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Abstract

In this thesis, we develop deep learning models in autonsgéech recognition
(ASR) for two contrasting tasks characterized by the anwwointlabeled data
available for training. In the first half, we deal with scaparwhen there are
limited or no labeled data for training ASR systems. Thigation is commonly
prevalent in languages which are under-resourced. Howewvére second half,
we train ASR systems with large amounts of labeled data idi&ngOur objec-
tive is to improve modern end-to-end (E2E) ASR using attentnodeling. Thus,
the two primary contributions of this thesis are the follogi

e Cross-Lingual Speech Recognition in Under-Resourced Scenarios

A well-resourced language is a language with an abundancesotirces to
support the development of speech technology. Those res®are usually de-
fined in terms of 108 hours of speech data, corresponding transcriptions, pro-
nunciation dictionaries, and language models. In conteastinder-resourced
language lacks one or more of these resources. The mostsax@amd time-
consuming resource is the acquisition of transcriptions tuthe dificulty in
finding native transcribers. The first part of the thesis pegs methods by
which deep neural networks (DNNs) can be trained when therd&raited or

no transcribed data in the target language. Such scenaei@®amon for lan-
guages which are under-resourced.

Two key components of this proposition afeansfer Learning and Crowd-

sourcing. Through these methods, we demonstrate that it is possidiert

row statistical knowledge of acoustics from a variety ofestlvell-resourced
languages to learn the parameters of a the DNN in the targkdriresourced
language. In particular, we use well-resourced languagesmss-entropy reg-
ularizers to improve the generalization capacity of thgaatanguage. A key
accomplishment of this study is that it is the first to train f¥Nusing noisy
labels in the target language transcribed by non-nativakgre available in



online marketplaces.

End-to-End Large Vocabulary Automatic Speech Recognition

Recent advances in ASR have been mostly due to the advenepfiearning
models. Such models have the ability to discover complexlmzar relation-
ships between attributes that are usually found in realdviasks. Despite
these advances, building a conventional ASR system is a ersoime proce-
dure since it involves optimizing several components sap8r in a disjoint
fashion. To alleviate this problem, modern ASR systems laaapted a new
approach of directly transducing speech signals to texth Systems are known
as E2E systems and one such system is the Connectionist Tamjassifica-
tion (CTC). However, one drawback of CTC is the hard alignhpeablem as
it relies only on the current input to generate the currempoiu In reality, the
output at the current time is influenced not only by the curigout but also by
inputs in the past and the future.

Thus, the second part of the thesis proposes advancingaddtdie-art E2E
speech recognition for large corpora by directly incorpiogpattention mod-
eling within the CTC framework. In attention modeling, ingun the current,
past, and future are distinctively weighted depending erddgree of influence
they exert on the current output. We accomplish this by d&ginew con-
text vectors using time convolution features to model aib@nas part of the
CTC network. To further improve attention modeling, we agtrmore reliable
content information from a network representing an implanguage model.
Finally, we used vector based attention weights that arbesppn context vec-
tors across both time and their individual components. Ad&esgomplishment
of this study is that it is the first to incorporate attentiaredtly within the CTC
network. Furthermore, we show that our proposed atteriiased CTC model,
even in the absence of an explicit language model, is ablehieze lower word
error rates than a well-trained conventional ASR systenipgegal with a strong
external language model.
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Chapter 1

Introduction

1.1 Overview

Speech, vision, and text are three primary modalities gjinavhich humans com-
municate. Using cognition, logic, and memory, humans heaeled to fectively
communicate using these modalities. In other words, hurhame the ability to
use intelligence to process and infer information. Thuglligence is a complex
biological phenomenon associated with humans and someaéamd is still very
actively studied in neuroscience and psychology.

Intelligence in machines is called artificial intelliger{@éd) and is usually stud-
ied as a information processing technology. In the twemtantury, Al was
mostly restricted to working within a well-defined set offmal rules. For ex-
ample, the calculator was designed to perform well-defims#is like addition,
subtraction, multiplication, division etc. However, pmrhing more human-like
tasks is more challenging. For example, it is hard to defiret afformal rules to
identify speakers through their voices or faces. This isre/deep learning (DL)
comes into play.

In the last decade or so, DL has become a burgeoning fieldedirelsin speech,
vision, language, finance etc. In DL, machines learn ab@uvbrld by observing
simple concepts and building a hierarchy of more complatatacepts in a layer-
wise fashion. The final layer is the most abstract layer anduslly the decision
making layer. This approach of learning by experience gextof formal rules,
allows machines to perform human-like tasks like recogwjaroices or faces.
Therefore, this is a propitious time to study Al using the Qipeoach.

In this study, we focus on DL approaches for automatic speecbgnition
(ASR). ASR is the task of automatically converting speecb taxt by a machine
without human intervention and is a key technology to enabtean-computer in-
teraction (HCI). Since the 1980s, ASR has been an area okaetsearch falling



within the realms of statistical signal processing (SSP)Aln For example, ASR
is used in interactive voice response (IVR) systems to lealadtje volumes of
telephone calls by automatically understanding callexquests. In cellular de-
vices, they act as dictation systems by converting a useitg\nto text messages
which can then be sent electronically to the desired desgtimaThis reduces the
user’s d€fort of typing the entire message. In Global Positioning &ys{GPS) en-
abled devices, where hands-free communication is criffoak.g., automobiles),
an ASR system is able to convert a driver's commands intowéxth can then
be processed by the GPS device to display the routing infiwmaln the me-
dia, they are used to automatically transcribe large ansoofiispoken news into
text. Contemporary ASR devices include Microsoft Cortak@ple Siri, Amazon
Alexa, and Google Home.

1.2 Motivation

Trends in ASR research [2—4] have changed dramatically thepast decade.
The traditional way of building ASR models using hidden Marknodels (HMMs)
has been revolutionized with the introduction of DL modelstsas deep neural
networks (DNNSs) [5], convolutional neural networks (CNN6), and recurrent
neural networks (RNNSs) [7, 8]. Their popularity is mostlyriuted to the fact
that neural networks achieve much lower error rates tharssa mixture mod-
els (GMMs), especially with large training corpora. Howetbese systems are
manifest only in a few countries where languages are wetiueced. A well-
resourced language is a language (e.g. English) with ardaimee of resources to
support development of speech technology. Those resoareassually defined
in terms of 10@ hours of speech data, corresponding transcripts, proatioici
dictionaries, and language models. Among these, the mpsinsive and time-
consuming resource is the acquisition of transcripts. &ignfor this reason,
more than 99% of 6900 languages in the world are still undsourced [9]. As
a result, one language dies every two weeks on an average Buding ASR
systems for such languages can help either slow down or égprttss decline
since these systems will encourage people to continue tisesge languages in
their daily lives.

In the first part of the thesis, we focus on developing ASRsIfater-resourced
languages in two scenarios. First, we build ASRs with vamjitkd amounts of



transcriptions collected from native transcribers uswamdfer learning. In the
second and more adverse scenario, we assume we do not hags &zmative
transcribers at all. This is a realistic scenario since guge hard to find native
transcribers in under-resourced languages. However,efsifcrowd workers)
available in online marketplaces can serve as valuablenalige resources by
providing transcriptions in the target language. SinceThekers may neither
speak nor have any familiarity with the target languageir tthanscriptions are
non-native by nature and are usually filled with incorrebela. After some post-
processing, these transcriptions can be converted to Ipitcdtia transcriptions
(PT). Conventional DNNs trained using PTs do not necegsanjprove error rates
over GMMs due to the presence of label noise. To alleviate phoblem, we
propose a variety of multi-task learning (MTL) training negs by which we are
able to train DNNs in the target language using noisy trapsons.

In the second part of the thesis, we move our focus to buildi®Bs in English
which is a well-resourced language. However, it is wellxkknahat building a
conventional ASR system in English is a cumbersome proeesioce it involves
optimizing several components separately in a disjoirttitas To alleviate this
problem, modern E2E systems such as the CTC framework [Hideldtly trans-
duce speech signals to text in a single model. However, oawliick of CTC
is the hard alignment problem as it relies only on the curneptit to generate
the current output. In reality, the output at the currenetiminfluenced not only
by the current input but also by inputs in the past and futditeus, we propose
advancing state-of-the-art E2E ASR for large corpora bgally incorporating
attention modeling [12, 13] within the CTC framework. Ineattion modeling,
inputs in the current, past, and future are distinctivelyjghteed depending on the
degree of influence they exert on the current output.

1.3 Thesis Contributions

The main contributions of this thesis can be summarized |\

¢ In the case when there are very limited amounts of nativestrgptions in
the target language, we proposed cross-lingual adaptasiog regularized
cross-entropy training of DNNs [14]. Data from well-resoed languages
act as regularizers during training.



¢ In the case when there are no native transcriptions in tlgetdanguage,
we trained ASRs in the target language using noisy non-@atanscrip-
tions collected from crowdworkers [15]. In particular, weposed a MTL
training regime which uses a mixture of noisy transcripsion the tar-
get under-resourced language and clean transcriptions $everal well-
resourced languages [16, 17].

e We proposed another MTL using a deep auto-encoder (DAE)whiased
as one of the sub-tasks in the MTL system [18]. The DAE useatttabled
data in the target language as its ground truth targets aewhjats to min-
imize the mean square error between its predictions andrthend truth
targets.

e Furthermore, we proposed knowledge distillation and targerpolation as
ways to improve the generalization capacity of the MTL sysf£9].

e Finally, for large corpora ASR in English, we proposed suivthe hard
alignment problem in CTC models by directly incorporatitigation mod-
eling [20-22].

1.4 Thesis Structure

The remainder of this thesis is organized as follows.

e In Chapter 2, we provide the necessary background for diogsal and
end-to-end speech recognition.

e In Chapter 3, we propose training GMM-HMMs and DNNs in thegédr
language when there are very limited amounts of transcrdagd in the
target language.

¢ In Chapter 4, we propose training DNNs in the target langwelgen there
are no transcribed data in the target language. Insteadsa&ain DNNs
using transcripts generated by online non-native crowderst

¢ In Chapter 5, we propose an attention-based CTC that dirgethsduces
speech waveforms into characters or words by focusing omtst relevant
parts of the utterance.



e In Chapter 6, we summarize the contributions of this study@discuss fu-
ture directions for research.



Chapter 2

Background

2.1 Cross-Lingual Speech Recognition in
Under-Resourced Scenarios

Deep neural network (DNN) based automatic speech recogriiSR) systems
achieve significantly lower error rates than Gaussian mitaodels (GMMs)
or hidden Markov models (HMMs), especially when large tiragncorpora are
available. However, these systems are manifest only in actamtries where
languages are well-resourced. A well-resourced langudffeL( is a language
with an abundance of resources to support development efckpechnology.
For example, English is the most well-resourced languadesd resources can
be defined in terms of the following attributes:

e 100+ hours of speeghcoustic data

e Transcripts corresponding to the speech data

e Pronunciation dictionaries and vocabulary lists

e Language models

e Strong presence on the web making the data accessible online

When these resources are available, it becomes possihiddoriatched acoustic
models. The underlying structure of a matched acoustic model ustithted in
Fig. 2.1. Here, an utterance spoken in the target languabeigliranscribed by
a native transcriber in the same language (L1) using theeatithography of
the target language. An acoustic model trained using theennscript and the
features extracted from the utterance is called a matchmastic model.

On the other hand, an under-resourced language (URL) igadae with some
(if not all) of the following resources: lack of electronigesources for speech and

6
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Figure 2.1: A matched acoustic model. An utterance in thgetdanguage, L1
(Hindi in this example), is transcribed by a native trartseriin L1 using the
native orthography. A dictionary is used to convert the wgardL1 to IPA
phonemes. An acoustic model is trained using the IPA phoseme the features
extracted from the utterance.
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Matched
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language processing, such as monolingual corpora, bdirgjactronic dictionar-
ies, transcribed speech data, pronunciation dictionaaie$ vocabulary lists; lack
of a unique writing system or stable orthography; limitedgeance on the web;
and lack of linguistic expertise [9]. Other factors includek of infrastructure in
the native country, and banking discrimination by westeanks which makes it
difficult to develop resources for URLs. Such languages are soeeteferred to
as low-density languages, resource-poor languages, &aitdnguages, or less-
resourced languages. However, a URL is not the same as aityilasrguage,
which is a language spoken by a minority of the population tdratory. Some
URLs are actually fiicial languages of their country and spoken by a very large
population. For example, Bahasa Indonesia in Indonesiapdfhn Cambodia,
Ambharic in Ethiopia, Dinka in South Sudan, and Uzbek in Uzbik are URLS
but not minority languages. On the other hand, there are saomarity languages
that can be considered as WRLs. For example, the Catalandgeds both a mi-
nority language and a WRL since resources for Catalan aitablaon Google
Search and Google Translate. Consequently, URLs are ness&ly endangered
(while the opposite is usually true) [9].

We will use the termsURL” or “target language” interchangeably to refer to
the language to be recognized. Similarly, we will us8RLS’ or “source lan-
guages’ to refer to the auxiliary languages for which we have traghdata. How-
ever, the objective is not to recognize these languages.

Among all resources required for building ASR models, theneapensive and
time-consuming resource is the acquisition of transcripeshaps for this reason,



more than 99% of 6900 languages in the world still do not hag#-geveloped
ASR systems. This means that there are few or no nativelgdréoed transcripts
easily available in URLSs.

11 L2 English Probabilistic

—

Utterance Transcriber Orthography Phonemes

(Crowd) {045 /e
[k]/05 \ m f03

/ \ / [e1/03 \ / \ / /0.3 \
Transcriber 1 [g)/04 4
. ﬁ,d dﬁc
\ o1/ / \o/os /

\ /010 \ \[1/02/
\ Train Mismatched
L/ G2P Acoustic Model Acoustic Model
C o
(0]

gat
Transcriber N

Feature
Extraction

Figure 2.2: A mismatched acoustic model. An utterance indlget language,
L1 (Hindi in this example), is transcribed by multiple noatie Turkers using
the English orthography. A grapheme-to-phoneme (G2P) msdesed to
convert the English words to IPA phonemes. An acoustic mesdehined using
the lattice of IPA phonemes and the features extracted fhenutterance.

/R

To circumvent this dticulty, transcripts can be collected from online non-native
crowd workers, or Turkers, who neither speak the targetdagg nor have any fa-
miliarity with it. An acoustic model built from such non-i& Turker transcripts
is called amismatched acoustic model. The underlying structure of a mismatched
acoustic model is illustrated in Fig. 2.2. Briefly, a singléetance in the target
language (L1) is transcribed by multiple Turkers who do patak the target lan-
guage. Due to this mismatch between the utterance languabéha Turker's
native language, no single Turker can generate the comauesdript. Instead,
a collection of transcripts from multiple Turkers is counsted for a single utter-
ance. After merging these transcripts and some post-singgsve get a lattice of
transcripts which represent a probabilistic distributiwer several transcripts. An
acoustic model trained using this lattice of non-nativasraipts and the features
extracted from the utterance is called a mismatched aconsidel. Non-native
transcripts are usuallgoisy or inaccurate. One of objectives of this study is to
train DNINs using such noisy transcripts.

8
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Figure 2.3: A deterministic transcription (DT) for the warat.

Figure 2.4: A probabilistic transcription (PT) for the warat.

We now introduce some terminologies that will be frequentligd in this study.

2.1.1 Deterministic Transcript (DT)

Consider the situation in Fig. 2.1. An utterance is played t@anscriber. If
the utterance language is the same as the transcribeve hatiguage, then
there is a match between the languages. The native traesdibkely to
transcribe the contents of the utterance with a high dedgr@ecoracy. Since
there is no ambiguity in the ground truth labels (syllablestds etc.) that
the transcriber provides, the labels are deterministicatume. Transcripts
of this kind are calleddeterministic transcripts (DTs). An example of a
DT for the word “cat” is shown in Fig. 2.3. Each arc represemtgbel
and a probability value which is 1.0 always. DTs are simplgvemtional
transcripts which are part of many popular speech corpkealliMIT, Wall
Street Journal (WSJ) etc.



2.1.2 Mismatched Transcript (MT)

Consider the situation in Fig. 2.2. An utterance in Hindi éhwidely spo-
ken language in India) is played to a non-native transcriien-native tran-
scribers found in online marketplaces are called crowd w@rkr Turkers.
Examples of popular online marketplaces are Amazon and dpwo the
absence of native transcribers, these workers becomeblalalernative
resources for providing transcripts in the utterance laggu

Since the utterance language (Hindint the same as the Turker’s na-
tive language, there is a mismatch between the utterangedae and the
Turker’s language. Because of the Turker's unfamiliarityhvHindi, the
Turker writes down non-sense syllables in English. Suchaastript is
known asmismatched transcript (MT). For more details on the preparation
of these transcripts, readers are encouraged to refer LoTB8 non-native
Turker is unlikely to transcribe the contents of the uttemmwith a high
degree of accuracy. In particular, the Turker is unlikelydistinguish all
phone pairs in the utterance language. Consequently, arsNiKely to be
noisy. However, these transcripts can be useful to train ASR Byste the
absence of native transcribers.

2.1.3 Probabilistic Transcript (PT)

An MT can be post-processed and formed into a single confusatwork
consisting of labels and probability values associatedh \thbse labels.
Such a confusion network is calledoeobabilistic transcript (PT) [24] and
is shown in Fig. 2.4. The arc weight specifies the conditiggrabability
that the phoneme was spoken, given the evidence in the tiptssBecause
crowd workers cannot distinguish all phone pairs in therattee language,
these weights are usually less than 1.0. Therefore, a PThesa a proba-
bility distribution over the labels provided by crowd workeUnlike the DT
in Fig. 2.3 which has a single sequence of symbols, the PT kdz34
= 144 possible sequences, one of which could be the right sequdn
this case, itisk = 0 t” (0 is the empty symbol). There is another useful
interpretation of DTs and PTs. The DTs can also be thoughsdif-haot
alignments that are frequently observed in conventiomalsicripts. How-

10



Table 2.1: Deterministic transcript (DT) vs Probabilidtianscript (PT).

DT PT
Transcribers Native Non-native
Transcript Structure Single stream Lattice
Probability 10 [0,1]
Label Noise Low High
Availability Difficult Easy
Cost Expensive Cheap

ever, in the case of PTs, the alignments are soft since aesiraghe could
have multiple labels with non-zero probabilities. In thieistrated exam-
ple, the 1-hot alignment (DT) for the word “cat” is.(k], [1.0 ], [1.0 t].
Here,a andb in [a b] denote the probability of the label and the label re-
spectively. On the other hand, the soft alignment (PT).5%00.4 g, 0.1 0],
[0.45a,0.35%,0.1 %,0.1¢], [0.3p,0.2a,0.50], [0.3p,0.3k,0.2t,0.2b].

An overview of the diferences in DTs and PTs are summarized in Table 2.1.

2.2 End-to-End Models for Large Vocabulary
Automatic Speech Recognition

Recent advances in ASR have been mostly due to the advent afigakithms
such as deep neural networks (DNNSs), convolutional neusblorks (CNNSs),
and recurrent neural networks (RNNs). Despite these aégamuilding a con-
ventional ASR system is a cumbersome procedure since ilviesdraining sev-
eral components in the ASR pipeline in a disjoint fashion. olwentional ASR
system is shown in Fig. 2.5.

In ASR, we are given a sequence of feature vectavkich is a compact repre-
sentation of the speech waveform in an utterance. The dlgdastto decode the
sequence of wordgfrom x with minimum probability of error. This translates to
the maximum a posteriori (MAP) problem,

¥ = arg maxP(y|x; Oasr) (2.1)
y

= arg maxP(x]y; @am)P(y; Opm) (2.2)
y

~ arg max P(XIl; ®am)P(ly; @pm)P(Y; OLm), (2.3)
Yy,

11
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Figure 2.5: A conventional ASR system.

where®asr = {Oam, Opm, Oy} IS the set of parameters to be estimated lasd
sequence of phonemes. The first td?(|l; Oan) in EQ. (2.3) is the likelihood of
the features given the phoneme sequence and is obtainedfrawoustic model
(AM). The second ternP(lly; ®py) is the likelihood of the phoneme sequence
given the word sequence and is obtained from a lexicon orymaiation model
(PM). The third termP(y; ®_v) is the prior probability of the word sequence and
is obtained from a language model (LM).

In practice, the AM, PM, and LM models are trained separatdlfius, the
ASR problem becomes a complex disjoint learning problemarAfrom this, the
decoding process during test time involves a complex graplch step and fine-
tuning other empirical parameters such as the scalingrfat#®M likelihood and
the word-insertion penalty.

In contrast, an end-to-end (E2E) ASR system, shown in Fg.d2rectly mod-
els the posterior distributiop(y|x; ®asr) by transducing an input sequence of
acoustic feature vectors to an output sequence of words ¢oe generally to-
kens). The output sequence of tokens is better known as sctiption. Thus,
this makes it possible for all the components to be jointynted as in Eq. 2.1
instead of Eq. (2.3).

More specifically, for an input sequence of feature veckos(Xy, - - - , X7) Of
lengthT with x; € R™, an E2E ASR system transduces the input sequence to an
intermediate sequence of hidden feature vedictghy, - - - , hy) of lengthL with
h, € R". Usually,L = T. The sequende undergoes another transduction resulting

12



in the posterior probability of the transcriptiop(y[x), wherey = (y,--- ,Yu) IS

a transcription of lengtht with y, € L, L being the label set. Her& = |L| is

the cardinality of the label sét In ASR, the labels could be senones, graphemes,
letters, words etc. depending on the desired granularidyigfuts. UsuallyJ < T
which means that an E2E system is able to convert input toubggrjuences of
different lengths. Thus, an E2E neural network, parameteriged/ blearns a
many-to-one functiondly : x — P(ylx) wherep(y|x) closely resembles the true

pYIX).

Partly All-Neural Pure All-Neural
Fenmomenenen
|
l
|
Feature : . j ,| Language | 4
Extraction Model
m»» " tahmaatow red tomato
. q l y
Speech Feature Sequence Phonemes Words Sentence
Audio Frames States

\— _/
~ ~~
P(x]y) (Acoustic Model) -

Figure 2.6: An end-to-end ASR system.

2.2.1 Connectionist Temporal Classification (CTC)

RNNs used in ASR optimize the Kullback-Leibler (KL) divergee between the
probability distributions of frame predictions and groundth labels. This forces
the network to align its frame predictions with the grounathralignments. A
ground truth alignment is a sequence of labels, one labelrpere. The labels
in these alignments are usually phonemes. Alignments aralyobtained as a
result of the HMM based forced alignment procedure (comstthViterbi decod-
ing). However, for ASRs, the desired outputs are largeruiistic units such as
characters or words rather than smaller units such as phemerhe CTC [1, 11]
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error criterion directly optimizes prediction of largendjuistic units thereby cir-
cumventing the need for generating smaller linguisticasitch as phonemes.

y={m 0 bl

S°ﬂ@ Soft@ Soft@

Figure 2.7: An example of a CTC network.

A CTC network uses a recurrent neural network (RNN) and th€ &ffor cri-
terion [1, 11] which directly optimizes the prediction ofranscription sequence.
The basic structure of a CTC network is shown in Fig. 2.7. Asléngth of the
transcription is shorter than the length of input acousticters, CTC introduces
an intermediate label representation callephth denoted byr = {ny,--- , 77}
The intermediate label at tinteis denoted byr;. A CTC pathw has the same
length as the input sequenkevhich is made possible by adding a blank symbol
{@} as an additional label and allowing repetition of labels.u3hafter the ad-
dition of @, the lengths of inpuk, hiddenh, and intermediate output sequences
7 are the same. Because of the additiompfve have an extended label §éf
wherell’ = L U {@} with cardinalityK + 1. Because of thisy € L.

The advantage of adding a blank label is that it does not fireeetwork to
make non-blank predictions for frames whose predictioasaak. The posterior
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path probability ofr is defined as

p(rlx) = | | p(wilx), (2.4)

— 1~

t

1l
=

where the equality is based on the assumption that the netwdput at timet,
andp(r|x) is conditionally independent of outputs at other tinpés.;|x). In other
words,m; 1L mX. The network outpup(m|x) is the RNN softmax activation of
the intermediate labet; such thaty,, . p(:/x) = 1 and noting that is fixed in
the summation.

To produce the final output sequencéranscription), CTC defines a many-to-
one functionB : = — y which maps multiple CTC paths to a single transcription.

The pathr represents an intermediate sequence of labels at everg fildaw-
ever, the final desired output sequence is a human-readabgetiptiony. To this
end, CTC defines a many-to-one mp 7« — y which compresses the pathof
lengthT to a transcriptiory of lengthU < T. This is achieved by first removing
the repeated labels from the pathand then removing the blanks. For example,
B(cc — aa— -t) = B(c — a—t) = cat. With this, the transcription probability of
y givenx is the sum of probabilities of all those paths which can be m@ssed
usingB to generatg. This can be written as

pYR) = > plri), (2.5)

weB1(y)

whereB1(y) is the pre-image of. The CTC loss function can then be defined so
that the network learns to maximize the transcription pbdig (or to minimize
the negative log probability) of the ground truth transtaps in the training set.
Thus,

Lere=— ) Inpyk). (2.6)
| € train
This training criterion directly optimizes the probabyjlaf the transcription rather
than frame level path or alignment. For decoding, it is vémye to generate the
transcription using greedy decoding: simply concaterfaédkens corresponding
to posterior spikes in CTC to generate the transcription.
However, CTC has some limitations.
e First, CTC is harder to train than a standard long short-teemory (LSTM)
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network since it is sensitive to initialization. In [25], CTtraining was ini-
tialized from a LSTM network trained with large amounts ofadasing the
frame level cross entropy criterion.

e Second, the conditional independence assumption in E4) {@&. speech
data, in general, is not true. Due to this constraint, CTCsdust model
inter-label dependencies very well although it can be aighat the re-
current structure in RNN implicitly models time depend@sci Therefore,
during decoding, the CTC framework relies on external laggumnodels to
achieve good ASR accuracy. More details about CTC trainiegavered
in[1,11].

2.2.2 RNN Encoder-Decoder (RNN-ED)
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Figure 2.8: An example of an RNN-ED network.

An RNN-ED [12,13] uses two distinct RNNs: an RNN encoder thatsforms
x to h and an RNN decoder that transforindo y. The basic structure of an
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RNN-ED network is shown in Fig. 2.8. It modegbgy|x) as

U
pO/) = [ | pVulcss Yru-1), (2.7)
u=1
wherec, is a function ofx and is sometimes called asntext vector or soft align-
ment. Here, the subscript in ¢, is a time step. The context vector can be a
constant across all time steps (thag,= c, Yu) or more generally can be time-
dependent in the case of attention-based RNN-ED [26, 27].attention-based
RNN-ED network is shown in Fig. 2.9.
The RNN-ED encoder computes

h; = Encodex, h¢_1). (2.8)

Encode(.) function is simply a unidirectional or bidirectional RNN.

The RNN-ED decoder has two components: a multinomial ¢thstion gener-
ator EqQ. (2.9), and an RNN decoder Eq. (2.10). In additionatention-based
RNN-ED [26, 27] is equipped with an attention network Eql1(3-Eq. (2.16) as
follows:

p(Yqu:u—l, SJ’ Cu) = Generat@(u—l, SJ’ Cu), (29)
Sy = Recurrent$,_1, Yy-1, Cu), (2.10)
T
¢, = Annotatef,, h) = Z aush (2.11)
t=1
oy = Attend(s,_1, a1, D). (2.12)

Here,hi,c, € R" anda, € UT, whereU = [0, 1], such thaty’; @y = 1. Also,

for simplicity s, € R". Generate] is a feedforward network with a softmax
operation [13, Appendix A.2.2] generating the probabibifythe target output
P(YulYu-1, Su» Cu).- Recurrent( is an RNN decoder and is similar to the recurrency
in Encode(.). However, Recurrenf(operates on the output time axis indexed by
u and its hidden state &. Annotate(.) computes the context veatp(soft align-
ment) using the attention probability vectay, and the hidden sequenbe The
scalar weighty,; € U determines the influence bf in generatingc,. Attend(.)
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computes the attention weighy; using a single-layer feedforward network as

eyt = Score§, 1, a1, hy), t=1,---,T (2.13)
exput)

— A (2.14)
ZtT/:l expEur)

ayt
wheree,; € R. Score() can either be content-based attention or hybrid-based
attention. The latter encodes both contexqat;{ and location §,_;) information.
Score() is computed using

~ vitanh Us,_1 + Wh; + b), (content) (2.15)
vTtanh Us,_1 + Wh + Vi, + b), (hybrid) '
where, f,; =F*ay. (2.16)

The operationx denotes convolution. The bias tebms optional. Attention pa-
rameterdJ, W, V, F, b, v are learned while training RNN-ED.

When only the content function of Eq. (2.15) is used, Eqg.4Ri% usually
referred to as theontent attention model [27]. On the other hand, when the
hybrid function of Eq. (2.15) is used, Eq. (2.12) is usuadlierred to as thbybrid
attention model [27].

There are two key dierences between CTC and RNN-ED. Firp{y|x) in
Eq. (2.7) is generated using a product of ordered conditsofidaus, RNN-ED re-
laxes the conditional independence constraint of Eq. (8.€TC. Second, there
is no intermediate label representationn RNN-ED.
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Chapter 3

Cross-Lingual Adaptation Using Limited
Native Transcriptions

3.1 Introduction

Often there are situations when the target language thdsriede recognized has
very limited amounts of transcribed data. When limited amswf transcribed
data are available in the target language, training ASResystwith the limited
data often leads to poor generalization. To alleviate w#ssie, transfer learning
techniques can be used to transfer the acoustical knowfealgethe source lan-
guages to the target language. This scenario of leveragiogliedge from source
languages (WRLSs) to build ASR systems in the target lang@idéa.) is usually
referred to asross-lingual adaptation or cross-lingual recognition. This is the
main focus of this chapter.

The remainder of the chapter is organized as follows. Ini&e&.2, we pro-
vide a summary of past work. In Section 3.3, we introduce soamemon no-
tations that will be used throughout this chapter. In Sec8al and Section 3.5,
we explain the proposed cross-lingual adaptation usinglagéged ML training
of GMM-HMM and regularized CE training of DNN respectivel¥inally, in
Section 3.6, we describe the experiments and outline thiétses

3.2 Background

Many interesting research studies have improved the prdoce of state-of-the-
art cross-lingual speech recognition. One of the earlipr@gches includes boot-
strapping target language acoustic models based on pb@netiarity either us-
ing existing monolingual [28], or multilingual models [2930]. Recently, DNNs
have spurred interest in the speech recognition communigytd their superior
discriminative modeling capabilities compared to GMM-HMdsed modeling
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techniques. In [5], the outputs of a hybrid DNN-HMM systenrgvased to rep-
resent posterior probabilities of shared context-depetstates (senones). DNNs
have been used in cross-lingual recognition through taratdngbrid approaches.
In the class of tandem approaches, either (a) posteriohedimal layer outputs of
DNNs are Gaussianized [31,32], or (b) the outputs of animéetiate layer (bottle-
neck extractions) [33, 34], followed by dimensionality uetlon using principal
component analysis (PCA) are used as distinctive featunetrdining GMM-
HMM classifiers. In the class of hybrid approaches, the atignts from GMM-
HMM systems are treated as ground truth labels to train DNS\sy.the CE crite-
rion. After completing training, the posteriors from thaitred DNN are used for
classification of test data. It has been shown that, whendeget language data
are available, unsupervised pre-training of DNN hiddertfaywith multilingual
data [35] can outperform hidden layers trained with morgulad data [36], [37].
In [38], DNNs were used for knowledge transfer with zerornag data using
an “open-target MLP” - an MLP designed to generate posteffiar all possible
monophones in the IPA table. DNNs have beéfieaive since the hidden layers
are able to learn complex feature transformations. The t®nfpatures are then
classified using a logistic regression classifier at the fanadr.

Transfer learning has been successfully implemented foi-sapervised learn-
ing [39, 40] and supervised learning [41] of GMMs. In thisdtuwe focus on
knowledge transfer from WRLs to an URL in two supervisedisg#t - while
training GMM-HMM and DNN-HMM.

3.3 Notations

Let x be a sequence of feature vectors, one feature vector pee fraia lan-
guage indexed by the superscript. The sequencan be represented as=
(X1, X2, - - - , Xn) Where the subscript indicates the time indexe RY, andN is
the number of frames. Associated with eaglhs a label. In speech recognition,
labels are usually states (monophones, context-depe(@Bintphones, senones
etc.), or graphemes, or words depending on the granuldrttyedfeatures. In the
current context, since the granularity is at the frame lestgtes are used as la-
bels. Assume there is a total Gfstates. Then the set of states for this language is
S=1{2---,C}

In ASR, however, the speech corpora usually do not provigestate infor-
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mation associated with each frame. An utterance can be demesi as a se-
guence of frameg = (Xy, Xy, -+, Xy) and the corresponding sequence of states
g = (ds,---,qv) Whereqg; € S is a random variable denoting the state at time
t. A sequence of states is popularly referred to aglegnment. Since the true
alignments are unknown, these need to be estimated duaiminiy.

The objective is to estimate the parameters of an HMM or a DNIhat the
HMM/DNN is adapted to the target language. Since the data aleitathe target
language is sparse, we make use of both the target langudgepol of source
languages (or multilingual data).

3.4 Cross-Lingual Adaptation Using Regularized
Maximum Likelihood Training of GMM-HMM

The modeling parameters of the HMMs for the target languagegaven by
{@C}‘C::1 where eacl®. corresponds to a set of parameters for the statéach
HMM consists of three CD states, arranged left-to-righthveiach state modeled
by a GMM with diagonal covariance matrices. The individdates are connected
by non-zero transition probabilities. Thus, each HMM cetssof the parameters

O, = {ﬂl,ajj, {wm, M ims Ejm}:=1}i3'—1 whereM is the total number of mixtures of
a GMM. The objective is to Iea’rj{*(ac}fzl by using limited training data from the
target language and large amounts of multilingual data oarce languages. To
learn the parameters of an HMM, the objective function to laximized is the
log-likelihood function of the training data. Since theiiag data consist of both
the target and source data, the likelihood of the targetidatgularized with the
weighted likelihood of the source data. Hence, the new ¢ibets to maximize

the total likelihood which is given by
L(X;0) = L(X(l); O) + p-[:(x(z); O.), (3.1)

wherex® andx@ represent the training data of the target and source lamguag
respectively, and

1
£x0: 0, = <0 Z log p(x{; ©c), 1=1,2, (3.2)
t
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andp is a regularization constant taking values withinIp The optimal param-
eter set is given by

O =argmaxJ(®;), c=1,---,C. (3.3)
O
The corresponding auxiliary function for the new objecfivection becomes

1
QO ©7) = 7y ), P(alx™; ©9) log p(x™. g; ©c)
q

Jo
+m
q

p(ax®; ©2) log p(x®, 0; ©0), (3.4)
where®? is the initial model and the summation is taken over all gaesalign-
mentsg. Given an initial modeP?, the maximum likelihood (ML) parameters,
under the constrain§_; wjm = 1 andX;, > 0 (j" state andn™ mixture in class
c), are found using the expectation-maximization (EM) alkpon. Finding the
parameters using EM is straightforward and is given by

o= i T OB + i Do o 0870) 5

1 1 2 2 ?
5 20 0P0BOG) + 5 2es @ 8B, 0)

i SO ) + g S 621 )

i (3.6)
o Zr0) + # 2 v20)
NO n(l)(l) + N(2> n(z)(l)
ND Zm n (1) + N(2) Zm n (1)
(1) 2
(1) n; (X)) + ¥ n; (%)
Hijm = (3.8)

NOD n(l)(l) + (2) n(z)(l)

) N(l)n(l)(XZ) + Npiz)n(Z)(XZ)
Xijm = @1 @01y’ (3-9)
N(l)n (1) + N(z)n (1)
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where
(1) = > ¥, m),
t
Do) = > G mx,
t

D03 = > yOU m " = m) (< = i)
t

The quantities’(j, m), £, j) are defined in [42, Eq. (27, 37)].

3.5 Cross-Lingual Adaptation Using Regularized
Cross-Entropy Training of DNN

A DNN takes an input frame (or a feature vectry)which then undergoes mul-
tiple layers of successivetme transformations followed by element-wise non-
linearities, to output a vector of posterior probabilitigs Thus, the DNN mod-
els the posterior probabilities of predicting the stateegix;. Thus, correspond-
ing to the sequencg, there is a sequence of vectors of posterior probabilities
y = (Y1, --,yn) Wherey; € U with U = [0,1]. Thek" component ofy; is

the posterior probability of the occurrence of sthtat timet given thatx; was
observed. This can be explicitly stated as

yi(K) = p(o, = kix;), k=1,---,C (3.10)

Sincey; represents a probability distribution over sta@%dl yi(K) = 1.

The output of layel, denoted by, is obtained by applying thefine transform
(usingW', b') on the outputs of the previous layatr? followed by a sigmoid
activationo(.). This can be represented as

u=cWul+b), 1<l<L. (3.11)

Here,W!' is the weight matrix between layels- 1 andl, b' is the bias vector at
layerl. For the first layerl(= 1), u® = x,. For the final layelL (softmax layer),
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the output at nodk, u(k), is given by

expfvt u-t + o)

u-(k) = :
® ¥ expt ut-t + bl

(3.12)

wherewt' is thek™ row of matrix W'. The output(k) is simply the posterior
probability p(g: = K|x;) as defined in Eq. (3.10). The emission probabifiy:|q;)
is obtained using Bayes’ theorem as

P(kIX) P(Xt)

@) (3.13)

P(xelok) =
where the state prions(q;) are obtained by simply counting the state labels from
the HMM based forced alignments of the training data. Thetpfx;) can be
ignored since during Viterbi decoding (max. operation¥itreated as a constant
for all values oft. The DNN is trained to minimize the negative log posterior
probability of the training examples in the sequerc@&his is given as

E = - log p(di/x,)
t

C
= - > log] | p(a = kix)*®
t k=1
C

= - > > log p(ax = kix)*®

t k=1
C

== > d(®log p(c = kix;)
t k=1
C

== > d(K)log yi(K), (3.14)
t k=1

whered(K) is the ground truth label fax;. The second step is due to the frame
independence assumption. EqQ. (3.14) is the cross-entfpy jetween the de-
sired target vectod; and the DNN output vectoy;. The desired targed (k) is
constrained tak(k) € [0, 1] such thatz]‘lf=1 di(k) = 1 and is obtained from HMM
based forced alignments. The DNN outpyk) is obtained from Eq. (3.12).

In this study, a modified CE error criterion is used that takés account the
CE error of both the target data and source data similar t¢FEw). The modified
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CE error criterion is
E =E® 4+ pE®, (3.15)

whereE®, E®@ are the CE errors of the form (3.14) for target and sourcedaggs
respectively withp being a regularization constant taking values withirlJ0 The
subscripts ok given inside the parenthesis indicate the language index.

A DNN trained using Eq. (3.15) has a slightly modified weigptlate rule. The
CE errorE is a result of the training errors of individual frames froither of the
languages. The errors backpropagated to rkaofehe final layer (L) of the DNN
givenx{? andx® are

5(1)|_ A aEl

le_(y<1>(k) d"(k), k=1,---.C (3.16)
af)’Léagi 0P -d?0). k=l--.C. (317)

wherea: = w-'ut~* + bl is the output of the fine transformation at the softmax
layer before going through the softmax activation. Thesergrare backprop-
agated to the layers below thé' layer. During backpropagation, the errors at
the layers belowd ™, 6,72, ... etc.) are computed as a linear combination of the
errors at the layer above with the weights being the conmectieights between
two successive layers. Thus théeet of having a scaling termin Eq. (3.17) is
reflected as scaled errors at the lower layers. This leads to

SED

o = (3.18)
kj

SoE®

_gwt = ps2'u L, (3.19)

wherew, ; is the weight connecting" input node t&" output node at the" layer.
From Eq. (3.19), itis clear that the error gradient with extgo the weigh!zv'kj at
thel™ layer is directly proportional t6} scaled by. No such scaling occurs for
the error in Eq. (3.18). The error gradient matrix due to #rget language can be
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defined as

[0 oEM AEM T
I A
b ol
VED = | Mo 0, i | (3.20)
" e

For the error gradient matrix due to source languages, theobrange is setting
the subscript oE to 2. During training, frames from both target and source lan
guages are presented in a randomized fashion. Hence, tightwgdate rule
using gradient descent will contain gradients from botlglages as follows:

w(r) = W(t — 1) - nVE® — 55pVE®), (3.21)

wherer is the iteration step, and is the learning rate. Thus thdtect of the
regularization constanpt with E@ in Eq. (3.15) is a reduced learning rate for
frames belonging to the source languages as given in EQ.)(3.2

3.6 Experiments and Results

In this section, we present the results for the methods ibestm Section 3.4 and
Section 3.5. We used Turkish as the target language anddbragi the source
language.

3.6.1 Data

The Turkish corpus in [43] was used. Its training set coasi$ta total of 3974
utterances (4.6 hours) spoken across 100 speakers. Ddtefyaining speaker
51012 was discarded due to lack of transcriptions.

On an average, each training utterance is about 4.12 sedongs Its full
test set consists of 752 utterances spoken across 19 spe#tkéhis study, 558
utterances from 14 randomly selected speakers consthetéest set. The re-
maining utterances across 5 speakers constitute the gevetd set. For English,
the TIMIT training set consists of 3696 (462 speakers, 3.44dr$). The Turk-
ish corpus follows the METUBET based phonetic represamidd3]. Since the
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phonetic systems areftirent for Turkish and TIMIT, it is important that both the
systems be mapped to a single system prior to running anyriexget. In this
study, the WORLDBET [44] system was used since its alphat@ter a wide
range of multilingual phones and it is represented in thecabie ASCII format.
A summary of Turkish and English phone inventories is givemable 3.1. Turk-
ish has a more compact phone set than English. There are ordydls that
are common to both the languages; Turkish distinguishesdedivs. unrounded
vowels at every place, whereas English distinguishes temdax vowels. Hence
the vowel coverage of Turkish using English is only 4094.03.

Table 3.1: Turkish and English phone set=MMonophthongs, B= Diphthongs,
NS = Non-syllabics, S= Syllabics.

Language| Vowels | Consonants Total
M D | NS S
Turkish |10 0| 28 0 38
English |13 5| 27 3 48
Common| 4 0| 20 0 24

3.6.2 Baseline HMM

Context-dependent GMM-HMM acoustic models for Turkish &rgylish were
trained using 39-dimensional Mel frequency cepstratiocients (MFCCs) which
include the delta and acceleration flt@ents. Temporal context was included by
splicing 7 successive 13-dimensional MFCC vectors (ctirs¢n3 frames) into

a high dimensional supervector and then projecting therseptr to 40 dimen-
sions using linear discriminant analysis (LDA). Using thésatures, a maximum
likelihood linear transform (MLLT) [45] was computed to tisform the means of
the existing model. The final model is the LBMLLT model. For the English
recognition system, the forced alignments obtained froerLibA+MLLT model
were further used for speaker adaptive training (SAT) by oting feature-space
maximum likelihood linear regression (fMLLR) transformé6]. This is the
LDA+MLLT +SAT model. The forced alignments from this model were used fo
training Turkish models which is discussed next. The resgibbhone error rates
(PER) from a total of 27K phones are given in Table 3.2. Thalteg$or Turkish
show the error rate that would be achieved by a monolingustkesy if the full
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Table 3.2: PERs of CD GMM-HMM models using full training sefsTurkish
and TIMIT.

GMM-HMM Models PER (%)
Turkish (LDA+MLLT) 24.25
TIMIT (LDA +MLLT +SAT) |  19.6

training set were to be available. The results for TIMIT aasdx on a reduced
phone set of cardinality 39 [47]. All experiments were coctéd using the Kaldi
toolkit [48].

3.6.3 Regularized Maximum Likelihood Training of GMM-HMM

Phones sharing the same WORLDBET symbol were mapped bethveemo lan-
guages. This work dliers from previous works [49] involving such hard semantic
maps in that we do not completely rely on the knowledge temsf/olving such
maps. This is evident from the settipg 1 in Eq. (3.1). This is justified because
the phonetic variations associated with a phone in one Eggean be dierent
from the phonetic variations in another language, evenghdhe two language-
dependent phones are canonically transcribed using the ¥4ORLDBET sym-
bol. Second, we also map some phones from English to Turkisitiiough they
do not share the same WORLDBET symbols. This many-to-ongpimgpvas
based on the degree of similarity in articulation betweenttho sounds. This
is important in the context of limited availability of data the target language.
For example, English vowels were mapped to those Turkishelothat were
closest in terms of tongue height followed by fronting. ®inarkish does not
have any diphthong and English has falling diphthongs, trayfirst vowel of the
diphthongs due to their higher prominence were mapped toldsest vowel in
Turkish. After these mappings, there were still 8 Turkisbmds which could not
be mapped. Therefore, the minimum, maximum, and averagéauof English
phones mapped to Turkish phones were 0, 4, and 1.23 resglgctiv

We converted the triphone alignments of English to Turkisimg the above
mapping ruledefore proceeding for monophone training of Turkish HMMs. Mono-
phones were trained using the criterion in Eq. (3.1). Fahivne training, we
build a decision tree for each central phone with the lea@psesenting a variety
of senones for that central phone. Since each senone casespmultiple con-
texts, diferences in contexts between Turkish and English are easilseased
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through these senones. Therefore, cross-lingual knowlédgsfer occurs both
at the monophone and triphone stages using Eq. (3.1). Howéectransfer is
more dfective at the triphone stage since learning triphone magitain a larger
number of model parameters and hence require more data eabeet. At the
LDA+MLLT stage of training, there is no knowledge transfer beeatihe LDA
transform cannot be shared between languages. Howevevldahge transfer dur-
ing the triphone stage helps in generating better forceghalents thereby leading
to better models at any subsequent stage of training.

In Table 3.3, the PERs are shown for varying amounts of Thrk&ining data
(100 to 1000 utterances, out of the available 3974). The rinstis the base-
line (BL) LDA+MLLT system trained using only the limited Turkish trainisgt.
There is no knowledge transfer from English in this systemthe second row
is the transfer learned (TL) LDAMLLT system that uses data froboth the lan-
guages. Compared to the BL LDAMLLT system, the relative improvement in
performace of TL LDA-MLLT system is in the range 0.95-2.35%. Expectedly,
with increasing amounts of training data thé&elience in performance begins to
shrink. The value op is determined using the dev set in each case. We used
p = 1072 for the first two cases (100, 200) and decreased this by arr ofde
magnitude with each further doubling of the amount of data.

Based on the relative increase in PER, it is clear that thepeovements due
to transfer learning at the HMM stage are marginal. Howewvben forced align-
ments obtained from the TL LDAMLLT system are used to train DNNSs, signfi-
cant improvements can be obtained as discussed in the ro¢xtrse

Table 3.3: PERSs for LDAMLLT models trained with limited Turkish utterances
and the entire TIMIT set.

# Turkish Utterances 100 200 500 1000
PER (%)

(@) BL LDA+MLLT | 44.75 39.50 33.65 294
(b) TLLDA+MLLT | 43.70 38.57 32.92 29.1
Relative PER| (%) 235 235 217 0.95

O

3.6.4 Regularized Cross-Entropy Training of DNN

In the first step, we build multilingual shared hidden lay@vkSHLS) by using
greedy layer-wise unsupervised training of stacked sttiBoltzmann machines
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(RBMs). We do not build monolingual SHLs since it is well knowhat they are
outperformed by MSHLs [36], [37]. Hence, all DNN experimgnhlcuding the
baseline, use MSHLs.

We obtained multilingual audio files from the Special Braagting Service
(SBS) network which publishes multilingual radio broadsas Australia. These
data include include over 1000 hours of speech in 70 langualfe used about 20
hours of data divided equally between all 70 languages siho&e of languages
is not important for pre-training and larger amounts of daty not necessarily
yield significant gains [35]. We use 6 layers to build the MSHiith 1024 nodes
per layer. The input features to the bottom layer, the GansBernoulli RBM,
included 5 neighboring frames containing 39-dimension&ld@ vectors spliced
together and globally normalized to zero mean and unit maga The learning
rate was set to 0.01. For all subsequent layers, the Beriderdhoulli RBMs, we
used a learning rate of 0.4. Mini-batch size was set to 10alfdayers. All layers
were randomly initialized.

After training the MSHLs, we proceed for supervised tragnof the Turkish
DNN by adding a randomly initialized softmax layer. Therefoall DNNs re-
ported in Table 3.4 use 6 MSHLs and a randomly initializedrsak layer to
classifiy senones. The DNNs in Table 3.4l in the type of training and labeled
utterances used during the fine-tuning stage. TheéBeinces are explained in the
next three paragraphs. The learning rate was fixed at 0.0@&toss-validation
accuracy between two successive epochs fell below 0.5%l€Hneing rate was
halved for all subsequent epochs until the overall acculi@tsd to increase by at
least 0.1%. At this point, the algorithm terminates.

The PER results for various DNNs are given in Table 3.4. Trst BINN is
the baseline (BL) DNN trained on alignments generated byBth& DA +MLLT
system (no knowledge transfer from English) in Table 3.3t (. The second
DNN is trained on alignments generated by the TL LEMLLT system (knowl-
edge transfer from English) in Table 3.3, part (b). The retatmprovement of
PERs are in the range 0.36-6.18%. Both the DNNs are traindteisame way:
MSHLs, then add random softmax, then use forced alignmarfarikish to fine-
tune. The only diference is in the quality of Turkish alignments that were used
train the two DNNs. The alignments were generated by the HMM@&ble 3.3.
The quality of alignments generated by the TL LBMLLT HMM in Table 3.3 is
much better than the BL LDAMLLT HMM which leads to training better DNNs.

In the third DNN, the DNN is trained using the modified traigpiarror crite-
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Table 3.4: PERs for DNN models trained with HMM state aligmtseobtained
from Table 3.3.

# Turkish Utterances
MSHL + rand softmax | 100 200 500 1000
PER (%)

BL DNN (No Transfer):
(a) Train using 3.3(a) ali| 45.98 38.75 31.73 26.63
TL DNN (Transfer):
(b) Train using 3.3(b) ali| 43.14 38.61 30.96 26.10
Relative PER| (%) (b-a) | 6.18 0.36 2.43 1.99
TL DNN (Transfer):
(c) Joint 42.11 37.81 30.55 26.23
Relative PER| (%) (c-a) | 8.42 243 3.72 1.50
TL DNN (Transfer):

(d) Seq: L2 (2 iter) 39.90 35.98 29.78 25.78
(e) Seq: L2 (6 iter) 39.57 35.61 29.44 25.37
(f) Seq: L2 (10 iter) 39.25 3551 29.56 25.39

Bestrelative PER (%) | 14.64 8.36 7.22 4.73

rion shown in Eq. (3.15). This requires using alignmentsiflmth Turkish and

a limited number (about 100 utterances) from English. Whilkish alignments
were obtained from TL LDAMLLT system, English alignments were obtained
from the TIMIT LDA+MLLT +SAT system and converted to alignments in terms
of Turkish phones using English to Turkish mapping rules as @xplained in
Section 3.6.3. We refer to this type of supervised trainiagjaint” training in
Table 3.4. The relative PERs improve further except for st tase (1000 utter-
ances). The relative improvements in PER in Table 3.4 aray@womputed with
respect to the PER of BL DNN (first row of Table 3.4).

In the next set of DNNs, we again use alignments fitaoth Turkish and En-
glish as before, although in a sequential manner. First,raia the DNN using
English alignments converted to Turkish phones using estdpping and then
retrain the same DNN using Turkish alignments until the teation criterion de-
termined by cross-validation accuracy is met. We refer imtifpe of supervised
training as “sequential” training where we first train the WNsing the source
language (English or L2) for a few iterations and then ratthe same DNN us-
ing the target language (Turkish). We also observed thdy stwpping while
training in L2 leads to better PERs. Here, the early stopphitgrion is to train
the DNN for a fixed number of epochs in L2 (2-10) epochs. Foesagere target
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data was very limited (100 or 200), the number of L2 epochsl@asOtherwise,

6 epochs were ghicient. More epochs do not guarantee better accuracies.
demonstrated in Table 3.4, PER improves in each case by ¥4734% relative

(1.26-6.73% absolute), with an average improvement of%.7@ative (3.38%

absolute). Through these experiments, it is clear that kedye transfer can also
occur at the supervised training stages.

We think that initializing weights by sequential trainirgyalosest to the work
on MLP initialization schemes of Vu et al. [38]. In [38], thage the weights of a
multilingual MLP to initialize the weights of a target largge MLP. Their target
language MLP used monophone based posteriors and the Halgksmweights
were initialized using the multilingual MLP whereas thetswdx layer weights
were initialized randomly. The key fiierences in this work are: (a) the DNNs
are deeper than the MLPs, (b) the DNNs use CD phones insteadmmdphones
in [38], and (c) the DNNs are able to leverage the knowleddk@phonetic struc-
ture of the CD space by using source language senones. Takpfsll especially
in under-resourced scenarios.

3.7 Summary

In this study, cross-lingual transfer learning methodsi\gsupervised training
were investigated for limited resource scenarios. A retgdd maximum likeli-
hood training criterion was proposed for training GMM-HMMsing labeled data
from both target and source languages. Next, a regularizesd-@ntropy training
criterion was proposed for training DNNs which also usegliedh data from both
languages. Finally, it was shown that DNNs could also be¢ghisequentially
using both languages.
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Chapter 4

Cross-Language Transfer Using
Crowdsourced Non-Native Transcriptions

4.1 Introduction

In Chapter 3, we presented cross-lingual adaptation ires@ewhere transcribed
data in the target language are limited. In this chapter,xtenel this further to an
even more adverse scenario where there are no target lamdatmat all.

As in Chapter 3, we use the termdRL” or “target language” interchangeably
to refer to the language to be recognized. Similarly, we WRBL'S’ or “source
languages’ to refer to the auxiliary languages for which we have tragndata but
the objective is not to recognize these languages.

When there are no transcribed data (i.e., transcriptioves)adle in the target
language, it is hard to build ASR systems in the target lagguhat can perform
reasonably well. However, transfer learning techniqueslma used to transfer
the acoustical knowledge from the source languages to tgettianguage. In
the absence of transcribed data in the target languageatgug knowledge from
source languages (WRLS) to build ASR systems in the targguiage (URL) is
usually referred to asross-language transfer.

Lack of transcribed data in the target language can be aiitakto the dficulty
of finding native transcribers. Another reason is the lackaaje government
funded programs. However, there exist alternative regsufar collecting tran-
scribed data. For example, transcriptions can be colldobed online non-native
crowd workers, or Turkers, who neither speak the targetdagg nor have any
familiarity with it. We briefly outline this procedure. A gyfe utterance in some
target language is transcribed by multiple Turkers who do not spéakDue to
this, no single Turker can generate the correct transoriptinstead, a collection
of transcriptions from multiple Turkers is constructed &single utterance ih.
This collection, after merging and some post-processiag,be represented as a
confusion network which we refer to @sobabilistic transcript (PT). In contrast,
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the correct transcription generated by a native speakdveagpresented as a sin-
gle sequence of labels. We will refer to this sequencedeseaministic transcript
(DT). DTs are simply conventional transcriptions that wegirently encounter in
large vocabulary speech corpora. In Chapter 2, we outlihedtterences be-
tween PTs and DTs. A keyflierence between PTs and DTs is that the labels in
PTs are noisy. This main focus of this chapter is on trainitNNB using PTs in
the target language (URL). At no point do we use DTs to tragséhDNNs. Thus,
in this sense, this chapter deals watno resource speech recognition.

The remainder of the chapter is organized as follows. Ini@edt2, we provide
a summary of past work. In Section 4.3 and Section 4.4, weqa®the models to
adapt to PTs using weakly supervised and semi-supervisediig respectively.
In Section 4.5, we describe the experiments and outlinegbelts followed by a
summary in Section 4.6.

4.2 Background

In [15,50], it was shown that it is possible to adapt HMMs {pwened using DTs
in WRLs) to an URL using PTs. In this study, the objective igteestigate DNN
training techniques that can adapt to the URL. Forced algrimobtained from
PT adapted HMMs are treated as “ground truth” labels for DRdihing. Since
these alignments are based on PTs and not DTs, the “grouels’lae soft and
noisy rather than 1-hot and clean.

Self Training: One possibility is to ignore the soft labels in PTs since they
noisy and instead use a self-training method. Here, a wahdd ASR system
decodes the utterances in the URL and then uses the decaddsldad its confi-
dences to adapt itself to the URL. This was earlier used inafirogual [51] and
multilingual scenarios [52]. In [52], the multilingual AS&/stem was used to
decode the utterances in an unseen target language andema®tiained using
the decoded labels to adapt to the target language. Thisssrdted in Fig. 4.1.
However, this method does not make use of PTs in the URL.

VanillaDNN: In order to make use of the PTs, a better way is to use the cenven
tional approach to adapt a multilingual DNN to a new languddes is achieved
by preserving the shared hidden layers (SHLs) [36] of antiegisnultilingual
DNN and then replacing the weights in the multilingual tesdnsoftmax layer
with randomly initialized weights to form a new softmax laye'he new soft-
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Figure 4.1: Self-training ASR.

max layer is fine-tuned using the labels of only the targeglage [37]. This is
illustrated in Fig. 4.2.

DT PT

K]/1.0 ®]/1.0 1.0 Qs [ &
O [k]/ O[ 1/ O (t]/ O /(—\ []/0.35 /—\

(®0® --- 000)
o®® --- 000 ( )
o0® --- 900 [ )
[... s ...] [... e ...]
[‘.. coe ...] {..‘ hddd ...%
[ ] [ ]

CY X ) Oz (X X ::: e :::
t

s | il
Features Features

Figure 4.2: Vanilla DNN trained with Figure 4.3: Vanilla DNN trained with
DTs. PTs.

However, in the current scenario, there are no DTs. Hencepaious step
is to use the PTs to fine-tune the softmax layer. This is thelldaDNN train-
ing as illustrated in Fig. 4.3. Since CE training of DNN atf@sto minimize
the Kullback-Leibler (KL) divergence between the disttibus of ground truth
labels (which are noisy for PTs) and DNN posterior outputs, giosteriors sim-
ply learn the noisy distribution of the PTs. This degradesprformance of the
DNN, sometimes even worse than a GMM-HMM system. This is shivam the
experiments in Section 4.5. There are two reasons for this.

e First, discriminative training is more sensitive to thewecy of labels com-
pared to ML training [53].
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e Second, DNNs do not generalize well if the training and tesadre gen-
erated from two dferent distributions. In [54], this was shown for the case
when a DNN was trained using wideband data but tested onwibarad
data. In the current context, the distributions aréedent during training
and testing. During training, we train the network to mateh PT dis-
tributed labels. However, during testing, we expect thevost outputs to
generate DT distributed labels.

4.3 Weakly Supervised Learning

In this section, we explore methods by which we are able ia &Ns which
perform consistently better than GMM-HMM systems. In parar, we explore
multi-task learning (MTL) methods [55, 56].

4.3.1 Multi-Task Learning (MTL)

To take advantage of the PTs while at the same time allegi#tia éfect of noisy
labels, we explore the MTL approach. Here, multiple relatesks are trained
together with all tasks having a set of shared hidden laygHé §). However, each
task has its own softmax layer which is trained using theltatoe that particular
task. The first softmax layer is trained using PTs of the taeyggyuage whereas
the second layer is trained on DTs of all the available solacguages. This is
the MTL system as illustrated in Fig. 4.4.

There could be a third softmax layer trained using selfatray transcripts (ST).
A self-trained system was earlier described in Sectionl#.the absence of super-
vised data, the STs can be used as “ground truth” labels raimet well-trained
ASR system. Thus, the ASR system retrains itself using its predictions.

For all the MTLs, during test time, only the PT softmax layeretained for
decoding while discarding the other softmax layers.

Now, we define the objective function of the MTL framework. eTbbjective
function for the MTL system illustrated in Fig. 4.4 is

L(W) = Leep(W) + Aot Lceor(W), (4.1)
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where

Leep(W) = Y > pPK) log yiV(K), (4.2)
t k

LeeorW) = > dP(K) log YA (K). (4.3)
t ok

The termp§l)(k) € [0, 1] is the ground truth probability of senokeprovided by
the PTs in the target language (URL). The ted{ﬁ%(k) € {0,1} is the ground truth
probability of senon& provided by the DTs in the source languages (WRL). The
termy")(K) is the output of the softmax noden the ™ task of the MTL system.
The weights of the neural network are representetby

Why does MTL work? Our motivation for using multiple softmax layers
stems from encouraging results obtained in previous s$ddremultilingual train-
ing [57], [58], [36] and MTL [56]. In [57], Scanziet al. were the first to propose
the multiple softmax architecture for training an artificgural network (ANN)
simultaneously using multilingual data. Later, it was use[b8], [36] for multi-
lingual training and in [56] for MTL. Their ANN was used as affit-end discrim-
inant features generator that were later used to train Eggalependent hidden
Markov model (HMM) based speech recognizer. In [58], thisrapch was fur-
ther extended by Veseht al. by including a bottleneck intermediate layer. They
showed that such bottleneck features generalize well evemsmatched cross-
lingual settings, i.e., when training languages aftedent from the test language.
In [59], Tuskeet al. propagated this idea further by concatenating such bottle-
neck features with mel-frequency cepstral fieeents (MFCCs) in mismatched
cross-lingual scenarios. Furthermore, it was establishd@6] that the SHLs
trained using multiple softmax layers over multilinguatalautperform monolin-
gual SHLs. In [60], it was used for semi-supervised trainifige key advantages
offered by training DNNs with multiple softmax layers are:

e Improved SHLs.
e SHLs are language independent provided the amount ofiadata is uni-

form across all languages. Thus, the SHLs represent a “ijlolesv of the
multilingual data.

e Each softmax layer may be fine-tuned to a specific languagentiaking it
language dependent. Thus, the softmax layer representea@ Mliew” of
the multilingual data.
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¢ It obviates the need to explicitly map the phones to a comnhame set.

In this work, our conjecture is that simultaneous trainih§®s along with DTs
offers multiple advantages.

e First, thespurious or incorrect error gradients backpropagated by the noisy
PT labels are partially corrected by ttree or correct error gradients back-
propagated by the high quality DT labels. Therefore, dugrtmg supervi-
sion of highly reliable DT labels, the gradients become fessy. The net
result is an improved non-linear transformation learnedhsy SHLs and
hence better feature separation. This advantage is cleatlyith the sin-
gle softmax Vanilla DNNsystem trained using PTs since thaing steps
are sequential in nature - first train using multilingual Dargl then fine-
tune using monolingual PTs. The noise introduced by PTsensttond
stage cannot be corrected.

e Since the output nodes of the DNN have one-to-one corregmmedwith
a multilingual senone decision tree, the output nodes di saftmax layer
represent multilingual senones. By exclusively training PTs in the first
softmax layer, we train only those softmax weights which @vanected
to the nodes representing the senones in the target langlihgeweights
for the other senones remain untrained. This is expecteeldiace the en-
tropy of the output activation vectors. In addition, if theadjty of the PTs
improves, it will further lead to improved softmax weights.

e Unlike [57] where each language was assigned its own softenget, we
assign all source languages with DTs to only one softmax lasiyee the
primary role of DTs is to fix SHLs. This reduces the complexftythe
network structure.

4.3.2 Knowledge Distillation (KD)

In this section, we make improvements over the MTL systeracideed in Sec-
tion 4.3.1, using knowledge distillation (KD).

We provide a brief overview of KD first before describing tmarhework in
detail. In [61], the authors describe KD as the process offaaring knowledge
from a large cumbersome model (or an ensemble of models) nwad distilled
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model. The cumbersome and distilled model are sometimesreef to as the
teacher and student models. Hence, KD is also known as tesitltent (TS)
learning. In [62], KD was used for reducing the size of deefneks.

If D is a data set on which the student model is to be trained, tree NN
training procedure involves the following steps.

¢ Inthe first step, feedforwar® through a prior well-trained teacher DNN to
generate the posterior outputs (or teacher labels). Tlobéedabels form a
soft target distribution for each training exampleZin

¢ In the second step, train the student DNN by minimizing tlessrentropy
(CE) loss between the teacher labels and posterior outpulse student
DNN. Thus, the student DNN attempts to mimic the behaviohefteacher
DNN by trying to match its own outputs with those of the teadbbels.

To improve the generalizability of the student DNN, the teadabels could be
generated by using a high temperatdren the softmax of the teacher DNN.
The same temperatuiieis then used at the softmax of the student DNN during
CE training. It can be shown that whé@n — oo (high temperature limit), CE
training is equivalent to minimizing the mean square erMS8E) of the logits
(pre-softmax activations) between the teacher and studiEhls [61].

Several studies [63—73] in the past have used KD to improvBl&Nn [63], a
small DNN was trained using teacher labels generated bydegdrding a large
number of untranscribed data through a large DNN. In othetiss, the authors
transfer the knowledge from a large RNN to a small DNN [64] renf a large
DNN to a small highway DNN [65]. In [66, 67], KD was used to inge ro-
bustness of DNNs to noisy data. The one that is most relewaatit work is
in [68] where KD was used for adaptation to under-resoureghdese dialects
and children’s speech.

Now, we explain the KD framework in detail. Consider an infa#ture vector
X. A generalized softmax is a softmax function operating agitéoz(x) and a
temperaturd € R*. Here,k € {1, --- , K}, whereK is the total number of labels.
We will denotez,(x) as simplyz, and assume the dependencexamimplicit. The
outputy,(T) of the generalized softmax is given by

exp @/T)
T exp/T)

Y(T) = (4.4)
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There are two extreme cases for Eq. (4.4).y(@t) = [ya(T) - - - y(T)]’. For very
hot and cold temperatureg(T) approaches the uniform and 1-hot distribution
respectively. Thus, lig,,. Yk(T) = % and limr_o Yk(T) = Ljk=argmaxy;}- IN the KD

1<j<K

framework, the student model is trained to minimize the,loss

Exo = pC(P, Y(1)) + (1 - p)C(A(T), Y(T)), (4.5)
where
K
C(p.y(1) = - ) pclog (1), (4.6)
k=1
K
C(a(T), y(T)) = = > a(T) log yi(T). (4.7)
k=1

The termpy is the posterior probability of labdd given the feature vectox.

Since this is generated from the PTs, it need not be a bindmgaor 1. Thus,

p need not be a 1-hot vector. Likewisg(T) is the posterior probability of label

k generated by feedforwardingthrough a teacher DNN equipped with a gener-
alized softmax with temperatufe. In other words, it is a teacher label. In the
under-resourced scenario, the teacher DNN is a multilinBd&N trained with
DTs from WRLs. The terny(T) is the posterior probability of lab&l generated

by feedforwarding through a student DNN equipped with a generalized softmax
with temperaturd as in Eq. (4.4). The student DNN is the target language DNN
to be trained with PTs from the URL. The outpwyigl) of the student DNN in
Eq. (4.6) are constrained to a temperature of one whereas. idE&) the temper-
ature can be any € R*. Finally, p is a weight that balances the losses in Eq. (4.6)
and Eq. (4.7).

During backpropagation, the gradient of Eq. (4.7) with ez$go the student
logit z, i.e., ‘9Ca(§k’y), is artificially scaled byT'. This is because the gradient itself
is a function of ¥T?2. Thus, the atrtificial scaling removes the dependencé&.on
As a result, the individual backpropagation errors from @g6) and Eq. (4.7)
have similar scales and can be added meaningfully.

Knowledge distillation specializes to several interaggtases.

e Whenp =1, Eq. (4.5) is same as the standard CE loss.

e When O< p < 1 andT = 1, Eq. (4.5) is equivalent to regularizing the CE
loss with Kullback-Leibler divergence (KLD) [74].
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e Whenp = 0 (indicating the absence of ground truth labels), Eq. (daB)be
used for unsupervised adaptation. For example, in the dgse ®, T = 1
and when the student DNN it initialized from a teacher DNN, Eq. (4.5)
was used for unsupervised adaptation using the teachés taitained from
a large teacher DNN [63].

e Whenp = 0, T = 1 and the student DNN is initialized from the teacher
DNN, training using Eq. (4.5) is equivalent to self-traigirHere, the teacher
labelsq(1) are identical to the outputgl) of the student DNN only be-
fore training begins. However, once training begins, tlzeher labels are
kept constant whereas the student outputs are allowed tgehaith every
weight update.

4.3.3 Target Interpolation (TI)

In this section, we make improvements over the MTL systeracideed in Sec-
tion 4.3.1, using target interpolation. The key idea herth&t we interpolate
the confidences of the labels provided by PTs with the confieleiof the target
language DNN. The DNN is then trained using the new intetpdl@onfidence
values. Intuitively, we emphasize the beliefs of the learather than completely
relying on noisy “ground truth” labels.

Now, we explain the Tl framework in detail. We will omit themndence on
T since in this sectiol = 1 always. First, we defin€(f(y),y) as

C(f(y).y) ==, f(w) log i (4.8)

K
k=1

wheref(.) is an element-wise function gfsuch thatf (yi) € [0, 1] and}}, f(y«) =
1. The DNN is trained to minimize the loss,

E = pC(p.y) + (1 - p)C(f(¥).Y),
=Clop + (1-p)f(¥). V), (4.9)

whereC(p, y) is as defined in Eq. (4.6). The second step in Eq.(4.9) is altiget
linearity of C(.,.) in the first argument. We consider two among several choices
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of f(.). They are

fo) Y. (soft) (4.10)
Yk) = :
“ ]l[k=arg maxy;]- (hard)

1<j<K

The loss functions corresponding to these choices are

K
Esot= = (0P + (1= )% 109 i, (4.12)
k=1
K
Ehara = — Z(ppk + (l - p)]l[k=arg maxyj]) lOg Yk (4-12)
Py 1gjsK

And the error gradients are

oE
a;:“ = p(Yk = P) + (1 = )yl (&) — H(Y)), (4.13)
oE
a;kard = p(Yk = P) + (L= p)(Vk = Likeargmas;1)- (4.14)
1<j<K

where

1(Y) = — log Yk,

K
Hy) = - > ¥ log yic
k=1

The motivation behind the choices in Eq. (4.10) is that we thgelabel confi-
dences of the DNN instead of completely relying on the noisyabels. Hence,
we modify the PT confidencp, with a new confidence which is an interpolation
betweerp, andf (yx). For the soft case, we use the entire output distributidhef
DNN. Then the loss in Eq. (4.11) becomes the standard CE liksewropy reg-
ularization. A DNN trained using this loss function will firalbalance between
minimizing the CE los<C(p,y) and lowering the entropy of its outpu®y, ).
Since PTs are prone to high entropies, lowering the entsagfiethe DNN outputs
is desirable. For the hard case, we simply binarize the DNiNuds to a 1-hot dis-
tribution. Compared to the soft case, the hard case ignbeesrbss-correlations
between dterent classes. In both cases, the new interpolated conédesiit!
form a valid probability distribution since they sum to onkem summed over the
K labels.
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4.4 Semi-Supervised Learning

In this section, we make improvements over the MTL systersculeed in Sec-

tion 4.3.1, using semi-supervised learning. The key idea isethat we make use
of unlabeled data, along with labeled data, while trainimg MTL to discover

additional useful hidden layer representations.

4.4.1 Deep Auto-Encoder

We use X,y) to denote labeled examples ardo denote unlabeled examples.
In the semi-supervised learning paradigm, both unlabetadheles drawn from
P(x) and labeled examples drawn froRfx, y) are used to learn the conditional
distributionP(y|x). The advantage of using unlabeled examples is that they can
learn a representatidn= f(x, W) which can help group similar classes together.
This, in turn, can improve the predictions madeRyy|x).

The MTL framework has the advantage that it unifies both theegaiveP(x)
and the discriminativ®(y|x) models together. To see how this is possible, assume
X ~ N(X,X). Thus,

P(X) < exp{ - %(x -R)'ZH(x - %)}, (4.15)
where

X = g(x, W),

¥ =1 (identity covariance matrix)

Maximing logP(X) is equivalent to minimizing the mean square error (MBE} X||2.
Thus, if the MTL is designed to predigtat the output of one of its sub-tasks, it
will try to match the outpuk with the inputx. In this sense, the MTL acts as a
deep auto-encoder (DAE). The other sub-tasks of the MTL thm®del P(y|x)

as a multinomial distribution when trained using the CEeciin. An illustration
of this framework is shown in Fig. 4.5.

The first task is trained using PTs, the second task is traised) DTs, and the
third task is trained using raw features. Since the baclagafed errors generated
from training PTs are noisy, the DAE can help fix these errosthus discover
more useful hidden layer representations. The MTL is thiteeminimize the
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Figure 4.5: MTL using deep auto-encoder.
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following loss:
L(W) = Legp(W) + AprLce-or(W) + Apae Loae(W), (4.16)

where Lcepr(W) and Lcepr(W) are the CE losses at the first and second sub-
tasks of the MTL respectively. They are represented by E) @nhd Eq. (4.3).
The final lossLpae(W) is the MSE loss and is given by

Lone(W) = D Ibi— % (4.17)
t

Auto-encoders have been previously used for noise redugtimg single-layer
networks in [75] and deeper recurrent layers in [76]. Theoikng auto-encoder
is basically a single-layer neural network which attemptseticonstruct a clean
version of its own noisy input. In [76], this idea was furthextend to deeper
layers as deep denoising auto-encoder. By incorporati@edRtiN structure, it
becomes a deep recurrent denoising auto-encoder.

More recently, deep denoising auto-encoders in the MTL éaark have been
used in the problem of far-field speech recognition [77].He far-field scenario,
speech signals captured by distant microphones locateaiMay from speakers
are susceptible to dereveberation and additive noise. ntrast, time synchro-
nized speech signals captured by close-talk microphomeekatively clean. An
auto-encoder was used to learn the mapping between the sigisals of distant
microphones and the relatively clean signals of closeftatitophones. Since the
primary objective is to improve the classification perfonoa of an ASR system,
the authors in [77] integrate the auto-encoder into an MBlmiework. Thus, the
unified network optimizes two tasks simultaneously - theaikeng task and the
recognition task.

Auto-encoders have also been used to generate bottlenaitkde in under-
resourced scenarios when little training data are avalabbr example, in [78],
the authors train a stack of deep auto-encoders (DAES) igea-l@ise unsuper-
vised manner to predict clean speech from artificially goted noisy speech.
Then a bottleneck layer, an additional hidden layer, anda $iaftmax layer are
added to the stack of DAEs before fine-tuning the entire netwsing backprop-
agation.

More relevant to our work is the study in [79]. The authorgnti@neural net-
work to recognize digits from inaccurately labeled imagethe MNIST dataset.
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To incorporate a notion of perceptual consistency in thmitrg, they train an
auto-encoder in parallel to promote top-down consisteriaypadel predictions
with the observations. This allowed the model to discoventbise pattern in the
data.

45 Results

In this section, we present the results for the methods ibestn Section 4.3 and
Section 4.4.

451 Data

e Corpus: Multilingual audio files were obtained from the Special Bioasting
Service (SBS) network which publishes multilingual radmdpasts in Aus-
tralia. These data include over 1000 hours of speech in 6gukges. The
following languages were used in our experiments: Swakilih), Amharic
(amh), Dinka (din), Mandarin (cmn), Arabic (arb), Cantoaégue), and Hun-
garian (hun). The corpus is summarized in Table 4.1. The gsidavere not
entirely homogeneous in the target language and contaranttes interspersed
with segments of music and English words. An HMM-based |laggudenti-
fication system was used to isolate regions that correspastiyrto the target
language. These long segments were then split into smakecénd utter-
ances.

Table 4.1: SBS multilingual corpus.

Language Utterances| Phones
Train Test
Swabhili (swh) 462 123| 48
Ambharic (amh) | 516 127| 37

Dinka (din) 248 53 27
Mandarin (cmn)| 467 113| 52
Arabic (arb) 468 112| 46

Cantonese (yue) 544 148 32
Hungarian (hun) 459 117| 65
All - - 82
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e Turkers: More than 2500 Turkers participated in transcribing, wibghly
30% of them claiming to know only English. The remaining Tenkclaimed
knowing other languages such as Spanish, French, Gernpamelke, and Man-
darin. The utterances were limited to a length of 5 secontds i¥ because the
Turkers did not understand the utterance language and ieasisr for them
to annotate short utterances than long. Since English weastist common
language among the Turkers, they were asked to annotateuhdsusing En-
glish letters. The sequence of letters was not meant to baingdfal English
words or sentences since this would be detrimental to thé gierdormance.
The important criterion was that the annotated lettersesgmt sounds they
heard from the utterances as if they were listening to a semuef nonsense
syllables in some exotic language. Since no Turker is likelgenerate the
perfect transcript, each utterance was transcribed by ikeTsicreating 10 dif-
ferent transcripts per utterance. These transcripts warneected to phones and
merged into a PT using [24]. Turkers were typically paid $5@0 10 Turkers
for transcribing an hour of audio.

e PTsand DTs. PTs, worth about 1 hour of audio in the target language, were
collected from Turkers. The same audio files were presemtethtive tran-
scribers to generate DTs. However, the DTs in the targeulang were never
used for training ASR systems. These were used only for meadting oracle
error rates. The oracle scenario is the ideal scenario witerevould have ac-
cess to DTs in the target language. PTs in the target langiuigie) and DTs
in the source languages (WRL) were used for training ASResyst We are
now ready to outline the amounts of training data that weeel disr training an
ASR in the target language (URL)

1. PTsinL: PTs, from about 40 minutes of audio in were collected from
Turkers who did not spedk

2. Zero DTsinL: No DTs inL were used for training an ASR in

3. DTs only in source languages: DTs from six other sourcguages £ L)
were used for training an ASR in About 40 minutes of DTs were used per
source language. Hence, the total amount of DTs availabledming was
~ 4 hours (40 minut¢languagex 6 languages).

4. Unsupervised data: There were about 5.5 hours of unsigspdrgiata irL.

The development and test sets were worth 10 minutes eache3thatterances
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were stficiently shudtfled so as to avoid biasing to a subset of speakers or to
a specific gender. As an example, consider Table 4.2 wdvanas the target
language to be recognized. Then the training set consig8 ofinutes of PTs

in swh and 40 minutes of DTs in each afmh, din, cmn, arb, yue, andhun
combined.

Table 4.2: Training set when Swahiih) is target language.

Language Transcript Type Size

Swabhili (swh) PT 40 min
Ambharic (amh) DT 40 min
Dinka (din) DT 40 min
Mandarin (cmn) DT 40 min
Arabic (arb) DT 40 min
Cantonese (yue DT 40 min
Hungarian (hun DT 40 min
Swabhili (swh) - 5.5 hrs

Universal Phone Set: The orthographic transcriptions for the PTs and DTs
were converted to IPA based phone transcriptions. The ¢ealgoronuncia-
tion was derived from a lexicon. If a lexicon was not avaiggta language-
specific G2P model was used. To form a set of multilingual ghsymbols,
diphthonggriphthongs were split into twihree individual phone symbols un-
less they were the same as English diphthongs. Diacritick as tones and
stress markers tend to make the phone symbols unique toieutartanguage.
Therefore, to enable phone merging across languages, anghdge specific
diacritics were removed from the canonical phone transonip.

This was followed by merging the phones to a reduced phonelksah IPA
phone symbol was unique in the sense that it appeared in theeghanscrip-
tions of only one language, then that symbol was merged wititheer symbol
which differs in only one distinctive feature. Repeating this proceseral
times guarantees that each phone is represented in aMedsintguages. This
enables sharing data across languages. The merged phas¢hrsemultilin-
gual or universal phone set. The total number of phones imthlélingual set
(i.e., all languages) was 82 which excludes the silence @hém individual
breakdown of phones per language is outlined in Table 4.1.

Language Models. Finally, phone based language models (LMs) were built
from the text in the target language mined from Wikipedia. nieasure the
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performance of the ASR systems, phone error rate (PER) veasassthe eval-
uation metric. All experiments were conducted using thedKadolkit [48].
Kaldi source code in €+ and toy examples of the proposed models are avail-
able in our github repositody.

452 Features

Thirteen dimensional MFCCs, spliced with- 3 neighboring frames, were ex-
tracted from speech utterances. These were then trangfarsieg a LDA trans-
form followed by feature-space maximum likelihood lineagression (fMLLR)
transform resulting in 40-dimensional fMLLR features. $bdeatures were kept
low dimensional to avoid the curse-of-dimensionality peob which is more
likely to occur in under-resourced scenarios. These featwere then mean nor-
malized using cepstral mean normalization (CMN) beforegishem for DNN
training.

4.5.3 Baselines and Proposed Models

The following baselines were used in our evaluation:

e Monolingual GMM-HMM and DNN (Section 4.5.4): These modelere/
trained using DTs in the target language. This is the orazdeario if we
assume DTs were to be available in the target language. Blete@cenario
was used only for benchmarking performance against otheteteo For
DNN training, the DNN was first initialized using RBM pre-inang? [80]
using unlabeled data from source languages. Followingdtgeftmax layer
was added on top of the SHLs and the DNN was fine-tuned usingaii= t
ing with DTs in the target language.

e Multilingual GMM-HMM and DNN (Section 4.5.5): These modeisver
used any DTs or PTs in the target language. They were traftexcoaoling
the DTs from all the source languages. Hence, these ardimgutal ASRs.
After RBM pre-training using source languages, the DNN was-funed
using CE training with DTs from the source languages as targ8ince

1git clone -b teacher-student https://github.com/irrawaddy28/SBS-kaldi-2015
2All DNNs considered in this study were initialized using RBMe-training using 6 shared
hidden layers (SHLs) with 1024 nodes per layer.
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target language data were not used during training, theskelsare not
adapted to the target language.

e Self-training DNN (Section 4.5.6): This is the model thatsvelescribed in
Section 4.2. This is an adapted model since a multilingualNDis used
to decode the utterances in the target language and theetbded labels
were used as the new targets for another round of training.

e MAP GMM-HMM (Section 4.5.7): This is the GMM-HMM model MAP
adapted to the target language using PTs in the target lgegua

e Vanilla DNN (Section 4.5.8): This is the DNN model adaptedtte target
language using PTs in the target language. After RBM prieitrg, a single
softmax layer was added and fine-tuned using PTs in the tamggtage.

The following are the proposed methods that were used inv@aluation:

e MTL-CE (Sections 4.5.9): This is the MTL model, from Sectiér8.1,
adapted to the target language. It has two softmax layers. fif$t soft-
max layer was fine-tuned using PTs in the target language. s€bend
softmax layer was fine-tuned using DTs in source languageth tBe tasks
were trained to minimize the CE loss. The MTL model never uwsedDTs
in the target language.

e MTL-KD (Section 4.5.10): This is the MTL model, from Secti@n3.2,
adapted to the target language. The first task of the MTL mwesltrained
to minimize the los€p in EqQ. (4.5) with O< p < 1 andT > 1. Specif-
ically, values ofp € {0.2,0.4,0.6,0.8} were used. For the special case of
T =1, Eq. (4.5) becomes KLD regularization [74].

e MTL-TI (Section 4.5.11): This is the MTL model, from Secti@gh3.3,
adapted to the target language. The first task of the MTL mwesltrained
to minimize the losEgy in EQ. (4.11) ancEpaq in EQ. (4.12) while using
p €{0.2,0.4,0.6,0.8}.

e MTL-DAE (Sections 4.5.12): This is the semi-supervised Miriodel,
from Section 4.4.1, adapted to the target language. Itisdadausing PTs
and unlabeled data in the target language along with DTs umcsolan-
guages.
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4.5.4 Monolingual GMM-HMM and DNN

In the first baseline, monolingual GMM-HMM and DNN models eérained and
tested using DTs in the target language. This is the oraeleas® if we assume
DTs were to be available in the target language.

The monolingual PERs over a total of about 7K-8K phones arergin Ta-
ble 4.3. This gives us an estimate about the approximatechest(lower bound)
PERs.

Table 4.3: PERs of monolingual GMM-HMM and DNN models. Devige
parentheses.

Lang PER (%)
GMM-HMM DNN

swh | 35.13(45.78) 34.25(39.64)
amh | 51.90 (48.68) 46.69 (44.07)
din 51.56 (47.03) 48.37 (48.00)
cmn | 31.80(26.14) 28.26 (25.16)

4.5.5 Multilingual GMM-HMM and DNN

In this experiment, we assume DTs in the target languagedcdr@vailable during
training. However, DTs of the source languages are stilil@vie. Thus, DTs
from the 6 source languages were pooled together to traitilmgiial GMM-
HMMs and multilingual DNNs. Decision tree clustering of timiltilingual data
resulted in about 1000 senones. The multilingual DNNs weaméd using 6
hidden layers with 1024 nodes per layer and a final softmaet hayth about 1000
output nodes representing the senones.

Table 4.4: PERs of multilingual GMM-HMM and DNN models. Dest $n
parentheses.

Lang PER (%)

GMM-HMM DNN # Senones
swh | 63.02(66.00) 60.40 (61.62) 950
amh | 68.65 (68.47) 65.56 (64.82) 1008
din 67.93 (66.79) 63.81(65.44) 1012
cmn | 69.55 (67.08) 59.50 (59.50) 985

The PERs are given in Table 4.4. Expectedly, due to lack of DTke target
language, the PERs are much higher than the oracle case Im 4@ Hence,
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the PERs in Table 4.4 establish the worst case (upper bolER$.Pn all subse-
guent experiments, we start from the worst case PERs in Tladbland attempt to
approach the best case PERs in Table 4.3 by including PTisgltraining.

4.5.6 Self-Training DNN

In this experiment, we use a self-training algorithm [51juhich a multilingual
DNN decodes the training utterances in the target languadetteen uses the
confidence selected decoded labels to retrain itself indhget language [52].
Self-training is an unsupervised adaptation method.

The objective of this experiment is to evaluate tliecacy of ASR generated
labels which in this case are self-training transcripts)STSince the multilin-
gual DNN is not trained using the target language DTs, theded labels are
very likely to be unreliable. Hence, we use only a subsetarhfs, selected by
first evaluating the frame level confidences [51]. The framafidences are sim-
ply the values of the posteriors of the best path in the decplittice generated
as the output of the multilingual DNN. In the second step, raupigcally deter-
mined threshold is chosen and compared with the frame caortigde Any frame
whose confidence is above the threshold is selected foingpi®therwise, it is
discarded.

Table 4.5: PERs of self-trained DNN models. Dev set in pdiesgs.

Lang PER %
DNN

swh | 58.12 (60.36)
amh | 64.16 (63.95)
din 63.13 (62.26)
cmn | 57.37 (57.73)

The results are given in Table 4.5. Compared to the multilahdNN in Ta-
ble 4.4, the improvement due to self-training is in the rag8%-2.28%. We
determined frame confidence thresholds as 0.5 or 0.6 fromehelopment set.

4.5.7 Maximum A Posteriori GMM-HMM (MAP GMM-HMM)

In this experiment, the multilingual GMM-HMM model in Seati 4.5.5 is adapted
using the PTs of the target language. The multiingual GMMM acoustic
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model is adapted using MAP adaptation described in morel defa5, 50]. The
main component in this step is that the ASR search graplesepted as a WFST
mapping from the acoustic signal to a sentence, is definedhdywdmposition
HoColLoGoPT instead of the usudd cCo Lo G. Here,PT is the confusion net-
work of phones obtained from crowd workers as was describ&dction 2.1.3.

The PER results for the MAP adapted GMM are under the columiPNEMM-
HMM in Table 4.6. The PER results for the multilingual DNN [@oin MULTI-
DNN in Table 4.6) are replicated from Table 4.4 for purposesamparison.
The absolute improvement in PERs as a result of adaptingy U&irs is in the
range 3.12%-15.08%. This is much better than the improvéotgained using
ASR labels (STs) in the previous section. Since the MAP GMMM models
significantly outperform the self-trained DNNs, we use MANMK-HMM as the
starting baseline within the class of PT adapted models.

4.5.8 Vanilla DNN

In this experiment, we follow the conventional procedureadipting a multi-
lingual DNN to the target language. In the first step, thersak layer of the
multilingual DNN (Section 4.5.5) is replaced by a randomiitialized softmax
layer while retaining the SHLs [38]. The resulting DNN is thi@ne-tuned using
the forced alignments generated by the MAP adapted modeti¢®et.5.7). This
is the conventional way to adapt a DNN using DTs [37]. Howgthes approach
does not work very well for PTs largely due to the presencencbirect labels
in PTs [16]. The results are shown under the column VanilldNDNTable 4.6.
Clearly, the performance of Vanilla DNNis worse than MAP GMAMM for
Swabhili and Dinka and only marginally better for Amharic. @n average, the
Vanilla DNN marginally outperforms the MAP GMM-HMM by onlyo®ut 0.22%
absolute.

4.5.9 Multi-Task Learning With Cross Entropy (MTL-CE)

In this experiment, instead of using a single softmax layer,use two separate
softmax layers (one per task) as illustrated in Fig. 4.4. fitse task is trained
with PTs in the target language, whereas the second taskngtrwith DTs in the
source languages. In addition, we found data augmentagioefizial for training.
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That is, we introduced two additional copies of the inpuadatthe first task. The
results are shown under the column MTL-CE in Table 4.6. Tsokite decrease
in PER compared to the Vanilla DNN is consistent across atjlages and is in
the range 1.00%-1.5%. Comparing the PT adapted MTL-CE \wghuhadapted
MULTI-DNN, the absolute decrease in PER is in the range 4-18%1%.

Table 4.6: PERs of multilingual DNN (MULTI-DNN), MAP GMM-HN#,
Vanilla DNN, MTL-CE models. The number in the parenthesdlésabsolute
improvement in PER over MULTI-DNN. Best PER for each is laage
highlighted in bold.

Lang PER (%)

Unadapted PT Adapted
MULTI-DNN | MAP GMM-HMM VanillaDNN  MTL-CE
swh 60.40 (0.0) 45.32 (15.08) 45.89 (14.51)44.89 (15.51)

amh | 65.56 (0.0) 61.98 (3.58) 61.72 (3.84) 60.79 (4.77)
din 63.81 (0.0) 59.48 (4.33) 59.64 (4.17) 58.65 (5.16)
cmn | 59.50 (0.0) 56.38 (3.12) 55.03 (4.47) 53.53 (5.97)

4.5.10 Multi-Task Learning With Knowledge Distillation
(MTL-KD)

In this experiment, we train the MTL model using KD. The PERmparing the
MTL models trained with CE, KLD, and KD losses are outlinedable 4.7. We
highlight only the most interesting cases witln the range ® — 0.2 andT = 2.
From Table 4.7, it is clear that the KD models outperform thediine CE and
KLD models.

Now, we analyze theffect of T andp on recognition rates. Keepingixed and
varyingT is equivalent to comparing KLD with KD models. Thus,agcreases
(keepingo constant), KD models outperform their KLD counterparts tradghe
time. Increasing’ makes the class correlations more pronounced. This iredicat
that the temperature parameter improves the generalizedipacity of the DNNs
by avoiding tuning to the noisy PTs. Next, keepihg> 1 fixed and varying
is equivalent to comparing within the family of KD models. Aslecreases, the
PERs tend to decrease first and then increase. Desirablesvaiin arep < 0.5.
This implies that the performance improves when the modeséncreasingly
on the teacher labels rather than the PT labels. Howeverirdgmd reverses for
very low values op. For example, in the extreme case wheg 0 (completely
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Table 4.7: PERs of dierent MTL models trained with CE, KLD, and KD losses.
The parameters andT are the weighting and temperature parameters in
Eq. (4.5). Best PER for each is language highlighted in bold.

Model Parameters Language

p T swh | amh | din | cmn
MTL-CE 1 44.89| 60.79| 58.65| 53.53
MTL-KLD | 0.6 44.11| 59.97| 58.19| 51.00
MTL-KLD | 0.4 44.21| 59.36| 58.33| 50.29
MTL-KLD | 0.2 44.63| 59.55| 58.65| 50.93
MTL-KD | 0.6 44.12| 59.82| 58.15| 50.93
MTL-KD | 0.4 43.66 | 59.40| 57.97 | 49.85
MTL-KD | 0.2 44.40| 59.08 | 58.26 | 49.38

NN NP R

ignoring PT labels), we noticed exceedingly high PERs al&b#. This proves
that PT labels are still useful.

4.5.11 Multi-Task Learning With Target Interpolation (M)

In this experiment, we train the MTL model using Tl. The PERsmparing the
CE and TI models are outlined in Table 4.8. Again, we highlmily the most in-
teresting cases @f(0.6 — 0.2). Clearly, both variants of TI models outperform the
CE model. Among the Tl models, Tl (Soft) outperforms TI (Hefi@r the African
languages (Swabhili, Amharic, and Dinka). For Mandarin, Hafd) outperforms
TI (Soft) by a small margin. Surprisingly, for both TI (Haraiyd Tl (Soft),0 = 0.4
is the most desirable value. Moreover, quite convenietitig,value ofo does not
change across languages explored in this study. Simildret&D model, values
of p < 0.5 imply that the performance improves when the model relieseias-
ingly on the DNN labels rather than the PT labels. This meaterpolation is
useful and that the new interpolated targets diecéve in alleviating the noise in
PT labels. However, similar to the KD model, setting= O results in very high
PERs.

Finally, a summary of the best KD and TI models for each laggualong with
their parameters, is highlighted in Table 4.9. The averag@ovement is about
2.12% absolute. This is quite useful for us consideringttmatis a zero-resource
scenario with no access to reliable ground truth DTs in thgetdURL.
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Table 4.8: PERs of dierent MTL models trained with CE and Tl losses. The
parametep is the weighting parameter in Eq. (4.11) and Eq. (4.12).

M odel Parameter L anguage
p swh | amh | din | cmn
MTL-CE 1.0 44.89| 60.79| 58.65| 53.53

MTL-TI (Hard) 0.6 43.96| 60.44| 58.69| 51.14
MTL-TI (Hard) 0.4 44.08| 59.98| 57.94| 49.81
MTL-TI (Hard) 0.2 44.24| 60.58| 59.19| 51.20

MTL-TI (Soft) 0.6 43.49] 60.19| 58.62] 51.09
MTL-TI (Soft) 0.4 43.29 | 59.65 | 57.65 | 50.02
MTL-TI (Soft) 0.2 44.16| 61.14| 59.26| 50.79

Table 4.9: Summary of the best MTL-KD and MTL-TI models. Ahge
improvements over the MTL-CE model inside parentheses.

Lang | Baseline (CE) Best Parameters
PER PER Modd | p T
swh 44.89 43.29 (1.60) TI (Soft)| 0.4 -
amh 60.79 59.08 (1.71) KD |0.2 2
din 58.65 57.65 (1.00) TI (Soft) 0.4 -
cmn 53.53 49.38 (4.15) KD |0.2 2

4.5.12 Multi-Task Learning With Deep Auto-Encoder
(MTL-DAE)

In this experiment, we train the MTL model in a semi-supegdifashion as illus-
trated in Fig. 4.5. Although the MTL models in the precediegtoons improve
PERSs over the Vanilla DNN, they do not make use of large ansahtintran-
scribed audio data that are available in the target languéges, we use the DAE
as an additional sub-task in the MTL framework. The struetoir the DAE is
simple. It uses the same SHLs as those in the MTL frameworladttition, it
has a distinct output layer which is simply affirme transform layer added on top
of the final SHL of the MTL. Thus, the SHL acts as the encoder theddfine
transform layer acts as the decoder. The DAE is trained tanmze the MSE loss
between the input features and output of the decoder.

We used about 4000 untranscribed utterances from the targgtage for train-
ing the DAE. First, fMLLR features were generated for theranscribed utter-
ances through a two-pass estimation of the fMLLR transfoririee PT adapted
MAP GMM-HMM model was treated as the alignment model. Folloyvthis,
the fMLLR features were normalized to zero mean and unievexe. In an iden-
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tical fashion, the input features for all tasks in the MTL werormalized. This
helps avoid the possibility of generating large MSE errdrtha DAE output. In
addition, we keep the weighting terapag in Eq. (4.16) to low values between
0.001-0.005.

The frames used to train the DAE far outnumbered the framestfer tasks.
This results in minibatches getting biased toward the DAJK.tén order to main-
tain a balance of frames across all tasks in the minibatch¢rneate duplicate
copies of frames for both the PT and DT tasks. We used 4-6 sdpiehe PT
tasks and 1-2 copies for the DT tasks. The number of copiesereptable val-
ues ofdpt in (4.16) were found from the development set.

Comparisons of the baseline models (GMM-HMM, Vanilla DNMgahe pro-
posed MTL models (MTkECE, MTL+KD, MTL +TI, MTL +DAE) are given in
Figs. 4.6-4.9.
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Figure 4.6: Comparison of PERs PT adapted baseline vs. gedpnodels in
Swahili.

4.6 Summary

In this chapter, we summarized the improvements in PERsSr@ntausing the
PT adapted proposed MTL models over the unadapted muliihBNN and
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PERs of PT Adapted ASRs in Amharic
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Figure 4.7: Comparison of PERs PT adapted baseline vs. pedpnodels in
Ambharic.
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Figure 4.8: Comparison of PERs PT adapted baseline vs. pedpnodels in
Dinka.
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Figure 4.9: Comparison of PERs of PT adapted baseline vpopeal models in
Mandarin.

the PT adapted Vanilla DNN. This is highlighted in the foudblumn of Ta-
ble 4.10. The best MTL models for Swahili, Amharic, Dinka, Miarin are
MTL+TI, MTL+KD, MTL +TI/MTL +DAE, MTL+KD respectively. The average
relative improvements of the best MTL over the Multilingaald Vanilla DNNs
are 16.22% and 5.89% respectively.

In addition to this, we evaluate the utility factor of PTs hretlast column of
Table 4.10. We define the utility factor of PTs as the fracbbphones recovered
using a PT adapted model (for e.g., best MTL model) comparedQT adapted
model (for e.g., monolinguadracle DNN). The average utility factor is 43.02%.

Table 4.10: Summary of PERSs for the unadapted baseline DNBLIVtDNN),
PT adapted baseline DNN (Vanilla DNN), PT adapted proposé&d [Best
MTL), DT adapted monolingual DNN (MONO-DNN). Relative imngyements
in PER of the best MTL over MULTI-DNN and Vanilla DNN are in tifeurth
column. Utility factor of PTs for dierent languages are in the last column.

Lang | A.MULTI-DNN | B. VanillaDNN | C. Best MTL (Rel. PER)| D. MONO-DNN | Utility = %
(Unadapted) (PT Adapted) (PT Adapted) (DT Adapted)
swh 60.40 45.89 43.29 (28.33,5.67) 34.25 65.43%
amh 65.56 61.72 59.08 (9.89, 4.28) 46.69 34.34%
din 63.81 59.64 57.65 (9.65, 3.34) 48.37 39.90%
cmn 59.50 55.03 49.38 (17.00,10.27) 28.26 32.40%

Despite these improvements, there are about 35-68% (10@ity)JJbhones
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that could be recovered. Future work includes compenséibg noise by inter-
polating PT labels with neural network predictions andreating noisy channel
(misperception) models of the non-native Turkers using BNN
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Chapter 5

End-to-End Large Vocabulary Automatic
Speech Recognition

5.1 Introduction

In the last few years, an emerging trend in automatic spesabgnition (ASR)
research has been the study of E2E systems [4,81-89]. An EHEskstem di-
rectly transduces an input sequence of acoustic featurean output sequence of
probabilities of tokeny (phonemes, characters, words etc.). This reconciles well
with the notion that ASR is inherently a sequence-to-segeieéask mapping in-
put waveforms to output token sequences. Some widely usgdmoporary E2E
approaches for sequence-to-sequence transduction pfeorfaectionist Tempo-
ral Classification (CTC) [1, 11], (b) Recurrent Neural Netilwv&ncoder-Decoder
(RNN-ED) [12, 13, 26, 27], and (c) RNN Transducer (RNN-T) 9T hese ap-
proaches have been successfully applied to large scale 8585, 88, 91-93].
In this study, we confine our focus primarily on CTC models.

The remainder of the chapter is organized as follows. Ini@eé&t2, we provide
a summary of past work. In Sections 5.3-5.5, we explain top@sed Attention
CTC, Hybrid CTC, and Mixed-unit CTC respectively. In Seatt®.6, we provide
experimental evaluations of our proposed algorithms. IFinge summarize our
study in Section 5.7.

5.2 Background

As one of the most popular E2E methods, the CTC approach Jlya4 intro-
duced to map input speech frames into output label sequéaces, 81, 82,92,
94-100]. To deal with the issue that the number of outputl$aiseshorter than
the number of input speech frames in speech recognitios t&kC introduces a
speciablank label and allows for repetition of labels to force the outpod input
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sequences to have the same length.

CTC outputs are usually dominated by blank labels. The dsigrresponding
to the non-blank labels usually occur with spikes in thestpadors. Thus, an easy
way to generate ASR outputs using CTC is to concatenate thélamk labels
corresponding to the posterior spikes and collapse thdsdslanto word outputs
if needed. This is known as greedy decoding. It is a very eftra feature for
E2E modeling as there is neither any LM nor any complex dewpdivolved.
The E2E models used in this study use greedy decoding.

As the goal of ASR is to generate a word sequence from speemfstics,
the word is the most natural output unit for E2ZE models. A lhglienge in the
word-based CTC model, a.k.a. acoustic-to-word CTC or wor@€ds the OOV
issue [101-104]. In [92, 95, 99], only the most frequent vgoird the training
set were used as output targets whereas the remaining weréguwst tagged as
OOVs (or UNKs). These OQVs can be neither modeled nor rezedras valid
words during evaluation. For example, if the transcriptban utterance is “have
you been to newyorkabc” in which newyorkabc is an OOV (inérext) word, the
training token or recognition output sequence for thisratiee will be “have you
been to OOV”. The presence of OOV tag in the ASR output degrdteend-user
experience. In [95], a CTC with up to 25 thousand (k) wordétsgvas explored.
However, the ASR accuracy of the word CTC was far below theiaoy of a
context dependent (CD) phoneme CTC model, partially duleadigh OOV rate
when using only around 3k hours of training data.

Thus, the accuracy gap between a word CTC and CD phoneme Q1 6eca
attributed to multiple reasons. First, training a word CEQuires orders of mag-
nitude of more training data than a CD phoneme CTC becausdgswanich can
be modeled well require ficient number of training examples. Words which do
not meet the dficiency requirement are simply tagged as OOVs. Hence, these
words cannot be modeled as valid words during training andgmeized during
evaluation. Second, even in the presence of large trairdtg, d is dificult to
capture the entire vocabulary of a language. For examplegrd @TC cannot
handle emerging hot-words which become popular after agr&tivas been built.

Several studies in the past have attempted to address gwgesi In [92], it
was shown that by using 100k words as output targets and ioynigethe model
with 125k hours of data, a word CTC was able to outperform a @@npme CTC.
However, easy accessibility to such large databases isuarelly, at most a few
thousand hours of data are easily accessible. In [105], utteoes were able to
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train a word CTC model with only 2k hours of data with ASR a@ayrcompara-
ble to a CD phoneme CTC. Their proposed training regime aegduinitializing
the word CTC with a well-trained phoneme CTC, curriculunrgag [106], Nes-
terov momentum-based stochastic gradient descent, drggoadilow rank matrix
factorization [107]. To address the hot-words issue, [15¢ proposed a spell
and recognize (SAR) model which has a combination of wordk craracters
as output targets. The SAR model is used to learn to first spetbrd as a se-
guence of characters and then recognize it as a whole woreéngvier an OOV
is detected, the decoder consults the letter sequence frerspeller. Thus, the
displayed hypothesis is more meaningful to the users thaW. ®Owever, the
overall recognition accuracy of the SAR model improved anirginally over a
word-only CTC.

In this study, we propose a three-stage solution to improgedcognition ac-
curacy of the all-neural word CTC using only 3.4k hours ofadahile also alle-
viating the OQV issue. Furthermore, our proposed word C'B0 alutperforms
a conventional CD phoneme CTC using strong LM and compleglgbased de-
coding.

e First, we proposéittention CTC [20] to address the inherent hard alignment
problem in CTC. Since CTC relies on the hidden feature veatdine current
time to make predictions, it does not directly attend todeatvectors of the
neighboring frames. This is the hard alignment problem. Basic idea for
improving CTC is to blend some concepts from RNN-ED into CTadeling.

e Second, we propoddybrid CTC [100] which is a single CTC consisting of a
word CTC and a letter CTC trained jointly using multi-taskreing [55, 56].
We train the word CTC first and then add a letter CTC as an awyiliask
by sharing the hidden layers of the word CTC. During recagnjtthe word
CTC generates a word sequence, and the character CTC isamdylted at the
OOV segments. This makes the Hybrid CTC capable of recagmni2i0OVs and
thereby reducing errors introduced by OOVs.

¢ Finally, we further improve the word CTC and reduce OOV estwy introduc-
ing Mixed-unit CTC [21]. Here, the OOV word is decomposed into a mixed-
unit sequence of frequent words and letters at the trainmges During test-
ing, we do greedy decoding for the whole E2E system in a sisigp with-
out the need of using the two-stage (OOV-detection and therisequence-
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consulting) process as in Hybrid CTC.

With all these components, the final word CTC improves thel@s word CTC
by relative 12.09% WER reduction and also outperforms tditional CD phoneme
CTC with strong LM and decoder by relative 6.79%.

5.3 AttentionCTC

In this section, we outline various steps required to moteh#éon directly within
CTC. An example of the proposed Attention CTC network is shawFig. 5.1.
We propose the following key ideas to blend attention intaCCTa) First, we
derive context vectors usingme convolution features (Sec 5.3.1) and apply at-
tention weights on these context vectors (Sec 5.3.2). Thisesit possible for
CTC to be trained using soft alignments instead of hard. @zp8d, to improve
attention modeling, we incorporate anplicit language model (Sec 5.3.3) during
CTC training. (c) Finally, we extend our attention modelingher by introducing
component attention (Sec 5.3.4) where context vectors are produced as a result of
applying attention on hidden features across both time lagid individual com-
ponents. Since our network is basically a CTC network, thpaiirand output
sequences are of the same length (TTes U). However, we will use the indices
t andu to denote the time step for input and output sequences risggc This
is only to maintain notational consistency with the equaiacn RNN-ED. It is
understood that every input fraregenerates outpyt = vy,.

5.3.1 Time Convolution (TC) Features

Consider a rank-3 tensal’ € R"™<C_ For simplicity, assum@; = n, = n
wheren is the dimension of the hidden featune Our attention model consid-
ers a small subsequencetofather than the entire sequence. This subsequence,
(hy_rs -+ -, Oy, - -+, hyyr), will be referred to as thattention window. Its length is

C and it is centered around the current timeLet 7 represent the length of the
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Figure 5.1: An example of an Attention CTC network with areation window
of sizeC = 3 (i.e.,r = 1).
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window on either side aofi. Thus,C = 27 + 1. Thenc, can be computed using

cu=W’=xh

u+t

1> Il
1% 10
= =

=y ) @u (5.1)

Here,g: € R" represents théiltered signal at time. The last step Eq. (5.1) holds
whenay; = é andy = C. Since Eq. (5.1) is similar to Eq. (2.11) in structucg,
represents a special case context vector with uniform tatteweightsa,; = é

t e [u-1, u+7]. Also, ¢, is a result of convolving featurdswith W’ in time.
Thus,c, represents &me convolution feature andW’ a time convolution kernel.
This is illustrated in Fig. 5.1 for the case ot 1 (after ignoring the Attend block
and lettingay; = 3).

5.3.2 Content Attention (CA) and Hybrid Attention (HA)

To incorporate non-uniform attention in Eq. (5.1), we needompute a non-
uniform a,; for eacht € [u — 7, u + 7] using an attention network similar to
Eq. (2.12). However, since there is no explicit decoder kke (2.10) in CTC,
there is no decoder statg Therefore, we usg, instead ofs,. The termz, € RX

is the logit to the softmax and is given by

Z, = Wsoftcu + bsoft,
Yu = Softmaxg,), (5.2)

whereWgy € RNM bgoy € RX. Thus, Eqg. (5.2) is similar to the Generate(.)
function in Eq. (2.9) but lacks the dependencyygn ands,. Consequently, the
Attend(.) function in Eq. (2.12) becomes

au = Attendcu_l, au_l, g), (5.3)
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whereh in Eq. (2.12) is replaced with = (9u_r,- - ,0u:r). Next, the scoring
function Score(.) in Eq. (2.13) is modified by replacing the/isignalh; with the
filtered signalg;. Thus, the new Score(.) function becomes

€yt = Scoreg, 1, ouy-1, 9), (5.4)
~ vitanhUz,1 + Wg; + b), (content) (5.5)
vitanhUz,_1 + Wg, + Vi, + b) (hybrid) '

with f,; a function ofa,,_; through Eq. (2.16). The content and location infor-
mation are encoded in, ; anday_; respectively. The role oV in Eq. (5.5) is

to projectg, for eacht € [u— 7, u+ 7] to a common subspace. Score normal-
ization of Eq. (5.4) can be achieved using the softmax oerat Eq. (2.14) to
generate non-uniformy; fort € [u— 7, u+ 7]. Now, ¢, can be plugged into
Eq. (5.1), along withg to generate the context vectqy. This completes the at-
tention network. We found that excluding the scale fagtor Eq. (5.1), even for
non-uniform attention, was detrimental to the final perfante. Therefore, we
continue to use = C.

5.3.3 Implicit Language Model (LM)

The performance of the attention model can be improved déurly providing
more reliable content information from the previous timepstThis is possible by
introducing another recurrent network that can utilizeteahfrom several time
steps in the past. This network, in essence, would learn phaiiLM. In partic-
ular, we feed.™, (hidden state of the LM network) insteadayf; to the Attend(.)
function in Eq. (5.3). To build the LM network, we follow ancluitecture similar
to RNN-LM [108]. As illustrated in the LM block of Fig. 5.1, ¢hinput to the
network is computed by stacking the previous output with the context vector
cu.-1 and feeding it to a recurrent functidg(.). This is represented as

Z,-
Ztﬁﬂl = 7"[(Xu—l, Ztﬁﬂg), Xy-1 = [Cu 1] , (56)
u-1
au = Attendctiﬂl, au_l, g). (5.7)

We modelH(.) using a long short-term memory (LSTM) unit [109] withmem-
ory cells and input and output dimensions seKte n (sincex,_; € RX*") andn

69



(sincez;™ € R™ respectively. One problem withy"] is that it encodes the content
of a pseudo LM, rather than a true LM, since CTC outputs aerspersed with
blank symbols by design. Another problem is tig, is a real-valued vector in-
stead of a one-hot vector. Hence, this LM is an implicit LMheatthan an explicit
or atrue LM.

5.3.4 Component Attention (COMA)

In the previous sectionsgy,; € U is a scalar term weighting the contribution of
the entire vectog; € R" to generate the outpyt, through Eq. (5.1) and Eq. (5.2).
This means alh components of the vecta are weighted by the same scalar
ayt. In this section, we consider weighting each componerg; afistinctively.
Therefore, we need a vector weight; € U" instead of the scalar weight; € U

for eacht € [u -7, u+ 7]. The vectora,; can be generated by first computing
ann-dimensional score,; for eacht. This is easily achieved using the Score(.)
function in Eq. (5.5) but without taking the inner producthw. For example, in
the case of hybrid, the scoring function becomes

eyt = tanhUz,_1 + Wg, + VI + b). (5.8)

Now, we haveC column vectors€,, ., - ,€.u-], One for eaclt, where each
et € (-1,1)". Letey; € (-1,1) be thej™ component of the vectag,;. To
computer,; j from e, j, we normalizes,; ; acrosd keepingj fixed. Thusgay j is
computed as

exp@u. )

Qus = , J=1--,n >
ut o expeur.j) J -

Since exp( and tanh( are both one-to-one functions, their composition is also
one-to-one. Thus, there is a one-to-one relation betwgepandg(j). Conse-
quently, @ j can be interpreted as the amount of contributiom§f) in com-
puting c,(j). Now, from Eq. (5.9), we know the values of the vectorg, t €
[u—1, u+ 7]. Under the COMA formulation, the context vectgycan be com-
puted using

u+t

G, = Annotate€r,, 6,y) =7 Y i O, (5.10)

t=u-v
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whereo is the Hadamard product.

In the past, attempts have been made to apply attention bRNMED mod-
els. For example, in [110], the authors explored the usetehtitbn-based RNN-
ED [26,27] for word outputs. In other studies, CTC was usechfrove attention-
based RNN-ED indirectly using an MTL framework consistirfigpoth CTC and
RNN-ED. CTC was used as either at the top layer [111, 112] treaintermedi-
ate encoder layer [113] of the network. However, none ofalasproaches used
attention directly within the CTC network. Note that as estiens of CTC, both
RNN-T [90, 93] and RNN aligner [86] either change the objfunction or the
training process to relax the frame independence assumpti€TC. The pro-
posed Attention CTC is élierent from all these approaches since we use attention
mechanism to improve the hidden layer representationsmwitre context infor-
mation without changing the CTC objective function andrtirag process. Our
primary motivation in this work is to address the hard aligmtproblem of CTC,
as outlined earlier, by modeling attention directly wittive CTC framework.

5.4 Hybrid CTC

In this section, we describe the Hybrid CTC model. To sohe@OV issue in
the acoustic-to-word model, the Hybrid CTC model uses a v¥r@ as the pri-
mary model and a letter CTC as the auxiliary model in an MTInfeavork. The
word CTC model emits a word sequence, and the output of ttex [T C is only
consulted at the segment where the word CTC emits an OQV tokkis is il-
lustrated in Fig. 5.2. The word CTC generates the sequepleg artist OOV”.
The word sequence from the letter CTC jbdy artist ratatat”. Since the segment
containing ‘fatatat” from the letter CTC has the most time overlap with the seg-
ment containing OOV” from the word CTC, the OOV tokenOOV” is replaced
with “ratatat”. Thus, the final output of the Hybrid CTC iplay artist ratatat”.
The detailed steps for building the Hybrid CTC model are dbed as follows:

e Build a multi-layer LSTM-CTC model with words as its outputits. Map
all the words occurring less thatimes in the training data as the OOV to-
ken. The output units in this LSTM-CTC model are all the wasdsurring
at leastN times in the training data, together with OOV, blank, andrsile
tokens.
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Figure 5.2: An example of how the Hybrid CTC solves the OOViéssf the
acoustic-to-word CTC. The words “play, artist, OOV” areahtd from the
word CTC. The words “play artist ratatat” are obtained frdma ketter CTC.
Hence, the final output of Hybrid CTC is “play, artist, ratataith the first two
words obtained from the word CTC and the last word obtainewh fietter CTC.

e Freeze the bottorh — 1 hidden layers of the word-CTC, add one LSTM
hidden layer and one softmax layer to build a new LSTM-CTC et@dth
letters as its output units.

e During testing, generate the word output sequence usiregigrdecoding.
If the output word sequence contains an OOV token, replae®V token
with the word generated from the character CTC that has tigedatime
overlap with the OQV token.
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Table 5.1: Examples of how words are represented witlerint output units.
“Newyork” is a frequent word while “newyorkabc” is an OQV {iequent word).
The word-based CTC treats “newyork” as a unique output nade a
“newyorkabc” as the OOV output node.

Decomposition Type newyork newyorkabc
All words: single-letter newyork newyorkabc
All words: double-letter ne wy or k ne wy or ka bc
All words: triple-letter new yor k new yor kab c
All words: word newyork oov
OOQVs only: single-letter newyork newyorkabc
OOVs only: word-single-letter|  newyork newyorkab c
OOQVs only: word-triple-letter newyork newyork abc

5.5 Multi-letter and Mixed-unit CTC

In this section, we first describe the letter-based MulteleCTC and then the
word-based Mixed-unit CTC.

5.5.1 Multi-letter CTC

Inspired by gram CTC [98] and multi-phone CTC [114], we exlt¢he output
units with double-letter and triple-letter units to bené&fitm long temporal units
which are more stable. We hope to improve the Hybrid CTC syste the OOV
token may be replaced by more precise words generated byTtGen@h multi-
letter units.

Gram CTC and multi-phone CTC are based on letters and phanerapec-
tively, but allow to output variable number of letters (i.gram) and phonemes
at each time step. The units in gram CTC and multi-phone CEGearned au-
tomatically with the modified forward-backward algorithotake care of all the
decompositions. Both of them need much more complicatealdileg than greedy
decoding when generating outputs. In contrast, we simpipuigpose every word
(which includes both frequent and OOV words) into a sequefia@ne or more
letter units, with examples shown in the first three rows dflé®.1. This decom-
position is much simpler, without changing the CTC forwaatkward process
and can use the same greedy decoding procedure as the CTGingte-letter
units.
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Figure 5.3: An example of how the Mixed-unit CTC solves the\agsue of the
acoustic-to-word CTC. The final output of Mixed-unit CTC ddy, artist, rat at
at”.

55.2 Mixed-unit CTC

In Hybrid CTC, the shared-hidden-layer constraint is uselelp the time syn-
chronization of word outputs between the word and letter @iaclels. However,
the blank symbol dominates most of the frames, and theréi@é&me synchro-
nization may not be very reliable. The ideal case should berwvthe spoken word
is in the frequent word list, the system emits a word outpund Avhen the spoken
word is an OOV (infrequent) word, the system emits a lettqusace from which
a word is generated by collapsing the letter sequence. Hmisat be done with
the Hybrid CTC because the two CTCs are running in paralltiaut a perfect
time synchronization. A direct solution is to train a sinGI€C model with mixed

units (combination of words and multi-letter units). Thssllustrated in Fig. 5.3.
If the word is a frequent word, then we just keep it in the otitpien list. If the
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word is an OOV (infrequent word), then we decompose it inteteet sequence.
As shown in the fifth row of Table 5.1, the OOV “newyorkabc” iscdmposed
into“newyorkabc”for single letter decompositions. Howewvthe word
“newyork” is not decomposed because it is a frequent worerdiore, the output
units of the CTC are mixed units, with both words (for frequeords) and letters
(for OQV words).

However, we note that artificially decomposing OOVs onlyistngle-letter
sequences may confuse CTC training because the networdtontaleling units
are frequent words and letters. To solve such a potentiaéjsse decompose
the OOV words into a combination of frequent words and lsttéfor example,
in the last two rows of Table 5.1, the OOV “newyorkabc” is depmsed into
“newyork a b c¢” if we use words and single-letter units or “iyenk abc” if we
use words and triple-letter units. In the CTC with mixed snive use “$” to
separate each word in the sentence. For example, the seriteve you been to
newyorkabc” is decomposed into “$ have $ you $ been $ to $ ndnglc $.
If $ is not used to separate words, we do not know how to calldpe mixed
units (words-letters) into output word sequences. During training, sithe OOV
words are decomposed into mixed units from words and lettieese is no OOV
output node in the Mixed-unit CTC model. Consequently, myresting, the
model is very likely to emit OOV words as a sequence of frequesrds and
letters while still emitting frequent words when frequertrds are spoken.

In the past, other studies [93, 115] have explored usingvgarokunits such as
wordpieces [116]. Using wordpieces, a word is decomposkedsimaller lexical
units which can be a mixture of valid words and non-linggistiulti-letter units
based on their frequency of occurrences. Our approaclfeseint from building
wordpieces since we decomposaly OOVs while still retaining the high fre-
guency words as whole word units.

5.6 Results

In this section, we compare the performance of the propo3&ts@vith the base-
line CTCs. The proposed methods were evaluated using theo#titt's Cortana
voice assistant task. The training and test sets contairogippately 3.3 mil-

lion utterances~ 3400 hours) and 5600 utterances @ hours) respectively in
US-English. First, we evaluate the performance of our psegdAttention CTC
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(Section 5.3) and Multi-letter CTC (Section 5.5.1) usinjdeCTCs. Then, we
evaluate the performance of our proposed Hybrid CTC (Se&id) and Mixed
Unit CTC (Section 5.5.2) using both words and letters aswiugrgets.

All CTC models were trained on top of either unidirectionalbadirectional
LSTMs (BLSTMs). The unidirectional LSTM has 1024 memorylg&Vhile the
BLSTM has 512 memory cells in each direction (thereford $0R4 output di-
mensions when combining outputs from both directions).nTihey are linearly
projected to 512 dimensions. The base feature vector cadgwery 10 ms frame
is an 80-dimensional vector containing log filterbank eresrg Eight frames of
base features were stacked togetiner=(80 x 8 = 640) as the input to the unidi-
rectional CTC, while three frames were stacked togetiner 80x 3 = 240) as the
input to the bidirectional CTC. The skip size for both unétitional and bidirec-
tional CTCs was three frames as in [95]. The dimensiofhvectorsh, g;, ¢, was
setto 512. For decoding, the greedy decoding procedureqmplex decoder or
external LM) was used. Thus, our systems are pure all-nsystéms.

5.6.1 Experiments with Letter-Based CTCs

In this section, we evaluate the performance of our propéstemtion CTC (Sec-
tion 5.3) and Multi-letter CTC (Section 5.5.1) using letess output targets. The
motivation behind improving letter-based CTC is the foliog¢ As the outputs
from the letter CTC are used to replace the OOV token from tbelMCTC dur-
ing testing, the letter CTC should be as accurate as possible

5.6.1.1 Unidirectional CTC with 28-letter set (Section)5.3

In the first set of experiments, Vanilla CTC [1] and Attenti@mC models were
evaluated with a unidirectional 5-layer LSTM. The outputdahas 28 output
nodes (hence, K 28) corresponding to a 28-letter set (26 letters ‘a’+z5pace
+ blank). T was empirically set to 4, which means the context window g)dor

attention was 9. The results are tabulated in Table 5.2. dppedw summarizes
the WER for Vanilla CTC. All subsequent rows under “AttemtiGTC” summa-
rize the WER for the proposed CTC models when attention niaglebpabilities
were gradually added in a stage-wise fashion. The best thatel€TC model

is in the last row and it outperforms the Vanilla CTC model By75% relative.
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Table 5.2: WERs of letter-based Vanilla CTC [1] and Attent@TC for
7 =4 (C = 9) trained with a 5-layer unidirectional LSTM and 28-letset.
Relative WER improvements are in parentheses.

E2E Model (letter-based) WER (%)
Vanilla CTC 29.60 (0.00)
Attention CTC

TC (Sec 5.3.1) 27.36 (07.56)
+CA (Sec 5.3.2) 25.41 (14.16)
+HA (Sec 5.3.2) 25.62 (13.45)
+LM (Sec 5.3.3) 24.74 (16.42)
+COMA (Sec 5.3.4) 24.05 (18.75)

Table 5.3: WERs of letter-based Vanilla CTC [1] and Attent@TC for
7 =4 (C = 9) trained with a 5-layer BLSTM and 28-letter set. RelativeR/
improvements are in parentheses.

E2E Model (letter-based) WER (%)
Vanilla CTC 26.36 (0.00)
Attention CTC

TC (Sec 5.3.1) 25.21 (04.36)
+CA (Sec 5.3.2) 22.73 (13.77)
+HA (Sec 5.3.2) 22.52 (14.57)
+LM (Sec 5.3.3) 21.69 (17.72)
+COMA (Sec 5.3.4) 20.81 (21.06)

There is a slight increase in WER when adding HA on top of CAgéneral, for
the other experiments, we find that adding HA is beneficidicalgh the gains
are marginal compared to all the other enhancements (CAQMMA). Benefits
of location based attention could become more pronounc&sh\attention spans
over very large contexts [26].

5.6.1.2 Bidirectional CTC with 28-letter set (Section 5.3)

In this set of experiments, the Vanilla and Attention CTC msdvere evaluated
with a BLSTM of 5-layers and- = 4 using the 28-letter set. Otherwise, we
followed the same training regime as in the previous Se@iéri.1. The results
are tabulated in Table 5.3. Similar to the unidirectionae;ahe best Attention
CTC model outperforms Vanilla CTC by about 21.06% relatiVkis shows that
even a strong baseline like bidirectional CTC does not under the dicacy of
the proposed Attention CTC models.
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Table 5.4: WERs of letter-based Vanilla CTC [1] and Attent@TC for
7 =4 (C = 9) trained with a 5-layer BLSTM and 83-letter set. RelativeR/
improvements are in parentheses.

E2E Model (letter-based) WER (%)
Vanilla CTC 23.29 (0.00)
Attention CTC

TC (Sec 5.3.1) 22.30 (04.25)
+CA (Sec 5.3.2) 21.34 (08.37)
+HA (Sec 5.3.2) 20.81 (10.65)
+LM (Sec 5.3.3) 19.98 (14.21)
+COMA (Sec 5.3.4) 18.49 (20.61)

5.6.1.3 Bidirectional CTC with 83-letter set (Section 5.3)

In this set of experiments, in addition to the BLSTM, we const a new letter
set by adding new characters on top of the 28-letter set [Jfipse additional
letters include capital letters used in the word-initiaspion, double-letter units
representing repeated characters likeapostrophes followed by letters such as
‘de, ‘'r etc. Readers may refer to [97] for more details. Altogethmhsa large
unit inventory has 83 letters, and we refer to it as the 8@ietet. The results
for this experiment are tabulated in Table 5.4. Again, AitaenCTC models
consistently outperform Vanilla CTC with the best relativgorovement close to
20.61%. This shows that the proposed Attention CTC netwankachieve similar
improvements, no matter whether the Vanilla CTC is builtmatlvanced model-
ing capabilities (from unidirectional to bidirectionab) different sets of letter units
(28 vs. 83 units).

5.6.1.4 Multi-letter CTC (Section 5.5.1)

In the preceding experiment, we were able to improve the WigRxpanding

the number of letters. Motivated by these observations,watiate the impact of
using diferent sizes of letter units. The single-letter set has 3Msysnincluding

26 English characters [a-z], ’, *, $, and blank. The doulefieelr and triple-letter
sets have 763 and 8939 symbols respectively, covering @llittuble-letter and
triple-letter occurrence in the training set. All the CTCadhats in this section are
6-layer BLSTMs. As shown in the second column of Table 5.6 WER reduces
significantly when the output units become larger, i.e., enstable. The letter
CTC using triple-letter as output units achieves 13.28% \\MieRucing 24.29%
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Table 5.5: WERs of letter-based CTC models, trained withy@t BLSTMs,
having single, double, and triple-letter output units (#ec5.5.1). Three
structures are evaluated: Vanilla CTC [1], Attention CTC=(4), and Attention
CTC (r = 4) sharing 5 hidden layers with the word CTC.

E2E Model WER (%)
(letter-based) Vanilla Attention Attention

5 layers sharing
single-letter | 17.54 14.30 16.74
double-letter| 15.37 12.16 14.00
triple-letter 13.28 11.36 12.81

relative WER from the letter CTC using single-letter as otigmits.

The Attention CTC is then trained with= 4. As shown in the third column
of Table 5.5, Attention CTC improves over the Vanilla CTC blyg obtaining
18.47%, 20.88%, and 14.46% relative WER reduction for siglter, double-
letter, and triple-letter CTC models respectively. Thetletter CTC is the one
with triple-letter outputs and attention modeling, whi@nmbtain 11.36% WER.

The Hybrid CTC model described in Section 5.4 has both woddetter CTCs,
which share 5 hidden LSTM layers. On top of the shared hidagers, we add a
new LSTM hidden layer and a softmax layer to model letter otgtjgsingle, dou-
ble, or triple-letters). Attention modeling is applied todst the performance. As
shown in the fourth column of Table 5.5, the WER of letter CTighwuch shared-
hidden-layer constraint performs worse than its countér@etention CTC in
third column). This indicates one shortcoming of the HyliiC - it sacrifices
the accuracy of the letter CTC because of the shared-hitdgen-constraint used
to synchronize the word outputs between the word and leff€<C

5.6.2 Experiments With Word-Based CTCs

Having improved the letter CTC in the previous section, wev mvaluate the
performance of our proposed Hybrid CTC (Section 5.4) andediunit CTC
(Section 5.5.2) using both words and letters as output tergdowever, we re-
fer to these CTCs as word CTCs for simplicity in terminologye are primarily
interested in boosting the accuracy of recognizing non-G@vds while also
recognizing the OOV words as close as possible to the groutidwords.
For the baseline word CTC (Vanilla CTC [1]) model, we built-tager BLSTM.

This model has around 27k output targets which is the santeeasumber of fre-
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Table 5.6: WERSs of word-based Vanilla CTC [1] and Hybrid CB&¢tion 5.4)
models. All Hybrid CTC models have a word-based CTC and ardihsed
Attention CTC ¢ = 4), sharing 5 hidden layers. All CTC models were trained
with 6-layer BLSTMs.

E2E Model WER (%)
Vanilla CTC (word only) 9.84
Hybrid CTC: word+ double-letter Attention CTG  9.66
Hybrid CTC: word+ triple-letter Attention CTC 9.66

guent words in the training data. These frequent words oeduat least 10 times
in the training data. All the other words (infrequent wordsre mapped to an
OOQV output token. We have also tried other word CTCs with vegyhumber of
output units. However, the model using 27k word outputsgrer the best. This
word CTC model yields 9.84% WER, among which the OOV tokengrdoute
1.87% WER. It significantly improves the WER of unidirectadnvord CTC re-
ported in [100] which indicates that bidirectional modglis critical to the E2E
system. Unless otherwise stated, all CTC models in thisseekcept Attention
CTC use the same structure as the Vanilla CTC model.

5.6.2.1 Hybrid CTC (Section 5.4)

As the CTC models with double-letter and triple-letter autpnits worked very
well in Table 5.5, we use them to build the Hybrid CTC modelthvihe OOV
lookup process described in Section 5.4. The Hybrid CTC asekyer BLSTM,
i.e., 5 shared-hidden-layers and an additional layer foheask (word and let-
ter CTC). Thus, the underlying structure of Hybrid CTC is iamto that of the
Vanilla CTC. As shown in Table 5.6, both hybrid models ach#9.66% WER.
Several factors contribute to such small improvement (fB084% WER of the
Vanilla CTC) of the Hybrid CTC. First, the shared-hiddegda constraint de-
grades the performance of the letter CTC, potentiaffgaing the final hybrid
system performance. Second, although the shared-hidgen-tonstraint helps
to synchronize the word outputs from the word and letter QT € still observed
that the time synchronization can fail sometimes. In sudesathe OOV token
is replaced with its neighboring frequently occurring wbketause of word seg-
ments misalignment. Because of these factors, althougtritie-letter CTC is
better than double-letter CTC in Table 5.5, there is rféedénce in the WERSs
when they are integrated into the Hybrid CTC setup in whigythandle only a
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Table 5.7: WERs of word-based Vanilla CTC [1], Mixed-unitCT
(Section 5.5.2), and Mixed-unit CTE Attention. All CTC models were trained
with 6-layer BLSTMs.

E2E Model WER (%)
Vanilla CTC (word only) 9.84
Mixed (OOV: single-letter) CTC 20.10
Mixed (OOV: word+ single-letter) CTC 10.17
Mixed (OOV: word+ double-letter) CTC 9.58
Mixed (OOV: word+ triple-letter) CTC 9.32
Mixed (OQV: word+ triple-letter) Attention CTC|  8.65

Table 5.8: Summary of WERSs of conventional CD phoneme CTCdvibased
Vanilla CTC [1], and word-based Mixed-unit CT€Attention. All CTC models
were trained with 6-layer BLSTMSs.

Model LM WER(%)
1. Conventional: CD phoneme CTC 9.28

2. E2E: Vanilla CTC (word only) 0 9.84

3. E2E: Mixed-unit+ Attention CTC O 8.65
Improvement #3vs#1 #3vs#2
Relative 6.79%  12.09%

small portion of OOV words.

5.6.2.2 Mixed-unit CTC (Section 5.5.2)

We evaluate the CTC with mixed units in Table 5.7. As befadne, word-based
Vanilla CTC achieves a WER of 9.84%. In the first experimems, mixed units
contain single-letters and 27k frequent words. Duringnirag, we decompose
OOV words into single-letter sequences. As analyzed ini@e®&.5.2, artifi-
cially decomposing OOV words into letter sequences, whilerstaining the fre-
guent words, confuses CTC training. Therefore, the tral@&@ model achieved
20.10% WER. When looking at the posterior spikes of this mhosle observed
that the word spikes and letter spikes are scattered into @her which proves
our hypothesis.

Next, we decompose OOV words into a combination of frequemtdwand
single-letter sequences, and train the CTC network withmhed units (around
27k output targets). Immediately, the WER improved to 1%1But still a lit-
tle worse than the Vanilla CTC. This is because the singtelsequence brings
instability to the modeling. When we decompose the OOV waortisa combina-
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tion of frequent words and double-letters (slightly higthean 27k output targets),
the situation becomes better, and the resulting WER is 9.58%en the triple-
letters and frequent words are used (totally 33k outputtajgthe WER reaches
9.32%, beating the Vanilla CTC by 5.28% relative WER rechrtti

Next, we improve the final Mixed-unit CTC model by applyingeation. To
save computational costs, because of large number of outpist, we did not
integrate the implicit LM in Eqg. (5.6). The WER becomes 8.6%bhich is about
relative 12.09% WER reduction from the 9.84% WER of VanilleGC

Finally, we compare the Mixed-unit Attention CTC model with a traditional
CD phoneme CTC. We trained a CD phoneme 6-layer BLSTM wittGh€ cri-
terion, modeling around 9000 tied CD phonemes. This CD pmen€TC model
achieves 9.28% WER when decoding with a 5-gram LM with tgtatbund 100
million (M) N-grams. Despite a strong CD phoneme CTC modeii(\wM), the
Mixed-unit+ Attention CTC model (without any LM or complex decoder) iseab
to outperform the CD phoneme CTC model by about 6.79% relate summa-
rize these WERSs in Table 5.8.

Note that the proposed method not only reduces the WER of e GTC, but
also improves the user experience. The proposed methoitlpsganore meaning-
ful output without outputting any OOV token to distract usekost of the time,
even if the proposed method cannot get the OOV word righgntes out with a
very close output. For example, the proposed method rezegtiiext fabine” as
“text fabian” and “call zubiate” as “call zubiat”, while théanilla CTC can only
output “text OOV” and “call OOV”.

5.7 Summary

We advance acoustic-to-word CTC model by proposing AttenG@TC, Hybrid
CTC, and Mixed-unit CTC. In Attention CTC, we blend attentibased modeling
capability directly within the CTC framework. To solve thé® issue in word
CTC, we presented Hybrid CTC which uses a word and letter GliGeaprimary
and auxiliary tasks in an MTL framework. Finally, to boosé therformance of
Hybrid CTC, we introduced Mixed-unit CTC whose output urate frequent
words combined with sequences of multi-letters. For thguemt word, we just
model it with a unique output node. For the OOV word, we decosepit into
a sequence of frequent words and multi-letters. We evallatbese methods
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on a 3400 hours Microsoft Cortana voice assistant task. Ttygoged acoustic-
to-word Mixed-unit CTC when combined with attention redsicelative 12.09%
WER from the word-based Vanilla CTC. Such an acoustic-toeM@I'C is a pure
end-to-end model without any LM and complex decoder. It astperforms
the traditional CD phoneme CTC with strong LM and decoderdigtive 6.79%
WER reduction.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we proposed ASR models for two contrastisggaharacterized
by the amounts of labeled data available for training. Wewised various draw-
backs associated with each task, proposed solutions, ammgssfully demon-
strated the ficacy of our proposition using experiments conducted witd-re
world data.

In the first part of the thesis, we dealt with under-resouszharios which are
typically prevalent in under-resourced languages. In tis¢ fase, we assumed
the availability of very limited amounts of transcribed aat the target language
(URL) while simultaneously having access to large amouhtsamscribed data
in several source languages (WRLS). Training ASR systertisthve limited data
in the target language often leads to poor generalizationgoily due to the over-
fitting problem. To alleviate this, we proposed transfern@ay techniques which
transfer the acoustical knowledge from the source langiamgéehe target lan-
guage. In particular, we defined a new objective functionclwhminimizes the
cross-entropy of the target language along with a reg@avihich minimizes the
cross-entropy of the source languages. It is well knownrigilarization helps
prevent overfitting the model by constraining the model peaters to lie in a more
reliable space.

In the second case, we assumed a more adverse scenario \ehemith ab-
solutely no transcribed data in the target language. Thishea attributed to
the dificulty of finding native transcribers in the target languade. partially
overcome this dficulty, we resorted to collecting transcriptions from oslimon-
native crowd workers, or Turkers, who neither speak thestdemmguage nor have
any familiarity with it. Because of their non-nativity, thabels they provide are
usually inaccurate and noisy. We experimentally provetd EiNINs trained using

84



noisy labels do not necessarily improve error rates over GMWW mitigate this
problem, we proposed four DNN models trained with MTL styigirting. The
first model was trained using a mixture of noisy PTs and cle@s I two sepa-
rate sub-tasks of the MTL network. In the second model, weedddDAE as a
third sub-task. The DAE tries to reconstruct the inputs (features) at its out-
put by minimizing the MSE between the inputs and the outplitss is a case
of semi-supervised learning since the DAE can be trainedawitlabels. In the
third model, we proposed training MTL using Knowledge Diation. Here, we
were able to transfer knowledge from a well-trained mulglial DNN (teacher
model) to the target language DNN (student model) using argdimed softmax.
In the fourth model, we proposed training MTL using Targdetpolation. In
this method, the confidences of the labels provided by na@ystriptions are
modified using the confidences of the target language DNN.

In the second part of the thesis, we proposed advancingaHlahspeech recog-
nition by directly incorporating attention modeling withthe CTC framework.
One drawback of with CTC is the hard alignment problem adigsenly on the
current input to generate the current output. In realitg, dtput at the current
time is influenced not only by the current input but also byuitsgn the past and
future. We address this issue by incorporating attentitmtime CTC framework.
The key idea behind attention is that it is able to apply weigh each of cur-
rent, past, and future inputs depending on the degree okeimfkithey exert on
the output. To this end, we derive new context vectors usimg tonvolution fea-
tures to model attention as part of the CTC network. To furitmprove attention
modeling, we utilize content information extracted frometwork representing
an implicit language model. Finally, we introduce vectosdx attention weights
that are applied on context vectors across both time anditidévidual compo-
nents.

6.2 Future Work

This thesis lays the foundation for some interesting futasgarch directions.

¢ Despite the initial success in training ASR systems usingynabels provided
by the Turkers (non-native speakers), a number of problaiths:sed to be
addressed. Finding the kinds of errors the Turkers makeewhahscribing a
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foreign language could further lower the error rates. Fangxe, an American
Turker will usually perceive the three allophones of thecet#ss stop conso-
nant -[t] (voiceless alveolar stop]}] (voiceless dental stop), afidt] (voiceless
aspirated dental stop) - as only. Thus, the Turker makes two errors by mis-
perceiving the allophonés] and[t"] as[t]. The question to address is: How do
we incorporate these misperception errors into a DNN? Ossible solution
is the following. We know we have DTs for the WRLs. On top ofsthive
could collect corresponding PTs by letting the non-nativekérs transcribe
the same set of utterances. Following this, we could traifN&Nising DTs
first. A softmax layer could then be added on top of this trdiD&N. Then
the DNN could be retrained using PTs, updating the paramefehe softmax
layer while keeping the lower layers fixed. The néet of this two-stage
training is that the resulting DNN models the mispercepgoors caused by
the Turkers and has the ability to auto-correct such errors.

One drawback of the attention-based CTC model is that it doesnake use
of large amounts of text-only data that are easily availaioléne from news
broadcasts, articles, books etc. It is possible to use arerduneural net-
work transducer (RNN-T) [90] training paradigm that canrtran both text
and acoustic data. This will have the ability to learn a laggimodel and an
acoustic model in the same network.

Attention modeling could be further explored for acousticdel adaptation in
different environments. Acoustic models tend to be domain akgrerand do
not perform well if there is a mismatch between training asd tonditions. As
an alternative, the Mixture of Experts (MoE) model [117-4l\d8s introduced
for multi-domain modeling. It combines the outputs of sevelomain specific
models (or experts) using a gating network. The role of thenganetwork
is to derive weights, one for each expert. The final outpuhefMoE model
is a linear combination of the outputs of the experts weidlg the weights
obtained from the gating network. However, one drawbackas the gating
network directly uses raw inputs and is unaware of the sthtbeoexperts.
Moreover, the gating network does not take into considematine output at
the previous time step. The MoE model could benefit by usingattention
model instead of a simple gating network. First, the outmitthe experts
could be used as the inputs to the attention model. Next,ttbateon model
could use the outputs and expert weights from the previausstep to generate
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the weights at the current time. From our initial experinsant[120], we have
demonstrated that a MoE model equipped with attention is ttbbutperform
a baseline model using an LSTM based gating network and fotherWER by
20.48% relative.
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