561 research outputs found

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Neural approaches to spoken content embedding

    Full text link
    Comparing spoken segments is a central operation to speech processing. Traditional approaches in this area have favored frame-level dynamic programming algorithms, such as dynamic time warping, because they require no supervision, but they are limited in performance and efficiency. As an alternative, acoustic word embeddings -- fixed-dimensional vector representations of variable-length spoken word segments -- have begun to be considered for such tasks as well. However, the current space of such discriminative embedding models, training approaches, and their application to real-world downstream tasks is limited. We start by considering ``single-view" training losses where the goal is to learn an acoustic word embedding model that separates same-word and different-word spoken segment pairs. Then, we consider ``multi-view" contrastive losses. In this setting, acoustic word embeddings are learned jointly with embeddings of character sequences to generate acoustically grounded embeddings of written words, or acoustically grounded word embeddings. In this thesis, we contribute new discriminative acoustic word embedding (AWE) and acoustically grounded word embedding (AGWE) approaches based on recurrent neural networks (RNNs). We improve model training in terms of both efficiency and performance. We take these developments beyond English to several low-resource languages and show that multilingual training improves performance when labeled data is limited. We apply our embedding models, both monolingual and multilingual, to the downstream tasks of query-by-example speech search and automatic speech recognition. Finally, we show how our embedding approaches compare with and complement more recent self-supervised speech models.Comment: PhD thesi

    Speech recognition with probabilistic transcriptions and end-to-end systems using deep learning

    Get PDF
    In this thesis, we develop deep learning models in automatic speech recognition (ASR) for two contrasting tasks characterized by the amounts of labeled data available for training. In the first half, we deal with scenarios when there are limited or no labeled data for training ASR systems. This situation is commonly prevalent in languages which are under-resourced. However, in the second half, we train ASR systems with large amounts of labeled data in English. Our objective is to improve modern end-to-end (E2E) ASR using attention modeling. Thus, the two primary contributions of this thesis are the following: Cross-Lingual Speech Recognition in Under-Resourced Scenarios: A well-resourced language is a language with an abundance of resources to support the development of speech technology. Those resources are usually defined in terms of 100+ hours of speech data, corresponding transcriptions, pronunciation dictionaries, and language models. In contrast, an under-resourced language lacks one or more of these resources. The most expensive and time-consuming resource is the acquisition of transcriptions due to the difficulty in finding native transcribers. The first part of the thesis proposes methods by which deep neural networks (DNNs) can be trained when there are limited or no transcribed data in the target language. Such scenarios are common for languages which are under-resourced. Two key components of this proposition are Transfer Learning and Crowdsourcing. Through these methods, we demonstrate that it is possible to borrow statistical knowledge of acoustics from a variety of other well-resourced languages to learn the parameters of a the DNN in the target under-resourced language. In particular, we use well-resourced languages as cross-entropy regularizers to improve the generalization capacity of the target language. A key accomplishment of this study is that it is the first to train DNNs using noisy labels in the target language transcribed by non-native speakers available in online marketplaces. End-to-End Large Vocabulary Automatic Speech Recognition: Recent advances in ASR have been mostly due to the advent of deep learning models. Such models have the ability to discover complex non-linear relationships between attributes that are usually found in real-world tasks. Despite these advances, building a conventional ASR system is a cumbersome procedure since it involves optimizing several components separately in a disjoint fashion. To alleviate this problem, modern ASR systems have adopted a new approach of directly transducing speech signals to text. Such systems are known as E2E systems and one such system is the Connectionist Temporal Classification (CTC). However, one drawback of CTC is the hard alignment problem as it relies only on the current input to generate the current output. In reality, the output at the current time is influenced not only by the current input but also by inputs in the past and the future. Thus, the second part of the thesis proposes advancing state-of-the-art E2E speech recognition for large corpora by directly incorporating attention modeling within the CTC framework. In attention modeling, inputs in the current, past, and future are distinctively weighted depending on the degree of influence they exert on the current output. We accomplish this by deriving new context vectors using time convolution features to model attention as part of the CTC network. To further improve attention modeling, we extract more reliable content information from a network representing an implicit language model. Finally, we used vector based attention weights that are applied on context vectors across both time and their individual components. A key accomplishment of this study is that it is the first to incorporate attention directly within the CTC network. Furthermore, we show that our proposed attention-based CTC model, even in the absence of an explicit language model, is able to achieve lower word error rates than a well-trained conventional ASR system equipped with a strong external language model

    Losses Can Be Blessings: Routing Self-Supervised Speech Representations Towards Efficient Multilingual and Multitask Speech Processing

    Full text link
    Self-supervised learning (SSL) for rich speech representations has achieved empirical success in low-resource Automatic Speech Recognition (ASR) and other speech processing tasks, which can mitigate the necessity of a large amount of transcribed speech and thus has driven a growing demand for on-device ASR and other speech processing. However, advanced speech SSL models have become increasingly large, which contradicts the limited on-device resources. This gap could be more severe in multilingual/multitask scenarios requiring simultaneously recognizing multiple languages or executing multiple speech processing tasks. Additionally, strongly overparameterized speech SSL models tend to suffer from overfitting when being finetuned on low-resource speech corpus. This work aims to enhance the practical usage of speech SSL models towards a win-win in both enhanced efficiency and alleviated overfitting via our proposed S3^3-Router framework, which for the first time discovers that simply discarding no more than 10\% of model weights via only finetuning model connections of speech SSL models can achieve better accuracy over standard weight finetuning on downstream speech processing tasks. More importantly, S3^3-Router can serve as an all-in-one technique to enable (1) a new finetuning scheme, (2) an efficient multilingual/multitask solution, (3) a state-of-the-art ASR pruning technique, and (4) a new tool to quantitatively analyze the learned speech representation. We believe S3^3-Router has provided a new perspective for practical deployment of speech SSL models. Our codes are available at: https://github.com/GATECH-EIC/S3-Router.Comment: Accepted at NeurIPS 202

    Advances in unlimited-vocabulary speech recognition for morphologically rich languages

    Get PDF
    Automatic speech recognition systems are devices or computer programs that convert human speech into text or make actions based on what is said to the system. Typical applications include dictation, automatic transcription of large audio or video databases, speech-controlled user interfaces, and automated telephone services, for example. If the recognition system is not limited to a certain topic and vocabulary, covering the words in the target languages as well as possible while maintaining a high recognition accuracy becomes an issue. The conventional way to model the target language, especially in English recognition systems, is to limit the recognition to the most common words of the language. A vocabulary of 60 000 words is usually enough to cover the language adequately for arbitrary topics. On the other hand, in morphologically rich languages, such as Finnish, Estonian and Turkish, long words can be formed by inflecting and compounding, which makes it difficult to cover the language adequately by vocabulary-based approaches. This thesis deals with methods that can be used to build efficient speech recognition systems for morphologically rich languages. Before training the statistical n-gram language models on a large text corpus, the words in the corpus are automatically segmented into smaller fragments, referred to as morphs. The morphs are then used as modelling units of the n-gram models instead of whole words. This makes it possible to train the model on the whole text corpus without limiting the vocabulary and enables the model to create even unseen words by joining morphs together. Since the segmentation algorithm is unsupervised and data-driven, it can be readily used for many languages. Speech recognition experiments are made on various Finnish recognition tasks and some of the experiments are also repeated on an Estonian task. It is shown that the morph-based language models reduce recognition errors when compared to word-based models. It seems to be important, however, that the n-gram models are allowed to use long morph contexts, especially if the morphs used by the model are short. This can be achieved by using growing and pruning algorithms to train variable-length n-gram models. The thesis also presents data structures that can be used for representing the variable-length n-gram models efficiently in recognition systems. By analysing the recognition errors made by Finnish recognition systems it is found out that speaker adaptive training and discriminative training methods help to reduce errors in different situations. The errors are also analysed according to word frequencies and manually defined error classes
    corecore