7 research outputs found

    DyMo: Dynamic Monitoring of Large Scale LTE-Multicast Systems

    Full text link
    LTE evolved Multimedia Broadcast/Multicast Service (eMBMS) is an attractive solution for video delivery to very large groups in crowded venues. However, deployment and management of eMBMS systems is challenging, due to the lack of realtime feedback from the User Equipment (UEs). Therefore, we present the Dynamic Monitoring (DyMo) system for low-overhead feedback collection. DyMo leverages eMBMS for broadcasting Stochastic Group Instructions to all UEs. These instructions indicate the reporting rates as a function of the observed Quality of Service (QoS). This simple feedback mechanism collects very limited QoS reports from the UEs. The reports are used for network optimization, thereby ensuring high QoS to the UEs. We present the design aspects of DyMo and evaluate its performance analytically and via extensive simulations. Specifically, we show that DyMo infers the optimal eMBMS settings with extremely low overhead, while meeting strict QoS requirements under different UE mobility patterns and presence of network component failures. For instance, DyMo can detect the eMBMS Signal-to-Noise Ratio (SNR) experienced by the 0.1% percentile of the UEs with Root Mean Square Error (RMSE) of 0.05% with only 5 to 10 reports per second regardless of the number of UEs

    Spatio-temporal networks: reachability, centrality and robustness

    Get PDF
    Recent advances in spatial and temporal networks have enabled researchers to more-accurately describe many real-world systems such as urban transport networks. In this paper, we study the response of real-world spatio-temporal networks to random error and systematic attack, taking a unified view of their spatial and temporal performance. We propose a model of spatio-temporal paths in time-varying spatially embedded networks which captures the property that, as in many real-world systems, interaction between nodes is non-instantaneous and governed by the space in which they are embedded. Through numerical experiments on three real-world urban transport systems, we study the effect of node failure on a network's topological, temporal and spatial structure. We also demonstrate the broader applicability of this framework to three other classes of network. To identify weaknesses specific to the behaviour of a spatio-temporal system, we introduce centrality measures that evaluate the importance of a node as a structural bridge and its role in supporting spatio-temporally efficient flows through the network. This exposes the complex nature of fragility in a spatio-temporal system, showing that there is a variety of failure modes when a network is subject to systematic attacks

    Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations

    Get PDF
    The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well-known consensus and adjacency dynamics.Comment: 8 page

    Evaluating temporal robustness of mobile networks

    No full text
    The application of complex network models to communication systems has led to several important results: nonetheless, previous research has often neglected to take into account their temporal properties, which in many real scenarios play a pivotal role. At the same time, network robustness has come extensively under scrutiny. Understanding whether networked systems can undergo structural damage and yet perform efficiently is crucial to both their protection against failures and to the design of new applications. In spite of this, it is still unclear what type of resilience we may expect in a network which continuously changes over time. In this work, we present the first attempt to define the concept of temporal network robustness: we describe a measure of network robustness for time-varying networks and we show how it performs on different classes of random models by means of analytical and numerical evaluation. Finally, we report a case study on a real-world scenario, an opportunistic vehicular system of about 500 taxicabs, highlighting the importance of time in the evaluation of robustness. Particularly, we show how static approximation can wrongly indicate high robustness of fragile networks when adopted in mobile time-varying networks, while a temporal approach captures more accurately the system performance. © 2002-2012 IEEE

    Evaluating Temporal Robustness of Mobile Networks

    No full text
    corecore