an essential component of the process. These findings contradict prior research relating to uncertainty visualization where decision makers often express discomfort with the presence of uncertainty.

    Development of a web-enabled learning platform for geospatial laboratories: improving the undergraduate learning experience

    Get PDF
    This paper describes a web-enabled learning platform providing remote access to geospatial software that extends the learning experience outside of the laboratory setting. The platform was piloted in two undergraduate courses, and includes a software server, a data server, and remote student users. The platform was designed to improve the quality of the learning experience and to increase student confidence and proficiency with software-based geospatial skills. Laboratory grades of students using the platform were significantly higher than those of students who did not use the platform, and survey responses reported that students overwhelmingly liked the convenience of the platform, which allowed them to work from any location

    Supporting Disaster Resilience Spatial Thinking with Serious GeoGames: Project Lily Pad

    Get PDF
    The need for improvement of societal disaster resilience and response efforts was evident after the destruction caused by the 2017 Atlantic hurricane season. We present a novel conceptual framework for improving disaster resilience through the combination of serious games, geographic information systems (GIS), spatial thinking, and disaster resilience. Our framework is implemented via Project Lily Pad, a serious geogame based on our conceptual framework, serious game case studies, interviews and real-life experiences from 2017 Hurricane Harvey survivors in Dickinson, TX, and an immersive hurricane-induced flooding scenario. The game teaches a four-fold set of skills relevant to spatial thinking and disaster resilience, including reading a map, navigating an environment, coding verbal instructions, and determining best practices in a disaster situation. Results of evaluation of the four skills via Project Lily Pad through a “think aloud” study conducted by both emergency management novices and professionals revealed that the game encouraged players to think spatially, can help build awareness for disaster response scenarios, and has potential for real-life use by emergency management professionals. It can be concluded from our results that the combination of serious games, geographic information systems (GIS), spatial thinking, and disaster resilience, as implemented via Project Lily Pad and our evaluation results, demonstrated the wide range of possibilities for using serious geogames to improve disaster resilience spatial thinking and potentially save lives when disasters occur

    The design-by-adaptation approach to universal access: learning from videogame technology

    Get PDF
    This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation

    Grounding for a computational model of place

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2006.Text printed 2 columns per page.Includes bibliographical references (leaves 66-70).Places are spatial locations that have been given meaning by human experience. The sense of a place is it's support for experiences and the emotional responses associated with them. This sense provides direction and focus for our daily lives. Physical maps and their electronic decedents deconstruct places into discrete data and require user interpretation to reconstruct the original sense of place. Is it possible to create maps that preserve this sense of place and successfully communicate it to the user? This thesis presents a model, and an application upon that model, that captures sense of place for translation, rather then requires the user to recreate it from disparate data. By grounding a human place-sense for machine interpretation, new presentations of space can be presented that more accurately mirror human cognitive conceptions. By using measures of semantic distance a user can observe the proximity of place not only in distance but also by context or association. Applications built upon this model can then construct representations that show places that are similar in feeling or reasonable destinations given the user's current location.(cont.) To accomplish this, the model attempts to understand place in the context a human might by using commonsense reasoning to analyze textual descriptions of place, and implicit statements of support for the role of these places in natural activity. It produces a semantic description of a place in terms of human action and emotion. Representations built upon these descriptions can offer powerful changes in the cognitive processing of space.Matthew Curtis Hockenberry.S.M
    • 

    corecore