
c© 2018 Amit Das

SPEECH RECOGNITION WITH PROBABILISTIC TRANSCRIPTIONS AND
END-TO-END SYSTEMS USING DEEP LEARNING

BY

AMIT DAS

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Mark A. Hasegawa-Johnson, Chair
Professor Thomas S. Huang
Associate Professor Paris Smaragdis
Professor Michael L. Oelze

Abstract

In this thesis, we develop deep learning models in automaticspeech recognition

(ASR) for two contrasting tasks characterized by the amounts of labeled data

available for training. In the first half, we deal with scenarios when there are

limited or no labeled data for training ASR systems. This situation is commonly

prevalent in languages which are under-resourced. However, in the second half,

we train ASR systems with large amounts of labeled data in English. Our objec-

tive is to improve modern end-to-end (E2E) ASR using attention modeling. Thus,

the two primary contributions of this thesis are the following:

• Cross-Lingual Speech Recognition in Under-Resourced Scenarios

A well-resourced language is a language with an abundance ofresources to

support the development of speech technology. Those resources are usually de-

fined in terms of 100+ hours of speech data, corresponding transcriptions, pro-

nunciation dictionaries, and language models. In contrast, an under-resourced

language lacks one or more of these resources. The most expensive and time-

consuming resource is the acquisition of transcriptions due to the difficulty in

finding native transcribers. The first part of the thesis proposes methods by

which deep neural networks (DNNs) can be trained when there are limited or

no transcribed data in the target language. Such scenarios are common for lan-

guages which are under-resourced.

Two key components of this proposition areTransfer Learning and Crowd-

sourcing. Through these methods, we demonstrate that it is possible to bor-

row statistical knowledge of acoustics from a variety of other well-resourced

languages to learn the parameters of a the DNN in the target under-resourced

language. In particular, we use well-resourced languages as cross-entropy reg-

ularizers to improve the generalization capacity of the target language. A key

accomplishment of this study is that it is the first to train DNNs using noisy

labels in the target language transcribed by non-native speakers available in

ii

online marketplaces.

• End-to-End Large Vocabulary Automatic Speech Recognition

Recent advances in ASR have been mostly due to the advent of deep learning

models. Such models have the ability to discover complex non-linear relation-

ships between attributes that are usually found in real-world tasks. Despite

these advances, building a conventional ASR system is a cumbersome proce-

dure since it involves optimizing several components separately in a disjoint

fashion. To alleviate this problem, modern ASR systems haveadopted a new

approach of directly transducing speech signals to text. Such systems are known

as E2E systems and one such system is the Connectionist Temporal Classifica-

tion (CTC). However, one drawback of CTC is the hard alignment problem as

it relies only on the current input to generate the current output. In reality, the

output at the current time is influenced not only by the current input but also by

inputs in the past and the future.

Thus, the second part of the thesis proposes advancing state-of-the-art E2E

speech recognition for large corpora by directly incorporating attention mod-

eling within the CTC framework. In attention modeling, inputs in the current,

past, and future are distinctively weighted depending on the degree of influence

they exert on the current output. We accomplish this by deriving new con-

text vectors using time convolution features to model attention as part of the

CTC network. To further improve attention modeling, we extract more reliable

content information from a network representing an implicit language model.

Finally, we used vector based attention weights that are applied on context vec-

tors across both time and their individual components. A keyaccomplishment

of this study is that it is the first to incorporate attention directly within the CTC

network. Furthermore, we show that our proposed attention-based CTC model,

even in the absence of an explicit language model, is able to achieve lower word

error rates than a well-trained conventional ASR system equipped with a strong

external language model.

iii

To my parents, professors, and mentors

iv

Acknowledgments

I sincerely express my gratitude to many people for supporting me during the

course of my research. This thesis would not have been possible without their

help and support.

First, I would like to thank my advisor Prof. Mark Hasegawa-Johnson. Mark’s

broad knowledge across a wide range of disciplines and his passion for research

have greatly motivated me in my research pursuits. I have enjoyed the discussions

we have had over these years, the research environment, and the freedom in our

group for pursuing our specific research interests. Thanks to Mark for his patience

and kindness without which I would not have been able to get myconference pa-

pers reviewed and submitted at the eleventh hour. Mark’s ingenuity and sharp acu-

men refined my thought process and often led me to consider multiple alternatives

to the same problem. Beyond our lab, I will long cherish the rich academic setting

provided by the Department of Electrical and Computer Engineering (ECE). It is

both an honor and privilege to be associated with the faculty, students, and staff in

this department. For these reasons, I feel the best learningexperience I have had

is at the University of Illinois at Urbana-Champaign (UIUC).

My earnest thanks to Prof. Thomas Huang, Prof. Paris Smaragdis, and Prof.

Michael Oelze for their kind willingness to be a part of my defense committee

and also for providing insightful comments and suggestions. These have helped

greatly improve the overall quality of this work. In addition, I am thankful to Prof.

Huang for providing multiple opportunities to discuss sequential modeling in his

group meetings.

Next, I sincerely thank Prof. Scott Poole for his generous support during the

formative years of my studies. Most of my PhD work was funded by grants from

the National Science Foundation, Joan and Lalit Bahl Fellowship, Beckman Insti-

tute, and Microsoft internships. I thank these organizations and donors for their

generosity.

I have greatly learned from my internship mentors. They are (in chronological

v

order) - Prof. Ivan Tashev, Dr. Jinyu Li, and Dr. Yifan Gong. It is because of

them that I was able to expand my research work into broader domains. My past

advisors, Prof. John Hansen (University of Texas at Dallas)and Prof. Umesh

Srinivasan (Indian Institute of Technology Madras), have greatly helped me de-

velop my research foundations in speech processing. I especially want to thank

Prof. Hansen, who was instrumental in motivating and teaching me how to think

like a researcher. Without his guidance and support, I may not have known what

research is or even considered pursuing a PhD.

It is extremely hard to work through research problems without building the

necessary foundations through formal coursework. I express my sincere grati-

tude to all the professors who have taught me during my days ingraduate school.

However, three professors were outstanding. They are Prof.Venugopal Veeravalli

(ECE, UIUC), Prof. Rayadurgam Srikant (ECE, UIUC), and Prof. Xiaochun Li

(Math, UIUC) for teaching Estimation and Detection Theory,Optimization, and

Real Analysis respectively. Their lucid style of teaching and thought-provoking

style of questioning made these courses quite fascinating.The materials that I

learned from these courses facilitated my understanding ofresearch articles.

Working at the UIUC has been enjoyable because of my friends and collabora-

tors. I thank them for engaging discussions and valuable advice. I thank Po-Sen

Huang, Sujeeth Bharadwaj, Xuesong Yang, Yang Zhang, Preethi Jyothi, Kaizhi

Qian, Mary Pietrowicz, Sarah King, and Leda Sari. This list is incomplete with-

out the mention of some my other entertaining friends with whom I made memo-

rable trips in the US and beyond. They are Alok Goolya, Nek Sharan, Chaitanya

Narayan, Purushottam Kumar, and Kartik Reddy.

I would like to thank Paritosh Garg, the System Administrator of our group, for

his tireless efforts in keeping our servers running at all times despite his double

appointments. I also thank Jennifer Carlson, ECE AssistantDirector of Academic

Programs, who made sure we kept track of our multiple deadlines during our busy

schedules. She almost always answered my queries despite handling more than

500 graduate students in the department. I thank James Hutchinson, Publications

Editor, for meticulously copyediting and proofreading this thesis. His efforts have

greatly improved the overall quality of the text.

Finally, I want to thank my parents profusely for their steadfast support during

my graduate studies. Despite their unfamiliarity with my work, they have always

encouraged me to pursue my goals. Without this, I would not have the confidence

to complete my graduate studies.

vi

Table of Contents

List of Tables . x

List of Figures . xii

List of Abbreviations . xiv

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Thesis Contributions . 3
1.4 Thesis Structure . 4

Chapter 2 Background . 6
2.1 Cross-Lingual Speech Recognition in Under-Resourced Scenarios 6

2.1.1 Deterministic Transcript (DT) 9
2.1.2 Mismatched Transcript (MT) 10
2.1.3 Probabilistic Transcript (PT) 10

2.2 End-to-End Models for Large Vocabulary Automatic Speech
Recognition . 11
2.2.1 Connectionist Temporal Classification (CTC)13
2.2.2 RNN Encoder-Decoder (RNN-ED) 16

Chapter 3 Cross-Lingual Adaptation Using Limited Native Transcriptions 20
3.1 Introduction . 20
3.2 Background . 20
3.3 Notations . 21
3.4 Cross-Lingual Adaptation Using Regularized Maximum Like-

lihood Training of GMM-HMM 22
3.5 Cross-Lingual Adaptation Using Regularized Cross-Entropy

Training of DNN . 24
3.6 Experiments and Results . 27

3.6.1 Data . 27
3.6.2 Baseline HMM . 28
3.6.3 Regularized Maximum Likelihood Training of GMM-HMM 29
3.6.4 Regularized Cross-Entropy Training of DNN 30

3.7 Summary . 33

vii

Chapter 4 Cross-Language Transfer Using Crowdsourced Non-Native
Transcriptions . 34
4.1 Introduction . 34
4.2 Background . 35
4.3 Weakly Supervised Learning . 37

4.3.1 Multi-Task Learning (MTL) 37
4.3.2 Knowledge Distillation (KD) 40
4.3.3 Target Interpolation (TI) 43

4.4 Semi-Supervised Learning . 45
4.4.1 Deep Auto-Encoder . 45

4.5 Results . 48
4.5.1 Data . 48
4.5.2 Features . 51
4.5.3 Baselines and Proposed Models 51
4.5.4 Monolingual GMM-HMM and DNN 53
4.5.5 Multilingual GMM-HMM and DNN 53
4.5.6 Self-Training DNN . 54
4.5.7 Maximum A Posteriori GMM-HMM (MAP GMM-HMM) 54
4.5.8 Vanilla DNN . 55
4.5.9 Multi-Task Learning With Cross Entropy (MTL-CE) . . . 55
4.5.10 Multi-Task Learning With Knowledge Distillation (MTL-

KD) . 56
4.5.11 Multi-Task Learning With Target Interpolation (MTL-TI) . 57
4.5.12 Multi-Task Learning With Deep Auto-Encoder (MTL-DAE) 58

4.6 Summary . 59

Chapter 5 End-to-End Large Vocabulary Automatic Speech Recognition . 63
5.1 Introduction . 63
5.2 Background . 63
5.3 Attention CTC . 66

5.3.1 Time Convolution (TC) Features 66
5.3.2 Content Attention (CA) and Hybrid Attention (HA)68
5.3.3 Implicit Language Model (LM) 69
5.3.4 Component Attention (COMA) 70

5.4 Hybrid CTC . 71
5.5 Multi-letter and Mixed-unit CTC 73

5.5.1 Multi-letter CTC . 73
5.5.2 Mixed-unit CTC . 74

5.6 Results . 75
5.6.1 Experiments with Letter-Based CTCs 76
5.6.2 Experiments With Word-Based CTCs 79

5.7 Summary . 82

viii

Chapter 6 Conclusions and Future Work 84
6.1 Conclusions . 84
6.2 Future Work . 85

References . 88

ix

List of Tables

2.1 Deterministic transcript (DT) vs Probabilistic transcript (PT). . . . 11

3.1 Turkish and English phone set. M= Monophthongs, D=
Diphthongs, NS= Non-syllabics, S= Syllabics. 28

3.2 PERs of CD GMM-HMM models using full training sets of
Turkish and TIMIT. 29

3.3 PERs for LDA+MLLT models trained with limited Turkish
utterances and the entire TIMIT set. 30

3.4 PERs for DNN models trained with HMM state alignments
obtained from Table 3.3. 32

4.1 SBS multilingual corpus. 48
4.2 Training set when Swahili (swh) is target language. 50
4.3 PERs of monolingual GMM-HMM and DNN models. Dev set

in parentheses. 53
4.4 PERs of multilingual GMM-HMM and DNN models. Dev set

in parentheses. 53
4.5 PERs of self-trained DNN models. Dev set in parentheses.. . . . 54
4.6 PERs of multilingual DNN (MULTI-DNN), MAP GMM-HMM,

Vanilla DNN, MTL-CE models. The number in the parenthe-
ses is the absolute improvement in PER over MULTI-DNN.
Best PER for each is language highlighted in bold. 56

4.7 PERs of different MTL models trained with CE, KLD, and
KD losses. The parametersρ and T are the weighting and
temperature parameters in Eq. (4.5). Best PER for each is
language highlighted in bold. 57

4.8 PERs of different MTL models trained with CE and TI losses.
The parameterρ is the weighting parameter in Eq. (4.11) and
Eq. (4.12). 58

4.9 Summary of the best MTL-KD and MTL-TI models. Absolute
improvements over the MTL-CE model inside parentheses. 58

x

4.10 Summary of PERs for the unadapted baseline DNN (MULTI-
DNN), PT adapted baseline DNN (Vanilla DNN), PT adapted
proposed MTL (best MTL), DT adapted monolingual DNN
(MONO-DNN). Relative improvements in PER of the best
MTL over MULTI-DNN and Vanilla DNN are in the fourth
column. Utility factor of PTs for different languages are in the
last column. 61

5.1 Examples of how words are represented with different out-
put units. “Newyork” is a frequent word while “newyorkabc”
is an OOV (infrequent word). The word-based CTC treats
“newyork” as a unique output node and “newyorkabc” as the
OOV output node. 73

5.2 WERs of letter-based Vanilla CTC [1] and Attention CTC for
τ = 4 (C = 9) trained with a 5-layer unidirectional LSTM and
28-letter set. Relative WER improvements are in parentheses. . . . 77

5.3 WERs of letter-based Vanilla CTC [1] and Attention CTC for
τ = 4 (C = 9) trained with a 5-layer BLSTM and 28-letter set.
Relative WER improvements are in parentheses. 77

5.4 WERs of letter-based Vanilla CTC [1] and Attention CTC for
τ = 4 (C = 9) trained with a 5-layer BLSTM and 83-letter set.
Relative WER improvements are in parentheses. 78

5.5 WERs of letter-based CTC models, trained with 6-layer BLSTMs,
having single, double, and triple-letter output units (Section 5.5.1).
Three structures are evaluated: Vanilla CTC [1], Attention
CTC (τ = 4), and Attention CTC (τ = 4) sharing 5 hidden
layers with the word CTC. 79

5.6 WERs of word-based Vanilla CTC [1] and Hybrid CTC (Sec-
tion 5.4) models. All Hybrid CTC models have a word-based
CTC and a letter-based Attention CTC (τ = 4), sharing 5 hid-
den layers. All CTC models were trained with 6-layer BLSTMs.. 80

5.7 WERs of word-based Vanilla CTC [1], Mixed-unit CTC (Sec-
tion 5.5.2), and Mixed-unit CTC+ Attention. All CTC models
were trained with 6-layer BLSTMs. 81

5.8 Summary of WERs of conventional CD phoneme CTC, word-
based Vanilla CTC [1], and word-based Mixed-unit CTC+
Attention. All CTC models were trained with 6-layer BLSTMs.. 81

xi

List of Figures

2.1 A matched acoustic model. An utterance in the target lan-
guage, L1 (Hindi in this example), is transcribed by a native
transcriber in L1 using the native orthography. A dictionary is
used to convert the words in L1 to IPA phonemes. An acous-
tic model is trained using the IPA phonemes and the features
extracted from the utterance. 7

2.2 A mismatched acoustic model. An utterance in the target lan-
guage, L1 (Hindi in this example), is transcribed by multiple
non-native Turkers using the English orthography. A grapheme-
to-phoneme (G2P) model is used to convert the English words
to IPA phonemes. An acoustic model is trained using the lat-
tice of IPA phonemes and the features extracted from the utterance. 8

2.3 A deterministic transcription (DT) for the wordcat. 9
2.4 A probabilistic transcription (PT) for the wordcat. 9
2.5 A conventional ASR system. 12
2.6 An end-to-end ASR system. 13
2.7 An example of a CTC network. 14
2.8 An example of an RNN-ED network. 16
2.9 An example of an attention-based RNN-ED network. 17

4.1 Self-training ASR. 36
4.2 Vanilla DNN trained with DTs. 36
4.3 Vanilla DNN trained with PTs. 36
4.4 MTL DNN trained with PTs and DTs. 38
4.5 MTL using deep auto-encoder. 46
4.6 Comparison of PERs PT adapted baseline vs. proposed mod-

els in Swahili. 59
4.7 Comparison of PERs PT adapted baseline vs. proposed mod-

els in Amharic. 60
4.8 Comparison of PERs PT adapted baseline vs. proposed mod-

els in Dinka. 60
4.9 Comparison of PERs of PT adapted baseline vs. proposed

models in Mandarin. 61

xii

5.1 An example of an Attention CTC network with an attention
window of sizeC = 3 (i.e.,τ = 1). 67

5.2 An example of how the Hybrid CTC solves the OOV issue of
the acoustic-to-word CTC. The words “play, artist, OOV” are
obtained from the word CTC. The words “play artist ratatat”
are obtained from the letter CTC. Hence, the final output of
Hybrid CTC is “play, artist, ratatat” with the first two words
obtained from the word CTC and the last word obtained from
letter CTC. 72

5.3 An example of how the Mixed-unit CTC solves the OOV issue
of the acoustic-to-word CTC. The final output of Mixed-unit
CTC is “play, artist, rat at at”. 74

xiii

List of Abbreviations

AI Artificial Intelligence

AM Acoustic Model

ANN Artificial Neural Network

ASR Automatic Speech Recognition

CA Content Attention

CD Context Dependent

CE Cross Entropy

CER Character Error Rate

COMA Component Attention

CNN Convolutional Neural Network

CTC Connectionist Temporal Classification

DL Deep Learning

DAE Deep Auto-Encoder

DNN Deep Neural Network

DT Deterministic Transcript

E2E End-to-End

fMLLR Feature Space Maximum Likelihood Linear Regression

GMM Gaussian Mixture Model

GPS Global Positioning System

HA Hybrid Attention

xiv

HCI Human-Computer Interaction

HMM Hidden Markov Model

IPA International Phonetic Alphabet

IVR Interactive Voice Response

KD Knowledge Distillation

KL Kullback-Leibler

LDA Linear Discriminant Analysis

LM Language Model

LSTM Long Short-Term Memory

MAP Maximum A Posteriori Adaptation

MFCC Mel Frequency Cepstral Coefficient

ML Maximum Likelihood

MLLT Maximum Likelihood Linear Transform

MLP Multilayer Perceptron

MOE Mixture of Experts

MSE Mean Square Error

MT Mismatched Transcript

MTL Multitask Learning

OOV Out of Vocabulary

PCA Principal Component Analysis

PER Phone Error Rate

PM Pronunciation Model

PT Probabilistic Transcript

RBM Restricted Boltzmann Machines

RNN Recurrent Neural Network

RNN-ED Recurrent Neural Network Encoder Decoder

SAT Speaker Adaptive Training

xv

SBS Special Broadcasting Service

SGD Stochastic Gradient Descent

SHL Shared Hidden Layer

SSP Statistical Signal Processing

ST Self-Training Transcript

TC Time Convolution

TL Transfer Learning

T/S Teacher/Student

URL Under-Resourced Language

WER Word Error Rate

WFST Weighted Finite State Transducer

WRL Well-Resourced Language

xvi

Chapter 1

Introduction

1.1 Overview

Speech, vision, and text are three primary modalities through which humans com-

municate. Using cognition, logic, and memory, humans have learned to effectively

communicate using these modalities. In other words, humanshave the ability to

use intelligence to process and infer information. Thus, intelligence is a complex

biological phenomenon associated with humans and some animals and is still very

actively studied in neuroscience and psychology.

Intelligence in machines is called artificial intelligence(AI) and is usually stud-

ied as a information processing technology. In the twentieth century, AI was

mostly restricted to working within a well-defined set of formal rules. For ex-

ample, the calculator was designed to perform well-defined tasks like addition,

subtraction, multiplication, division etc. However, performing more human-like

tasks is more challenging. For example, it is hard to define a set of formal rules to

identify speakers through their voices or faces. This is where deep learning (DL)

comes into play.

In the last decade or so, DL has become a burgeoning field of research in speech,

vision, language, finance etc. In DL, machines learn about the world by observing

simple concepts and building a hierarchy of more complicated concepts in a layer-

wise fashion. The final layer is the most abstract layer and isusually the decision

making layer. This approach of learning by experience, instead of formal rules,

allows machines to perform human-like tasks like recognizing voices or faces.

Therefore, this is a propitious time to study AI using the DL approach.

In this study, we focus on DL approaches for automatic speechrecognition

(ASR). ASR is the task of automatically converting speech into text by a machine

without human intervention and is a key technology to enablehuman-computer in-

teraction (HCI). Since the 1980s, ASR has been an area of active research falling

1

within the realms of statistical signal processing (SSP) and AI. For example, ASR

is used in interactive voice response (IVR) systems to handle large volumes of

telephone calls by automatically understanding callers’ requests. In cellular de-

vices, they act as dictation systems by converting a user’s voice into text messages

which can then be sent electronically to the desired destination. This reduces the

user’s effort of typing the entire message. In Global Positioning System (GPS) en-

abled devices, where hands-free communication is critical(for e.g., automobiles),

an ASR system is able to convert a driver’s commands into textwhich can then

be processed by the GPS device to display the routing information. In the me-

dia, they are used to automatically transcribe large amounts of spoken news into

text. Contemporary ASR devices include Microsoft Cortana,Apple Siri, Amazon

Alexa, and Google Home.

1.2 Motivation

Trends in ASR research [2–4] have changed dramatically overthe past decade.

The traditional way of building ASR models using hidden Markov models (HMMs)

has been revolutionized with the introduction of DL models such as deep neural

networks (DNNs) [5], convolutional neural networks (CNNs)[6], and recurrent

neural networks (RNNs) [7, 8]. Their popularity is mostly attributed to the fact

that neural networks achieve much lower error rates than Gaussian mixture mod-

els (GMMs), especially with large training corpora. However, these systems are

manifest only in a few countries where languages are well-resourced. A well-

resourced language is a language (e.g. English) with an abundance of resources to

support development of speech technology. Those resourcesare usually defined

in terms of 100+ hours of speech data, corresponding transcripts, pronunciation

dictionaries, and language models. Among these, the most expensive and time-

consuming resource is the acquisition of transcripts. Primarily for this reason,

more than 99% of 6900 languages in the world are still under-resourced [9]. As

a result, one language dies every two weeks on an average [10]. Building ASR

systems for such languages can help either slow down or even stop this decline

since these systems will encourage people to continue usingthese languages in

their daily lives.

In the first part of the thesis, we focus on developing ASRs forunder-resourced

languages in two scenarios. First, we build ASRs with very limited amounts of

2

transcriptions collected from native transcribers using transfer learning. In the

second and more adverse scenario, we assume we do not have access to native

transcribers at all. This is a realistic scenario since it isquite hard to find native

transcribers in under-resourced languages. However, Turkers (crowd workers)

available in online marketplaces can serve as valuable alternative resources by

providing transcriptions in the target language. Since theTurkers may neither

speak nor have any familiarity with the target language, their transcriptions are

non-native by nature and are usually filled with incorrect labels. After some post-

processing, these transcriptions can be converted to probabilistic transcriptions

(PT). Conventional DNNs trained using PTs do not necessarily improve error rates

over GMMs due to the presence of label noise. To alleviate this problem, we

propose a variety of multi-task learning (MTL) training regimes by which we are

able to train DNNs in the target language using noisy transcriptions.

In the second part of the thesis, we move our focus to buildingASRs in English

which is a well-resourced language. However, it is well-known that building a

conventional ASR system in English is a cumbersome procedure since it involves

optimizing several components separately in a disjoint fashion. To alleviate this

problem, modern E2E systems such as the CTC framework [1, 11]directly trans-

duce speech signals to text in a single model. However, one drawback of CTC

is the hard alignment problem as it relies only on the currentinput to generate

the current output. In reality, the output at the current time is influenced not only

by the current input but also by inputs in the past and future.Thus, we propose

advancing state-of-the-art E2E ASR for large corpora by directly incorporating

attention modeling [12, 13] within the CTC framework. In attention modeling,

inputs in the current, past, and future are distinctively weighted depending on the

degree of influence they exert on the current output.

1.3 Thesis Contributions

The main contributions of this thesis can be summarized as follows:

• In the case when there are very limited amounts of native transcriptions in

the target language, we proposed cross-lingual adaptationusing regularized

cross-entropy training of DNNs [14]. Data from well-resourced languages

act as regularizers during training.

3

• In the case when there are no native transcriptions in the target language,

we trained ASRs in the target language using noisy non-native transcrip-

tions collected from crowdworkers [15]. In particular, we proposed a MTL

training regime which uses a mixture of noisy transcriptions in the tar-

get under-resourced language and clean transcriptions from several well-

resourced languages [16,17].

• We proposed another MTL using a deep auto-encoder (DAE) which is used

as one of the sub-tasks in the MTL system [18]. The DAE uses theunlabled

data in the target language as its ground truth targets and attempts to min-

imize the mean square error between its predictions and the ground truth

targets.

• Furthermore, we proposed knowledge distillation and target interpolation as

ways to improve the generalization capacity of the MTL system [19].

• Finally, for large corpora ASR in English, we proposed solving the hard

alignment problem in CTC models by directly incorporating attention mod-

eling [20–22].

1.4 Thesis Structure

The remainder of this thesis is organized as follows.

• In Chapter 2, we provide the necessary background for cross-lingual and

end-to-end speech recognition.

• In Chapter 3, we propose training GMM-HMMs and DNNs in the target

language when there are very limited amounts of transcribeddata in the

target language.

• In Chapter 4, we propose training DNNs in the target languagewhen there

are no transcribed data in the target language. Instead, we use train DNNs

using transcripts generated by online non-native crowdworkers.

• In Chapter 5, we propose an attention-based CTC that directly transduces

speech waveforms into characters or words by focusing on themost relevant

parts of the utterance.

4

• In Chapter 6, we summarize the contributions of this study and discuss fu-

ture directions for research.

5

Chapter 2

Background

2.1 Cross-Lingual Speech Recognition in
Under-Resourced Scenarios

Deep neural network (DNN) based automatic speech recognition (ASR) systems

achieve significantly lower error rates than Gaussian mixture models (GMMs)

or hidden Markov models (HMMs), especially when large training corpora are

available. However, these systems are manifest only in a fewcountries where

languages are well-resourced. A well-resourced language (WRL) is a language

with an abundance of resources to support development of speech technology.

For example, English is the most well-resourced language. These resources can

be defined in terms of the following attributes:

• 100+ hours of speech/acoustic data

• Transcripts corresponding to the speech data

• Pronunciation dictionaries and vocabulary lists

• Language models

• Strong presence on the web making the data accessible online

When these resources are available, it becomes possible to build matched acoustic

models. The underlying structure of a matched acoustic model is illustrated in

Fig. 2.1. Here, an utterance spoken in the target language (L1) is transcribed by

a native transcriber in the same language (L1) using the native orthography of

the target language. An acoustic model trained using the native transcript and the

features extracted from the utterance is called a matched acoustic model.

On the other hand, an under-resourced language (URL) is a language with some

(if not all) of the following resources: lack of electronic resources for speech and

6

Figure 2.1: A matched acoustic model. An utterance in the target language, L1
(Hindi in this example), is transcribed by a native transcriber in L1 using the
native orthography. A dictionary is used to convert the words in L1 to IPA
phonemes. An acoustic model is trained using the IPA phonemes and the features
extracted from the utterance.

language processing, such as monolingual corpora, bilingual electronic dictionar-

ies, transcribed speech data, pronunciation dictionaries, and vocabulary lists; lack

of a unique writing system or stable orthography; limited presence on the web;

and lack of linguistic expertise [9]. Other factors includelack of infrastructure in

the native country, and banking discrimination by western banks which makes it

difficult to develop resources for URLs. Such languages are sometimes referred to

as low-density languages, resource-poor languages, low-data languages, or less-

resourced languages. However, a URL is not the same as a minority language,

which is a language spoken by a minority of the population of aterritory. Some

URLs are actually official languages of their country and spoken by a very large

population. For example, Bahasa Indonesia in Indonesia, Khmer in Cambodia,

Amharic in Ethiopia, Dinka in South Sudan, and Uzbek in Uzbekistan are URLs

but not minority languages. On the other hand, there are someminority languages

that can be considered as WRLs. For example, the Catalan language is both a mi-

nority language and a WRL since resources for Catalan are available on Google

Search and Google Translate. Consequently, URLs are not necessarily endangered

(while the opposite is usually true) [9].

We will use the terms “URL” or “ target language” interchangeably to refer to

the language to be recognized. Similarly, we will use “WRLs” or “ source lan-

guages” to refer to the auxiliary languages for which we have training data. How-

ever, the objective is not to recognize these languages.

Among all resources required for building ASR models, the most expensive and

time-consuming resource is the acquisition of transcripts. Perhaps for this reason,

7

more than 99% of 6900 languages in the world still do not have well-developed

ASR systems. This means that there are few or no natively transcribed transcripts

easily available in URLs.

Transcriber 1

Mismatched

G2P

Train

Acoustic Model

Mismatched

Acoustic Model

Feature

Extraction

Transcriber 2

Transcriber N

Utterance

L1 L2

Transcriber

(Crowd)

gap

cab

gat

Orthography

English

Phonemes

Probabilistic

�!�

Figure 2.2: A mismatched acoustic model. An utterance in thetarget language,
L1 (Hindi in this example), is transcribed by multiple non-native Turkers using
the English orthography. A grapheme-to-phoneme (G2P) model is used to
convert the English words to IPA phonemes. An acoustic modelis trained using
the lattice of IPA phonemes and the features extracted from the utterance.

To circumvent this difficulty, transcripts can be collected from online non-native

crowd workers, or Turkers, who neither speak the target language nor have any fa-

miliarity with it. An acoustic model built from such non-native Turker transcripts

is called amismatched acoustic model. The underlying structure of a mismatched

acoustic model is illustrated in Fig. 2.2. Briefly, a single utterance in the target

language (L1) is transcribed by multiple Turkers who do not speak the target lan-

guage. Due to this mismatch between the utterance language and the Turker’s

native language, no single Turker can generate the correct transcript. Instead,

a collection of transcripts from multiple Turkers is constructed for a single utter-

ance. After merging these transcripts and some post-processing, we get a lattice of

transcripts which represent a probabilistic distributionover several transcripts. An

acoustic model trained using this lattice of non-native transcripts and the features

extracted from the utterance is called a mismatched acoustic model. Non-native

transcripts are usuallynoisy or inaccurate. One of objectives of this study is to

train DNNs using such noisy transcripts.

8

[k]/1.0 [æ]/1.0 [t]/1.0

Figure 2.3: A deterministic transcription (DT) for the wordcat.

[k]/0.5

[g]/0.4

∅/0.1

[a]/0.45

[5]/0.35

[æ]/0.10

[E]/0.10

[p]/0.3

[a]/0.2

∅/0.5

[p]/0.3

[k]/0.3

[t]/0.2

[b]/0.2

Figure 2.4: A probabilistic transcription (PT) for the wordcat.

We now introduce some terminologies that will be frequentlyused in this study.

2.1.1 Deterministic Transcript (DT)

Consider the situation in Fig. 2.1. An utterance is played toa transcriber. If

the utterance language is the same as the transcriber’s native language, then

there is a match between the languages. The native transcriber is likely to

transcribe the contents of the utterance with a high degree of accuracy. Since

there is no ambiguity in the ground truth labels (syllables,words etc.) that

the transcriber provides, the labels are deterministic in nature. Transcripts

of this kind are calleddeterministic transcripts (DTs). An example of a

DT for the word “cat” is shown in Fig. 2.3. Each arc representsa label

and a probability value which is 1.0 always. DTs are simply conventional

transcripts which are part of many popular speech corpora like TIMIT, Wall

Street Journal (WSJ) etc.

9

2.1.2 Mismatched Transcript (MT)

Consider the situation in Fig. 2.2. An utterance in Hindi (most widely spo-

ken language in India) is played to a non-native transcriber. Non-native tran-

scribers found in online marketplaces are called crowd workers or Turkers.

Examples of popular online marketplaces are Amazon and Upwork. In the

absence of native transcribers, these workers become valuable alternative

resources for providing transcripts in the utterance language.

Since the utterance language (Hindi) isnot the same as the Turker’s na-

tive language, there is a mismatch between the utterance language and the

Turker’s language. Because of the Turker’s unfamiliarity with Hindi, the

Turker writes down non-sense syllables in English. Such a transcript is

known asmismatched transcript (MT). For more details on the preparation

of these transcripts, readers are encouraged to refer to [23]. The non-native

Turker is unlikely to transcribe the contents of the utterance with a high

degree of accuracy. In particular, the Turker is unlikely todistinguish all

phone pairs in the utterance language. Consequently, an MT is likely to be

noisy. However, these transcripts can be useful to train ASR systems in the

absence of native transcribers.

2.1.3 Probabilistic Transcript (PT)

An MT can be post-processed and formed into a single confusion network

consisting of labels and probability values associated with those labels.

Such a confusion network is called aprobabilistic transcript (PT) [24] and

is shown in Fig. 2.4. The arc weight specifies the conditionalprobability

that the phoneme was spoken, given the evidence in the transcripts. Because

crowd workers cannot distinguish all phone pairs in the utterance language,

these weights are usually less than 1.0. Therefore, a PT is, at best, a proba-

bility distribution over the labels provided by crowd workers. Unlike the DT

in Fig. 2.3 which has a single sequence of symbols, the PT has 3×4×3×4

= 144 possible sequences, one of which could be the right sequence. In

this case, it is “k æ ∅ t” (∅ is the empty symbol). There is another useful

interpretation of DTs and PTs. The DTs can also be thought of as 1-hot

alignments that are frequently observed in conventional transcripts. How-

10

Table 2.1: Deterministic transcript (DT) vs Probabilistictranscript (PT).

DT PT
Transcribers Native Non-native
Transcript Structure Single stream Lattice
Probability 1.0 [0, 1]
Label Noise Low High
Availability Difficult Easy
Cost Expensive Cheap

ever, in the case of PTs, the alignments are soft since a single frame could

have multiple labels with non-zero probabilities. In the illustrated exam-

ple, the 1-hot alignment (DT) for the word “cat” is [1.0 k], [1.0 æ], [1.0 t].

Here,a andb in [a b] denote the probability of the label and the label re-

spectively. On the other hand, the soft alignment (PT) is [0.5 k, 0.4 g, 0.1 ∅],

[0.45 a, 0.35 5, 0.1 æ, 0.1 E], [0.3 p, 0.2 a, 0.5 ∅], [0.3 p, 0.3 k, 0.2 t, 0.2 b].

An overview of the differences in DTs and PTs are summarized in Table 2.1.

2.2 End-to-End Models for Large Vocabulary
Automatic Speech Recognition

Recent advances in ASR have been mostly due to the advent of DLalgorithms

such as deep neural networks (DNNs), convolutional neural networks (CNNs),

and recurrent neural networks (RNNs). Despite these advances, building a con-

ventional ASR system is a cumbersome procedure since it involves training sev-

eral components in the ASR pipeline in a disjoint fashion. A conventional ASR

system is shown in Fig. 2.5.

In ASR, we are given a sequence of feature vectorsx which is a compact repre-

sentation of the speech waveform in an utterance. The objective is to decode the

sequence of wordsy from x with minimum probability of error. This translates to

the maximum a posteriori (MAP) problem,

ŷ = arg max
y

P(y|x;ΘASR) (2.1)

= arg max
y

P(x|y;ΘAM)P(y;ΘLM) (2.2)

≈ arg max
y,l

P(x|l;ΘAM)P(l|y;ΘPM)P(y;ΘLM), (2.3)

11

Figure 2.5: A conventional ASR system.

whereΘASR = {ΘAM ,ΘPM,ΘLM } is the set of parameters to be estimated andl is a

sequence of phonemes. The first termP(x|l;ΘAM) in Eq. (2.3) is the likelihood of

the features given the phoneme sequence and is obtained froman acoustic model

(AM). The second termP(l|y;ΘPM) is the likelihood of the phoneme sequence

given the word sequence and is obtained from a lexicon or pronunciation model

(PM). The third termP(y;ΘLM) is the prior probability of the word sequence and

is obtained from a language model (LM).

In practice, the AM, PM, and LM models are trained separately. Thus, the

ASR problem becomes a complex disjoint learning problem. Apart from this, the

decoding process during test time involves a complex graph search step and fine-

tuning other empirical parameters such as the scaling factor of AM likelihood and

the word-insertion penalty.

In contrast, an end-to-end (E2E) ASR system, shown in Fig. 2.6, directly mod-

els the posterior distributionp(y|x;ΘASR) by transducing an input sequence of

acoustic feature vectors to an output sequence of words (or more generally to-

kens). The output sequence of tokens is better known as a transcription. Thus,

this makes it possible for all the components to be jointly trained as in Eq. 2.1

instead of Eq. (2.3).

More specifically, for an input sequence of feature vectorsx = (x1, · · · , xT) of

lengthT with xt ∈ R
m, an E2E ASR system transduces the input sequence to an

intermediate sequence of hidden feature vectorsh = (h1, · · · , hL) of lengthL with

hl ∈ R
n. Usually,L = T . The sequenceh undergoes another transduction resulting

12

in the posterior probability of the transcription, ˜p(y|x), wherey = (y1, · · · , yU) is

a transcription of lengthU with yu ∈ L, L being the label set. Here,K = |L| is

the cardinality of the label setL. In ASR, the labels could be senones, graphemes,

letters, words etc. depending on the desired granularity ofoutputs. UsuallyU ≤ T

which means that an E2E system is able to convert input to output sequences of

different lengths. Thus, an E2E neural network, parameterized by W, learns a

many-to-one functionalfW : x 7→ p̃(y|x) where p̃(y|x) closely resembles the true

p(y|x).

Figure 2.6: An end-to-end ASR system.

2.2.1 Connectionist Temporal Classification (CTC)

RNNs used in ASR optimize the Kullback-Leibler (KL) divergence between the

probability distributions of frame predictions and groundtruth labels. This forces

the network to align its frame predictions with the ground truth alignments. A

ground truth alignment is a sequence of labels, one label perframe. The labels

in these alignments are usually phonemes. Alignments are usually obtained as a

result of the HMM based forced alignment procedure (constrained Viterbi decod-

ing). However, for ASRs, the desired outputs are larger linguistic units such as

characters or words rather than smaller units such as phonemes. The CTC [1, 11]

13

error criterion directly optimizes prediction of larger linguistic units thereby cir-

cumventing the need for generating smaller linguistic units such as phonemes.

Figure 2.7: An example of a CTC network.

A CTC network uses a recurrent neural network (RNN) and the CTC error cri-

terion [1, 11] which directly optimizes the prediction of a transcription sequence.

The basic structure of a CTC network is shown in Fig. 2.7. As the length of the

transcription is shorter than the length of input acoustic vectors, CTC introduces

an intermediate label representation called apath denoted byπ = {π1, · · · , πT }.

The intermediate label at timet is denoted byπt. A CTC pathπ has the same

length as the input sequencex which is made possible by adding a blank symbol

{∅} as an additional label and allowing repetition of labels. Thus, after the ad-

dition of ∅, the lengths of inputx, hiddenh, and intermediate output sequences

π are the same. Because of the addition of∅, we have an extended label setL′,

whereL′ = L ∪ {∅} with cardinalityK + 1. Because of this,πt ∈ L
′.

The advantage of adding a blank label is that it does not forcethe network to

make non-blank predictions for frames whose predictions are weak. The posterior

14

path probability ofπ is defined as

p(π|x)
CI
=

T
∏

t=1

p(πt|x), (2.4)

where the equality is based on the assumption that the network output at timet,

andp(πt|x) is conditionally independent of outputs at other timesp(π,t |x). In other

words,πt y π,t|x. The network outputp(πt|x) is the RNN softmax activation of

the intermediate labelπt such that
∑

πt∈L′
p(πt |x) = 1 and noting thatt is fixed in

the summation.

To produce the final output sequencey (transcription), CTC defines a many-to-

one functionB : π 7→ y which maps multiple CTC paths to a single transcription.

The pathπ represents an intermediate sequence of labels at every frame. How-

ever, the final desired output sequence is a human-readable transcriptiony. To this

end, CTC defines a many-to-one mapB : π 7→ y which compresses the pathπ of

lengthT to a transcriptiony of lengthU ≤ T . This is achieved by first removing

the repeated labels from the pathπ and then removing the blanks. For example,

B(cc − aa − −t) = B(c − a − t) = cat. With this, the transcription probability of

y givenx is the sum of probabilities of all those paths which can be compressed

usingB to generatey. This can be written as

p(y|x) =
∑

π∈B−1(y)

p(π|x), (2.5)

whereB−1(y) is the pre-image ofy. The CTC loss function can then be defined so

that the network learns to maximize the transcription probability (or to minimize

the negative log probability) of the ground truth transcriptions in the training set.

Thus,

LCTC = −
∑

l ∈ train

ln p(y|x). (2.6)

This training criterion directly optimizes the probability of the transcription rather

than frame level path or alignment. For decoding, it is very simple to generate the

transcription using greedy decoding: simply concatenate the tokens corresponding

to posterior spikes in CTC to generate the transcription.

However, CTC has some limitations.

• First, CTC is harder to train than a standard long short-termmemory (LSTM)

15

network since it is sensitive to initialization. In [25], CTC training was ini-

tialized from a LSTM network trained with large amounts of data using the

frame level cross entropy criterion.

• Second, the conditional independence assumption in Eq. (2.4) for speech

data, in general, is not true. Due to this constraint, CTC does not model

inter-label dependencies very well although it can be argued that the re-

current structure in RNN implicitly models time dependencies. Therefore,

during decoding, the CTC framework relies on external language models to

achieve good ASR accuracy. More details about CTC training are covered

in [1,11].

2.2.2 RNN Encoder-Decoder (RNN-ED)

Figure 2.8: An example of an RNN-ED network.

An RNN-ED [12,13] uses two distinct RNNs: an RNN encoder thattransforms

x to h and an RNN decoder that transformsh to y. The basic structure of an

16

Figure 2.9: An example of an attention-based RNN-ED network.

17

RNN-ED network is shown in Fig. 2.8. It modelsp(y|x) as

p(y|x) =
U
∏

u=1

p(yu|cu, y1:u−1), (2.7)

wherecu is a function ofx and is sometimes called ascontext vector or soft align-

ment. Here, the subscriptu in cu is a time step. The context vector can be a

constant across all time steps (thus,cu = c,∀u) or more generally can be time-

dependent in the case of attention-based RNN-ED [26, 27]. Anattention-based

RNN-ED network is shown in Fig. 2.9.

The RNN-ED encoder computes

ht = Encode(xt, ht−1). (2.8)

Encode(.) function is simply a unidirectional or bidirectional RNN.

The RNN-ED decoder has two components: a multinomial distribution gener-

ator Eq. (2.9), and an RNN decoder Eq. (2.10). In addition, anattention-based

RNN-ED [26, 27] is equipped with an attention network Eq. (2.11)-Eq. (2.16) as

follows:

p(yu|y1:u−1, su, cu) = Generate(yu−1, su, cu), (2.9)

su = Recurrent(su−1, yu−1, cu), (2.10)

cu = Annotate(αu, h) =
T
∑

t=1

αu,tht (2.11)

αu = Attend(su−1,αu−1, h). (2.12)

Here,ht, cu ∈ R
n andαu ∈ U

T , whereU = [0, 1], such that
∑

t αu,t = 1. Also,

for simplicity su ∈ R
n. Generate(.) is a feedforward network with a softmax

operation [13, Appendix A.2.2] generating the probabilityof the target output

p(yu|yu−1, su, cu). Recurrent(.) is an RNN decoder and is similar to the recurrency

in Encode(.). However, Recurrent(.) operates on the output time axis indexed by

u and its hidden state issu. Annotate(.) computes the context vectorcu (soft align-

ment) using the attention probability vectorαu and the hidden sequenceh. The

scalar weightαu,t ∈ U determines the influence ofht in generatingcu. Attend(.)

18

computes the attention weightαu,t using a single-layer feedforward network as

eu,t = Score(su−1,αu−1, ht), t = 1, · · · , T (2.13)

αu,t =
exp(eu,t)

∑T
t′=1 exp(eu,t′)

, (2.14)

whereeu,t ∈ R. Score(.) can either be content-based attention or hybrid-based

attention. The latter encodes both content (su−1) and location (αu−1) information.

Score(.) is computed using

eu,t =



















vT tanh (Usu−1 +Wht + b), (content)

vT tanh (Usu−1 +Wht + Vfu,t + b), (hybrid)
(2.15)

where, fu,t = F ∗αu−1. (2.16)

The operation∗ denotes convolution. The bias termb is optional. Attention pa-

rametersU,W,V, F, b, v are learned while training RNN-ED.

When only the content function of Eq. (2.15) is used, Eq. (2.12) is usually

referred to as thecontent attention model [27]. On the other hand, when the

hybrid function of Eq. (2.15) is used, Eq. (2.12) is usually referred to as thehybrid

attention model [27].

There are two key differences between CTC and RNN-ED. First,p(y|x) in

Eq. (2.7) is generated using a product of ordered conditionals. Thus, RNN-ED re-

laxes the conditional independence constraint of Eq. (2.4)in CTC. Second, there

is no intermediate label representationπ in RNN-ED.

19

Chapter 3

Cross-Lingual Adaptation Using Limited
Native Transcriptions

3.1 Introduction

Often there are situations when the target language that needs to be recognized has

very limited amounts of transcribed data. When limited amounts of transcribed

data are available in the target language, training ASR systems with the limited

data often leads to poor generalization. To alleviate this issue, transfer learning

techniques can be used to transfer the acoustical knowledgefrom the source lan-

guages to the target language. This scenario of leveraging knowledge from source

languages (WRLs) to build ASR systems in the target language(URL) is usually

referred to ascross-lingual adaptation or cross-lingual recognition. This is the

main focus of this chapter.

The remainder of the chapter is organized as follows. In Section 3.2, we pro-

vide a summary of past work. In Section 3.3, we introduce somecommon no-

tations that will be used throughout this chapter. In Section 3.4 and Section 3.5,

we explain the proposed cross-lingual adaptation using regularized ML training

of GMM-HMM and regularized CE training of DNN respectively.Finally, in

Section 3.6, we describe the experiments and outline the results.

3.2 Background

Many interesting research studies have improved the performance of state-of-the-

art cross-lingual speech recognition. One of the earlier approaches includes boot-

strapping target language acoustic models based on phonetic similarity either us-

ing existing monolingual [28], or multilingual models [29], [30]. Recently, DNNs

have spurred interest in the speech recognition community due to their superior

discriminative modeling capabilities compared to GMM-HMMbased modeling

20

techniques. In [5], the outputs of a hybrid DNN-HMM system were used to rep-

resent posterior probabilities of shared context-dependent states (senones). DNNs

have been used in cross-lingual recognition through tandemor hybrid approaches.

In the class of tandem approaches, either (a) posteriors as the final layer outputs of

DNNs are Gaussianized [31,32], or (b) the outputs of an intermediate layer (bottle-

neck extractions) [33, 34], followed by dimensionality reduction using principal

component analysis (PCA) are used as distinctive features for training GMM-

HMM classifiers. In the class of hybrid approaches, the alignments from GMM-

HMM systems are treated as ground truth labels to train DNNs using the CE crite-

rion. After completing training, the posteriors from the trained DNN are used for

classification of test data. It has been shown that, when few target language data

are available, unsupervised pre-training of DNN hidden layers with multilingual

data [35] can outperform hidden layers trained with monolingual data [36], [37].

In [38], DNNs were used for knowledge transfer with zero training data using

an “open-target MLP” - an MLP designed to generate posteriors for all possible

monophones in the IPA table. DNNs have been effective since the hidden layers

are able to learn complex feature transformations. The complex features are then

classified using a logistic regression classifier at the finallayer.

Transfer learning has been successfully implemented for semi-supervised learn-

ing [39, 40] and supervised learning [41] of GMMs. In this study, we focus on

knowledge transfer from WRLs to an URL in two supervised settings - while

training GMM-HMM and DNN-HMM.

3.3 Notations

Let x be a sequence of feature vectors, one feature vector per frame, of a lan-

guage indexed by the superscript. The sequencex can be represented asx =

(x1, x2, · · · , xN) where the subscript indicates the time index,xt ∈ R
d, andN is

the number of frames. Associated with eachxt is a label. In speech recognition,

labels are usually states (monophones, context-dependent(CD) phones, senones

etc.), or graphemes, or words depending on the granularity of the features. In the

current context, since the granularity is at the frame level, states are used as la-

bels. Assume there is a total ofC states. Then the set of states for this language is

S = {1, 2, · · · ,C}.

In ASR, however, the speech corpora usually do not provide any state infor-

21

mation associated with each frame. An utterance can be considered as a se-

quence of framesx = (x1, x2, · · · , xN) and the corresponding sequence of states

q = (q1, · · · , qN) whereqt ∈ S is a random variable denoting the state at time

t. A sequence of states is popularly referred to as analignment. Since the true

alignments are unknown, these need to be estimated during training.

The objective is to estimate the parameters of an HMM or a DNN so that the

HMM /DNN is adapted to the target language. Since the data available in the target

language is sparse, we make use of both the target language and a pool of source

languages (or multilingual data).

3.4 Cross-Lingual Adaptation Using Regularized
Maximum Likelihood Training of GMM-HMM

The modeling parameters of the HMMs for the target language are given by

{Θc}
C
c=1 where eachΘc corresponds to a set of parameters for the statec. Each

HMM consists of three CD states, arranged left-to-right, with each state modeled

by a GMM with diagonal covariance matrices. The individual states are connected

by non-zero transition probabilities. Thus, each HMM consists of the parameters

Θc =

{

π1, ai j,
{

ωm,µ jm,Σ jm

}M

m=1

}3

i, j=1
whereM is the total number of mixtures of

a GMM. The objective is to learn{Θc}
C
c=1 by using limited training data from the

target language and large amounts of multilingual data fromsource languages. To

learn the parameters of an HMM, the objective function to be maximized is the

log-likelihood function of the training data. Since the training data consist of both

the target and source data, the likelihood of the target datais regularized with the

weighted likelihood of the source data. Hence, the new objective is to maximize

the total likelihood which is given by

L(x;Θc) = L(x(1);Θc) + ρL(x(2);Θc), (3.1)

wherex(1) andx(2) represent the training data of the target and source languages

respectively, and

L(x(l);Θc) =
1

N(l)

∑

t

log p(x(l)
t ;Θc), l = 1, 2, (3.2)

22

andρ is a regularization constant taking values within [0, 1]. The optimal param-

eter set is given by

Θ
⋆
c = arg max

Θc

J(Θc), c = 1, · · · ,C. (3.3)

The corresponding auxiliary function for the new objectivefunction becomes

Q(Θc,Θ
0
c) =

1
N(1)

∑

q

p(q|x(1);Θ0
c) log p(x(1), q;Θc)

+
ρ

N(2)

∑

q

p(q|x(2);Θ0
c) log p(x(2), q;Θc), (3.4)

whereΘ0
c is the initial model and the summation is taken over all possible align-

mentsq. Given an initial modelΘ0
c, the maximum likelihood (ML) parameters,

under the constraints
∑M

m=1ω jm = 1 andΣ jm ≻ 0 (jth state andmth mixture in class

c), are found using the expectation-maximization (EM) algorithm. Finding the

parameters using EM is straightforward and is given by

πi =

1
N(1)

∑

t α
(1)
t (i)β(1)

t (i) + ρ

N(2)

∑

t′ α
(2)
t′ (i)β(2)

t′ (i)
1

N(1)

∑

t,i α
(1)
t (i)β(1)

t′ (i) + ρ

N(2)

∑

t′,i α
(2)
t′,(1)(i)β

(2)
t′,(1)(i)

, (3.5)

ai j =

1
N(1)

∑

t ξ
(1)
t (i, j) + ρ

N(2)

∑

t′ ξ
(2)
t′ (i, j)

1
N(1)

∑

t γ
(1)
t (i) + ρ

N(2)

∑

t′ γ
(2)
t′ (i)

, (3.6)

ω j,m =

1
N(1) n

(1)
jm(1)+ ρ

N(2) n
(2)
jm(1)

1
N(1)

∑

m n(1)
jm(1)+ ρ

N(2)

∑

m n(2)
jm(1)
, (3.7)

µ jm =

1
N(1) n

(1)
jm(x) + ρ

N(2) n
(2)
jm(x)

1
N(1) n

(1)
jm(1)+ ρ

N(2) n
(2)
jm(1)
, (3.8)

Σ jm =

1
N(1) n

(1)
jm(x2) + ρ

N(2) n
(2)
jm(x2)

1
N(1) n

(1)
jm(1)+ ρ

N(2) n
(2)
jm(1)

, (3.9)

23

where

n(l)
jm(1) =

∑

t

γ
(l)
t (j,m),

n(l)
jm(x) =

∑

t

γ
(l)
t (j,m)x(l)

t ,

n(l)
jm(x2) =

∑

t

γ
(l)
t (j,m)(x(l)

t − µ jm)(x(l)
t − µ jm)T .

The quantitiesγ(l)
t (j,m), ξ(l)t (i, j) are defined in [42, Eq. (27, 37)].

3.5 Cross-Lingual Adaptation Using Regularized
Cross-Entropy Training of DNN

A DNN takes an input frame (or a feature vector)xt, which then undergoes mul-

tiple layers of successive affine transformations followed by element-wise non-

linearities, to output a vector of posterior probabilitiesyt. Thus, the DNN mod-

els the posterior probabilities of predicting the state givenxt. Thus, correspond-

ing to the sequencex, there is a sequence of vectors of posterior probabilities

y = (y1, · · · , yN) whereyt ∈ U
C with U = [0, 1]. The kth component ofyt is

the posterior probability of the occurrence of statek at time t given thatxt was

observed. This can be explicitly stated as

yt(k) = p(qt = k|xt), k = 1, · · · ,C. (3.10)

Sinceyt represents a probability distribution over states,
∑C

k=1 yt(k) = 1.

The output of layerl, denoted byul, is obtained by applying the affine transform

(using Wl, bl) on the outputs of the previous layerul−1 followed by a sigmoid

activationσ(.). This can be represented as

ul = σ(Wlul−1 + bl), 1 ≤ l < L. (3.11)

Here,Wl is the weight matrix between layersl − 1 andl, bl is the bias vector at

layer l. For the first layer (l = 1), u0 = xt. For the final layerL (softmax layer),

24

the output at nodek, uL(k), is given by

uL(k) =
exp(wLT

k uL−1 + bL
k)

∑

j exp(wLT

j uL−1 + bL
j)
, (3.12)

wherewLT

k is thekth row of matrixWL. The outputuL(k) is simply the posterior

probability p(qt = k|xt) as defined in Eq. (3.10). The emission probabilityp(xt|qt)

is obtained using Bayes’ theorem as

p(xt|qt) =
p(qt|xt)p(xt)

p(qt)
, (3.13)

where the state priorsp(qt) are obtained by simply counting the state labels from

the HMM based forced alignments of the training data. The term p(xt) can be

ignored since during Viterbi decoding (max. operation) it is treated as a constant

for all values oft. The DNN is trained to minimize the negative log posterior

probability of the training examples in the sequencex. This is given as

E = −
∑

t

log p(dt|xt)

= −
∑

t

log
C
∏

k=1

p(qt = k|xt)
dt(k)

= −
∑

t

C
∑

k=1

log p(qt = k|xt)
dt(k)

= −
∑

t

C
∑

k=1

dt(k)log p(qt = k|xt)

= −
∑

t

C
∑

k=1

dt(k)log yt(k), (3.14)

wheredt(k) is the ground truth label forxt. The second step is due to the frame

independence assumption. Eq. (3.14) is the cross-entropy (CE) between the de-

sired target vectordt and the DNN output vectoryt. The desired targetdt(k) is

constrained todt(k) ∈ [0, 1] such that
∑C

k=1 dt(k) = 1 and is obtained from HMM

based forced alignments. The DNN outputyt(k) is obtained from Eq. (3.12).

In this study, a modified CE error criterion is used that takesinto account the

CE error of both the target data and source data similar to Eq.(3.1). The modified

25

CE error criterion is

E = E(1) + ρE(2), (3.15)

whereE(1), E(2) are the CE errors of the form (3.14) for target and source languages

respectively withρ being a regularization constant taking values within [0, 1]. The

subscripts ofE given inside the parenthesis indicate the language index.

A DNN trained using Eq. (3.15) has a slightly modified weight update rule. The

CE errorE is a result of the training errors of individual frames from either of the

languages. The errors backpropagated to nodek of the final layer (L) of the DNN

givenx(1)
t andx(2)

t are

δ
(1),L
k

△
=
∂E(1)

t

∂aL
k

= (y(1)
t (k) − d(1)

t (k)), k = 1, · · · ,C (3.16)

δ
(2),L
k

△
=
∂ρE(2)

t

∂aL
k

= ρ(y(2)
t (k) − d(2)

t (k)), k = 1, · · · ,C, (3.17)

whereaL
k = wLT

k uL−1 + bL
k is the output of the affine transformation at the softmax

layer before going through the softmax activation. These errors are backprop-

agated to the layers below theLth layer. During backpropagation, the errors at

the layers below (δL−1
k , δ

L−2
k , . . . etc.) are computed as a linear combination of the

errors at the layer above with the weights being the connection weights between

two successive layers. Thus the effect of having a scaling termρ in Eq. (3.17) is

reflected as scaled errors at the lower layers. This leads to

∂E(1)
t

∂wl
k j

= δ
(1),l
k ul−1

j , (3.18)

∂ρE(2)
t

∂wl
k j

= ρδ
(2),l
k ul−1

j , (3.19)

wherewl
k, j is the weight connectingjth input node tokth output node at thelth layer.

From Eq. (3.19), it is clear that the error gradient with respect to the weightwl
k j at

the lth layer is directly proportional toδl
k scaled byρ. No such scaling occurs for

the error in Eq. (3.18). The error gradient matrix due to the target language can be

26

defined as

∇E(1) =



















































∂E(1)
t

∂wl
11

∂E(1)
t

∂wl
12
· · ·

∂E(1)
t

∂wl
1J

∂E(1)
t

∂wl
21

∂E(1)
t

∂wl
22
· · ·

∂E(1)
t

∂wl
2J

...
...

...
...

∂E(1)
t

∂wl
K1

∂E(1)
t

∂wl
K2
· · ·

∂E(1)
t

∂wl
KJ



















































. (3.20)

For the error gradient matrix due to source languages, the only change is setting

the subscript ofE to 2. During training, frames from both target and source lan-

guages are presented in a randomized fashion. Hence, the weight update rule

using gradient descent will contain gradients from both languages as follows:

w(τ) = w(τ − 1)− η∇E(1) − ηρ∇E(2), (3.21)

whereτ is the iteration step, andη is the learning rate. Thus the effect of the

regularization constantρ with E(2) in Eq. (3.15) is a reduced learning rateρη for

frames belonging to the source languages as given in Eq. (3.21).

3.6 Experiments and Results

In this section, we present the results for the methods described in Section 3.4 and

Section 3.5. We used Turkish as the target language and English as the source

language.

3.6.1 Data

The Turkish corpus in [43] was used. Its training set consists of a total of 3974

utterances (4.6 hours) spoken across 100 speakers. Data forthe training speaker

s1012 was discarded due to lack of transcriptions.

On an average, each training utterance is about 4.12 secondslong. Its full

test set consists of 752 utterances spoken across 19 speakers. In this study, 558

utterances from 14 randomly selected speakers constitute the test set. The re-

maining utterances across 5 speakers constitute the development set. For English,

the TIMIT training set consists of 3696 (462 speakers, 3.14 hours). The Turk-

ish corpus follows the METUBET based phonetic representation [43]. Since the

27

phonetic systems are different for Turkish and TIMIT, it is important that both the

systems be mapped to a single system prior to running any experiment. In this

study, the WORLDBET [44] system was used since its alphabetscover a wide

range of multilingual phones and it is represented in the amicable ASCII format.

A summary of Turkish and English phone inventories is given in Table 3.1. Turk-

ish has a more compact phone set than English. There are only 4vowels that

are common to both the languages; Turkish distinguishes rounded vs. unrounded

vowels at every place, whereas English distinguishes tensevs. lax vowels. Hence

the vowel coverage of Turkish using English is only 40% (4/10).

Table 3.1: Turkish and English phone set. M=Monophthongs, D= Diphthongs,
NS= Non-syllabics, S= Syllabics.

Language Vowels Consonants Total
M D NS S

Turkish 10 0 28 0 38
English 13 5 27 3 48
Common 4 0 20 0 24

3.6.2 Baseline HMM

Context-dependent GMM-HMM acoustic models for Turkish andEnglish were

trained using 39-dimensional Mel frequency cepstral coefficients (MFCCs) which

include the delta and acceleration coefficients. Temporal context was included by

splicing 7 successive 13-dimensional MFCC vectors (current +/- 3 frames) into

a high dimensional supervector and then projecting the supervector to 40 dimen-

sions using linear discriminant analysis (LDA). Using these features, a maximum

likelihood linear transform (MLLT) [45] was computed to transform the means of

the existing model. The final model is the LDA+MLLT model. For the English

recognition system, the forced alignments obtained from the LDA+MLLT model

were further used for speaker adaptive training (SAT) by computing feature-space

maximum likelihood linear regression (fMLLR) transforms [46]. This is the

LDA+MLLT+SAT model. The forced alignments from this model were used for

training Turkish models which is discussed next. The resulting phone error rates

(PER) from a total of 27K phones are given in Table 3.2. The results for Turkish

show the error rate that would be achieved by a monolingual system if the full

28

Table 3.2: PERs of CD GMM-HMM models using full training setsof Turkish
and TIMIT.

GMM-HMM Models PER (%)
Turkish (LDA+MLLT) 24.25
TIMIT (LDA +MLLT+SAT) 19.6

training set were to be available. The results for TIMIT are based on a reduced

phone set of cardinality 39 [47]. All experiments were conducted using the Kaldi

toolkit [48].

3.6.3 Regularized Maximum Likelihood Training of GMM-HMM

Phones sharing the same WORLDBET symbol were mapped betweenthe two lan-

guages. This work differs from previous works [49] involving such hard semantic

maps in that we do not completely rely on the knowledge transfer involving such

maps. This is evident from the settingρ < 1 in Eq. (3.1). This is justified because

the phonetic variations associated with a phone in one language can be different

from the phonetic variations in another language, even though the two language-

dependent phones are canonically transcribed using the same WORLDBET sym-

bol. Second, we also map some phones from English to Turkish even though they

do not share the same WORLDBET symbols. This many-to-one mapping was

based on the degree of similarity in articulation between the two sounds. This

is important in the context of limited availability of data in the target language.

For example, English vowels were mapped to those Turkish vowels that were

closest in terms of tongue height followed by fronting. Since Turkish does not

have any diphthong and English has falling diphthongs, onlythe first vowel of the

diphthongs due to their higher prominence were mapped to theclosest vowel in

Turkish. After these mappings, there were still 8 Turkish phones which could not

be mapped. Therefore, the minimum, maximum, and average number of English

phones mapped to Turkish phones were 0, 4, and 1.23 respectively.

We converted the triphone alignments of English to Turkish using the above

mapping rulesbefore proceeding for monophone training of Turkish HMMs. Mono-

phones were trained using the criterion in Eq. (3.1). For triphone training, we

build a decision tree for each central phone with the leaves representing a variety

of senones for that central phone. Since each senone can represent multiple con-

texts, differences in contexts between Turkish and English are easily addressed

29

through these senones. Therefore, cross-lingual knowledge transfer occurs both

at the monophone and triphone stages using Eq. (3.1). However, the transfer is

more effective at the triphone stage since learning triphone modelscontain a larger

number of model parameters and hence require more data to be learned. At the

LDA+MLLT stage of training, there is no knowledge transfer because the LDA

transform cannot be shared between languages. However, knowledge transfer dur-

ing the triphone stage helps in generating better forced alignments thereby leading

to better models at any subsequent stage of training.

In Table 3.3, the PERs are shown for varying amounts of Turkish training data

(100 to 1000 utterances, out of the available 3974). The firstrow is the base-

line (BL) LDA+MLLT system trained using only the limited Turkish trainingset.

There is no knowledge transfer from English in this system. In the second row

is the transfer learned (TL) LDA+MLLT system that uses data fromboth the lan-

guages. Compared to the BL LDA+MLLT system, the relative improvement in

performace of TL LDA+MLLT system is in the range 0.95–2.35%. Expectedly,

with increasing amounts of training data the difference in performance begins to

shrink. The value ofρ is determined using the dev set in each case. We used

ρ = 10−2 for the first two cases (100, 200) and decreased this by an order of

magnitude with each further doubling of the amount of data.

Based on the relative increase in PER, it is clear that these improvements due

to transfer learning at the HMM stage are marginal. However,when forced align-

ments obtained from the TL LDA+MLLT system are used to train DNNs, signfi-

cant improvements can be obtained as discussed in the next section.

Table 3.3: PERs for LDA+MLLT models trained with limited Turkish utterances
and the entire TIMIT set.

Turkish Utterances 100 200 500 1000
PER (%)

(a) BL LDA+MLLT 44.75 39.50 33.65 29.47
(b) TL LDA+MLLT 43.70 38.57 32.92 29.19
Relative PER↓ (%) 2.35 2.35 2.17 0.95

3.6.4 Regularized Cross-Entropy Training of DNN

In the first step, we build multilingual shared hidden layers(MSHLs) by using

greedy layer-wise unsupervised training of stacked restricted Boltzmann machines

30

(RBMs). We do not build monolingual SHLs since it is well known that they are

outperformed by MSHLs [36], [37]. Hence, all DNN experiments, inlcuding the

baseline, use MSHLs.

We obtained multilingual audio files from the Special Broadcasting Service

(SBS) network which publishes multilingual radio broadcasts in Australia. These

data include include over 1000 hours of speech in 70 languages. We used about 20

hours of data divided equally between all 70 languages sincechoice of languages

is not important for pre-training and larger amounts of datamay not necessarily

yield significant gains [35]. We use 6 layers to build the MSHLs with 1024 nodes

per layer. The input features to the bottom layer, the Gaussian-Bernoulli RBM,

included 5 neighboring frames containing 39-dimensional MFCC vectors spliced

together and globally normalized to zero mean and unit variance. The learning

rate was set to 0.01. For all subsequent layers, the Bernoulli-Bernoulli RBMs, we

used a learning rate of 0.4. Mini-batch size was set to 100 forall layers. All layers

were randomly initialized.

After training the MSHLs, we proceed for supervised training of the Turkish

DNN by adding a randomly initialized softmax layer. Therefore, all DNNs re-

ported in Table 3.4 use 6 MSHLs and a randomly initialized softmax layer to

classifiy senones. The DNNs in Table 3.4 differ in the type of training and labeled

utterances used during the fine-tuning stage. These differences are explained in the

next three paragraphs. The learning rate was fixed at 0.008 until cross-validation

accuracy between two successive epochs fell below 0.5%. Thelearning rate was

halved for all subsequent epochs until the overall accuracyfailed to increase by at

least 0.1%. At this point, the algorithm terminates.

The PER results for various DNNs are given in Table 3.4. The first DNN is

the baseline (BL) DNN trained on alignments generated by theBL LDA+MLLT

system (no knowledge transfer from English) in Table 3.3, part (a). The second

DNN is trained on alignments generated by the TL LDA+MLLT system (knowl-

edge transfer from English) in Table 3.3, part (b). The relative improvement of

PERs are in the range 0.36-6.18%. Both the DNNs are trained inthe same way:

MSHLs, then add random softmax, then use forced alignments in Turkish to fine-

tune. The only difference is in the quality of Turkish alignments that were usedto

train the two DNNs. The alignments were generated by the HMMsin Table 3.3.

The quality of alignments generated by the TL LDA+MLLT HMM in Table 3.3 is

much better than the BL LDA+MLLT HMM which leads to training better DNNs.

In the third DNN, the DNN is trained using the modified training error crite-

31

Table 3.4: PERs for DNN models trained with HMM state alignments obtained
from Table 3.3.

Turkish Utterances
MSHL + rand softmax+ 100 200 500 1000

PER (%)
BL DNN (No Transfer):
(a) Train using 3.3(a) ali 45.98 38.75 31.73 26.63
TL DNN (Transfer):
(b) Train using 3.3(b) ali 43.14 38.61 30.96 26.10
Relative PER↓ (%) (b-a) 6.18 0.36 2.43 1.99
TL DNN (Transfer):
(c) Joint 42.11 37.81 30.55 26.23
Relative PER↓ (%) (c-a) 8.42 2.43 3.72 1.50
TL DNN (Transfer):
(d) Seq: L2 (2 iter) 39.90 35.98 29.78 25.73
(e) Seq: L2 (6 iter) 39.57 35.61 29.44 25.37
(f) Seq: L2 (10 iter) 39.25 35.51 29.56 25.39
Best relative PER↓ (%) 14.64 8.36 7.22 4.73

rion shown in Eq. (3.15). This requires using alignments from both Turkish and

a limited number (about 100 utterances) from English. WhileTurkish alignments

were obtained from TL LDA+MLLT system, English alignments were obtained

from the TIMIT LDA+MLLT+SAT system and converted to alignments in terms

of Turkish phones using English to Turkish mapping rules as was explained in

Section 3.6.3. We refer to this type of supervised training as “joint” training in

Table 3.4. The relative PERs improve further except for the last case (1000 utter-

ances). The relative improvements in PER in Table 3.4 are always computed with

respect to the PER of BL DNN (first row of Table 3.4).

In the next set of DNNs, we again use alignments fromboth Turkish and En-

glish as before, although in a sequential manner. First, we train the DNN using

English alignments converted to Turkish phones using earlystopping and then

retrain the same DNN using Turkish alignments until the termination criterion de-

termined by cross-validation accuracy is met. We refer to this type of supervised

training as “sequential” training where we first train the DNN using the source

language (English or L2) for a few iterations and then retrain the same DNN us-

ing the target language (Turkish). We also observed that early stopping while

training in L2 leads to better PERs. Here, the early stoppingcriterion is to train

the DNN for a fixed number of epochs in L2 (2-10) epochs. For cases where target

32

data was very limited (100 or 200), the number of L2 epochs was10. Otherwise,

6 epochs were sufficient. More epochs do not guarantee better accuracies. As

demonstrated in Table 3.4, PER improves in each case by 4.73–14.64% relative

(1.26–6.73% absolute), with an average improvement of 8.74% relative (3.38%

absolute). Through these experiments, it is clear that knowledge transfer can also

occur at the supervised training stages.

We think that initializing weights by sequential training is closest to the work

on MLP initialization schemes of Vu et al. [38]. In [38], theyuse the weights of a

multilingual MLP to initialize the weights of a target language MLP. Their target

language MLP used monophone based posteriors and the hiddenlayer weights

were initialized using the multilingual MLP whereas the softmax layer weights

were initialized randomly. The key differences in this work are: (a) the DNNs

are deeper than the MLPs, (b) the DNNs use CD phones instead ofmonophones

in [38], and (c) the DNNs are able to leverage the knowledge ofthe phonetic struc-

ture of the CD space by using source language senones. This ishelpful especially

in under-resourced scenarios.

3.7 Summary

In this study, cross-lingual transfer learning methods using supervised training

were investigated for limited resource scenarios. A regularized maximum likeli-

hood training criterion was proposed for training GMM-HMMsusing labeled data

from both target and source languages. Next, a regularized cross-entropy training

criterion was proposed for training DNNs which also uses labeled data from both

languages. Finally, it was shown that DNNs could also be trained sequentially

using both languages.

33

Chapter 4

Cross-Language Transfer Using
Crowdsourced Non-Native Transcriptions

4.1 Introduction

In Chapter 3, we presented cross-lingual adaptation in scenarios where transcribed

data in the target language are limited. In this chapter, we extend this further to an

even more adverse scenario where there are no target language data at all.

As in Chapter 3, we use the terms “URL” or “ target language” interchangeably

to refer to the language to be recognized. Similarly, we use “WRLs” or “ source

languages” to refer to the auxiliary languages for which we have training data but

the objective is not to recognize these languages.

When there are no transcribed data (i.e., transcriptions) available in the target

language, it is hard to build ASR systems in the target language that can perform

reasonably well. However, transfer learning techniques can be used to transfer

the acoustical knowledge from the source languages to the target language. In

the absence of transcribed data in the target language, leveraging knowledge from

source languages (WRLs) to build ASR systems in the target language (URL) is

usually referred to ascross-language transfer.

Lack of transcribed data in the target language can be attributed to the difficulty

of finding native transcribers. Another reason is the lack oflarge government

funded programs. However, there exist alternative resources for collecting tran-

scribed data. For example, transcriptions can be collectedfrom online non-native

crowd workers, or Turkers, who neither speak the target language nor have any

familiarity with it. We briefly outline this procedure. A single utterance in some

target languageL is transcribed by multiple Turkers who do not speakL. Due to

this, no single Turker can generate the correct transcription. Instead, a collection

of transcriptions from multiple Turkers is constructed fora single utterance inL.

This collection, after merging and some post-processing, can be represented as a

confusion network which we refer to asprobabilistic transcript (PT). In contrast,

34

the correct transcription generated by a native speaker canbe represented as a sin-

gle sequence of labels. We will refer to this sequence as adeterministic transcript

(DT). DTs are simply conventional transcriptions that we frequently encounter in

large vocabulary speech corpora. In Chapter 2, we outlined the differences be-

tween PTs and DTs. A key difference between PTs and DTs is that the labels in

PTs are noisy. This main focus of this chapter is on training DNNs using PTs in

the target language (URL). At no point do we use DTs to train these DNNs. Thus,

in this sense, this chapter deals withzero resource speech recognition.

The remainder of the chapter is organized as follows. In Section 4.2, we provide

a summary of past work. In Section 4.3 and Section 4.4, we propose the models to

adapt to PTs using weakly supervised and semi-supervised learning respectively.

In Section 4.5, we describe the experiments and outline the results followed by a

summary in Section 4.6.

4.2 Background

In [15,50], it was shown that it is possible to adapt HMMs (pre-trained using DTs

in WRLs) to an URL using PTs. In this study, the objective is toinvestigate DNN

training techniques that can adapt to the URL. Forced alignments obtained from

PT adapted HMMs are treated as “ground truth” labels for DNN training. Since

these alignments are based on PTs and not DTs, the “ground labels” are soft and

noisy rather than 1-hot and clean.

Self Training: One possibility is to ignore the soft labels in PTs since theyare

noisy and instead use a self-training method. Here, a well-trained ASR system

decodes the utterances in the URL and then uses the decoded labels and its confi-

dences to adapt itself to the URL. This was earlier used in monolingual [51] and

multilingual scenarios [52]. In [52], the multilingual ASRsystem was used to

decode the utterances in an unseen target language and was then retrained using

the decoded labels to adapt to the target language. This is illustrated in Fig. 4.1.

However, this method does not make use of PTs in the URL.

Vanilla DNN: In order to make use of the PTs, a better way is to use the conven-

tional approach to adapt a multilingual DNN to a new language. This is achieved

by preserving the shared hidden layers (SHLs) [36] of an existing multilingual

DNN and then replacing the weights in the multilingual trained softmax layer

with randomly initialized weights to form a new softmax layer. The new soft-

35

Multilingual
DNN

URL Audio URL Labels

Train

Figure 4.1: Self-training ASR.

max layer is fine-tuned using the labels of only the target language [37]. This is

illustrated in Fig. 4.2.

Figure 4.2: Vanilla DNN trained with
DTs.

Figure 4.3: Vanilla DNN trained with
PTs.

However, in the current scenario, there are no DTs. Hence, anobvious step

is to use the PTs to fine-tune the softmax layer. This is the Vanilla DNN train-

ing as illustrated in Fig. 4.3. Since CE training of DNN attempts to minimize

the Kullback-Leibler (KL) divergence between the distributions of ground truth

labels (which are noisy for PTs) and DNN posterior outputs, the posteriors sim-

ply learn the noisy distribution of the PTs. This degrades the performance of the

DNN, sometimes even worse than a GMM-HMM system. This is shown from the

experiments in Section 4.5. There are two reasons for this.

• First, discriminative training is more sensitive to the accuracy of labels com-

pared to ML training [53].

36

• Second, DNNs do not generalize well if the training and test data are gen-

erated from two different distributions. In [54], this was shown for the case

when a DNN was trained using wideband data but tested on narrowband

data. In the current context, the distributions are different during training

and testing. During training, we train the network to match the PT dis-

tributed labels. However, during testing, we expect the network outputs to

generate DT distributed labels.

4.3 Weakly Supervised Learning

In this section, we explore methods by which we are able to train DNNs which

perform consistently better than GMM-HMM systems. In particular, we explore

multi-task learning (MTL) methods [55,56].

4.3.1 Multi-Task Learning (MTL)

To take advantage of the PTs while at the same time alleviating the effect of noisy

labels, we explore the MTL approach. Here, multiple relatedtasks are trained

together with all tasks having a set of shared hidden layers (SHLs). However, each

task has its own softmax layer which is trained using the labels for that particular

task. The first softmax layer is trained using PTs of the target language whereas

the second layer is trained on DTs of all the available sourcelanguages. This is

the MTL system as illustrated in Fig. 4.4.

There could be a third softmax layer trained using self-training transcripts (ST).

A self-trained system was earlier described in Section 4.2.In the absence of super-

vised data, the STs can be used as “ground truth” labels to retrain a well-trained

ASR system. Thus, the ASR system retrains itself using its own predictions.

For all the MTLs, during test time, only the PT softmax layer is retained for

decoding while discarding the other softmax layers.

Now, we define the objective function of the MTL framework. The objective

function for the MTL system illustrated in Fig. 4.4 is

L(W) = LCE-PT(W) + λDTLCE-DT(W), (4.1)

37

Figure 4.4: MTL DNN trained with PTs and DTs.

38

where

LCE-PT(W) =
∑

t

∑

k

p(1)
t (k) log y(1)

t (k), (4.2)

LCE-DT(W) =
∑

t

∑

k

d(2)
t (k) log y(2)

t (k). (4.3)

The termp(1)
t (k) ∈ [0, 1] is the ground truth probability of senonek provided by

the PTs in the target language (URL). The termd(2)
t (k) ∈ {0, 1} is the ground truth

probability of senonek provided by the DTs in the source languages (WRL). The

termy(l)
t (k) is the output of the softmax nodek in the lth task of the MTL system.

The weights of the neural network are represented byW.

Why does MTL work? Our motivation for using multiple softmax layers

stems from encouraging results obtained in previous studies for multilingual train-

ing [57], [58], [36] and MTL [56]. In [57], Scanzioet al. were the first to propose

the multiple softmax architecture for training an artificalneural network (ANN)

simultaneously using multilingual data. Later, it was usedin [58], [36] for multi-

lingual training and in [56] for MTL. Their ANN was used as a front-end discrim-

inant features generator that were later used to train language dependent hidden

Markov model (HMM) based speech recognizer. In [58], this approach was fur-

ther extended by Veselyet al. by including a bottleneck intermediate layer. They

showed that such bottleneck features generalize well even in mismatched cross-

lingual settings, i.e., when training languages are different from the test language.

In [59], Tuskeet al. propagated this idea further by concatenating such bottle-

neck features with mel-frequency cepstral coefficients (MFCCs) in mismatched

cross-lingual scenarios. Furthermore, it was establishedin [36] that the SHLs

trained using multiple softmax layers over multilingual data outperform monolin-

gual SHLs. In [60], it was used for semi-supervised training. The key advantages

offered by training DNNs with multiple softmax layers are:

• Improved SHLs.

• SHLs are language independent provided the amount of training data is uni-

form across all languages. Thus, the SHLs represent a “global” view of the

multilingual data.

• Each softmax layer may be fine-tuned to a specific language thus making it

language dependent. Thus, the softmax layer represents a “local view” of

the multilingual data.

39

• It obviates the need to explicitly map the phones to a common phone set.

In this work, our conjecture is that simultaneous training of PTs along with DTs

offers multiple advantages.

• First, thespurious or incorrect error gradients backpropagated by the noisy

PT labels are partially corrected by thetrue or correct error gradients back-

propagated by the high quality DT labels. Therefore, due to strong supervi-

sion of highly reliable DT labels, the gradients become lessnoisy. The net

result is an improved non-linear transformation learned bythe SHLs and

hence better feature separation. This advantage is clearlylost with the sin-

gle softmax Vanilla DNNsystem trained using PTs since the training steps

are sequential in nature - first train using multilingual DTsand then fine-

tune using monolingual PTs. The noise introduced by PTs in the second

stage cannot be corrected.

• Since the output nodes of the DNN have one-to-one correspondence with

a multilingual senone decision tree, the output nodes of each softmax layer

represent multilingual senones. By exclusively training the PTs in the first

softmax layer, we train only those softmax weights which areconnected

to the nodes representing the senones in the target language. The weights

for the other senones remain untrained. This is expected to reduce the en-

tropy of the output activation vectors. In addition, if the quality of the PTs

improves, it will further lead to improved softmax weights.

• Unlike [57] where each language was assigned its own softmaxlayer, we

assign all source languages with DTs to only one softmax layer since the

primary role of DTs is to fix SHLs. This reduces the complexityof the

network structure.

4.3.2 Knowledge Distillation (KD)

In this section, we make improvements over the MTL system, described in Sec-

tion 4.3.1, using knowledge distillation (KD).

We provide a brief overview of KD first before describing the framework in

detail. In [61], the authors describe KD as the process of transferring knowledge

from a large cumbersome model (or an ensemble of models) to a small distilled

40

model. The cumbersome and distilled model are sometimes referred to as the

teacher and student models. Hence, KD is also known as teacher-student (TS)

learning. In [62], KD was used for reducing the size of deep networks.

If D is a data set on which the student model is to be trained, then the DNN

training procedure involves the following steps.

• In the first step, feedforwardD through a prior well-trained teacher DNN to

generate the posterior outputs (or teacher labels). The teacher labels form a

soft target distribution for each training example inD.

• In the second step, train the student DNN by minimizing the cross-entropy

(CE) loss between the teacher labels and posterior outputs of the student

DNN. Thus, the student DNN attempts to mimic the behavior of the teacher

DNN by trying to match its own outputs with those of the teacher labels.

To improve the generalizability of the student DNN, the teacher labels could be

generated by using a high temperatureT in the softmax of the teacher DNN.

The same temperatureT is then used at the softmax of the student DNN during

CE training. It can be shown that whenT → ∞ (high temperature limit), CE

training is equivalent to minimizing the mean square error (MSE) of the logits

(pre-softmax activations) between the teacher and studentDNNs [61].

Several studies [63–73] in the past have used KD to improve DNNs. In [63], a

small DNN was trained using teacher labels generated by feedforwarding a large

number of untranscribed data through a large DNN. In other studies, the authors

transfer the knowledge from a large RNN to a small DNN [64] or from a large

DNN to a small highway DNN [65]. In [66, 67], KD was used to improve ro-

bustness of DNNs to noisy data. The one that is most relevant to our work is

in [68] where KD was used for adaptation to under-resourced Japanese dialects

and children’s speech.

Now, we explain the KD framework in detail. Consider an inputfeature vector

x. A generalized softmax is a softmax function operating on logits zk(x) and a

temperatureT ∈ R+. Here,k ∈ {1, · · · ,K}, whereK is the total number of labels.

We will denotezk(x) as simplyzk and assume the dependence onx is implicit. The

outputyk(T) of the generalized softmax is given by

yk(T) =
exp (zk/T)

∑K
j=1 exp (z j/T)

. (4.4)

41

There are two extreme cases for Eq. (4.4). Lety(T) = [y1(T) · · · yK(T)]′. For very

hot and cold temperatures,y(T) approaches the uniform and 1-hot distribution

respectively. Thus, limT→∞ yk(T) = 1
K and limT→0 yk(T) = 1[k=arg maxy j

1≤ j≤K
]. In the KD

framework, the student model is trained to minimize the loss,

EKD = ρC(p, y(1))+ (1− ρ)C(q(T), y(T)), (4.5)

where

C(p, y(1)) = −
K
∑

k=1

pk log yk(1), (4.6)

C(q(T), y(T)) = −
K
∑

k=1

qk(T) log yk(T). (4.7)

The termpk is the posterior probability of labelk given the feature vectorx.

Since this is generated from the PTs, it need not be a binary value 0 or 1. Thus,

p need not be a 1-hot vector. Likewise,qk(T) is the posterior probability of label

k generated by feedforwardingx through a teacher DNN equipped with a gener-

alized softmax with temperatureT . In other words, it is a teacher label. In the

under-resourced scenario, the teacher DNN is a multilingual DNN trained with

DTs from WRLs. The termyk(T) is the posterior probability of labelk generated

by feedforwardingx through a student DNN equipped with a generalized softmax

with temperatureT as in Eq. (4.4). The student DNN is the target language DNN

to be trained with PTs from the URL. The outputsyk(1) of the student DNN in

Eq. (4.6) are constrained to a temperature of one whereas in Eq. (4.7) the temper-

ature can be anyT ∈ R+. Finally,ρ is a weight that balances the losses in Eq. (4.6)

and Eq. (4.7).

During backpropagation, the gradient of Eq. (4.7) with respect to the student

logit zk, i.e., ∂C(q,y)
∂zk

, is artificially scaled byT 2. This is because the gradient itself

is a function of 1/T 2. Thus, the artificial scaling removes the dependence onT .

As a result, the individual backpropagation errors from Eq.(4.6) and Eq. (4.7)

have similar scales and can be added meaningfully.

Knowledge distillation specializes to several interesting cases.

• Whenρ = 1, Eq. (4.5) is same as the standard CE loss.

• When 0< ρ < 1 andT = 1, Eq. (4.5) is equivalent to regularizing the CE

loss with Kullback-Leibler divergence (KLD) [74].

42

• Whenρ = 0 (indicating the absence of ground truth labels), Eq. (4.5)can be

used for unsupervised adaptation. For example, in the case of ρ = 0, T = 1

and when the student DNN isnot initialized from a teacher DNN, Eq. (4.5)

was used for unsupervised adaptation using the teacher labels obtained from

a large teacher DNN [63].

• Whenρ = 0, T = 1 and the student DNN is initialized from the teacher

DNN, training using Eq. (4.5) is equivalent to self-training. Here, the teacher

labelsq(1) are identical to the outputsy(1) of the student DNN only be-

fore training begins. However, once training begins, the teacher labels are

kept constant whereas the student outputs are allowed to change with every

weight update.

4.3.3 Target Interpolation (TI)

In this section, we make improvements over the MTL system, described in Sec-

tion 4.3.1, using target interpolation. The key idea here isthat we interpolate

the confidences of the labels provided by PTs with the confidences of the target

language DNN. The DNN is then trained using the new interpolated confidence

values. Intuitively, we emphasize the beliefs of the learner rather than completely

relying on noisy “ground truth” labels.

Now, we explain the TI framework in detail. We will omit the dependence on

T since in this sectionT = 1 always. First, we defineC(f (y), y) as

C(f (y), y) = −
K
∑

k=1

f (yk) log yk, (4.8)

where f (.) is an element-wise function ofy such thatf (yk) ∈ [0, 1] and
∑

k f (yk) =

1. The DNN is trained to minimize the loss,

E = ρC(p, y) + (1− ρ)C(f (y), y),

= C(ρp + (1− ρ) f (y), y), (4.9)

whereC(p, y) is as defined in Eq. (4.6). The second step in Eq.(4.9) is due to the

linearity of C(., .) in the first argument. We consider two among several choices

43

of f (.). They are

f (yk) =























yk, (soft)

1[k=arg maxy j
1≤ j≤K

] . (hard)
(4.10)

The loss functions corresponding to these choices are

Esoft = −

K
∑

k=1

(ρpk + (1− ρ)yk) log yk, (4.11)

Ehard= −

K
∑

k=1

(ρpk + (1− ρ)1[k=arg maxy j
1≤ j≤K

]) log yk. (4.12)

And the error gradients are

∂Esoft

∂zk
= ρ(yk − pk) + (1− ρ)yk(I(yk) − H(y)), (4.13)

∂Ehard

∂zk
= ρ(yk − pk) + (1− ρ)(yk − 1[k=arg maxy j

1≤ j≤K
]), (4.14)

where

I(yk) = − log yk,

H(y) = −
K
∑

k=1

yk log yk.

The motivation behind the choices in Eq. (4.10) is that we usethe label confi-

dences of the DNN instead of completely relying on the noisy PT labels. Hence,

we modify the PT confidencepk with a new confidence which is an interpolation

betweenpk and f (yk). For the soft case, we use the entire output distribution ofthe

DNN. Then the loss in Eq. (4.11) becomes the standard CE loss with entropy reg-

ularization. A DNN trained using this loss function will finda balance between

minimizing the CE lossC(p, y) and lowering the entropy of its outputsC(y, y).

Since PTs are prone to high entropies, lowering the entropies of the DNN outputs

is desirable. For the hard case, we simply binarize the DNN outputs to a 1-hot dis-

tribution. Compared to the soft case, the hard case ignores the cross-correlations

between different classes. In both cases, the new interpolated confidences still

form a valid probability distribution since they sum to one when summed over the

K labels.

44

4.4 Semi-Supervised Learning

In this section, we make improvements over the MTL system, described in Sec-

tion 4.3.1, using semi-supervised learning. The key idea here is that we make use

of unlabeled data, along with labeled data, while training the MTL to discover

additional useful hidden layer representations.

4.4.1 Deep Auto-Encoder

We use (x, y) to denote labeled examples andx to denote unlabeled examples.

In the semi-supervised learning paradigm, both unlabeled examples drawn from

P(x) and labeled examples drawn fromP(x, y) are used to learn the conditional

distributionP(y|x). The advantage of using unlabeled examples is that they can

learn a representationh = f (x,W) which can help group similar classes together.

This, in turn, can improve the predictions made byP(y|x).

The MTL framework has the advantage that it unifies both the generativeP(x)

and the discriminativeP(y|x) models together. To see how this is possible, assume

x ∼ N(x̂,Σ). Thus,

P(x) ∝ exp
{

−
1
2

(x − x̂)TΣ−1(x − x̂)
}

, (4.15)

where

x̂ = g(x,W),

Σ = I (identity covariance matrix).

Maximing logP(x) is equivalent to minimizing the mean square error (MSE)‖x − x̂‖2.

Thus, if the MTL is designed to predictx̂ at the output of one of its sub-tasks, it

will try to match the output̂x with the inputx. In this sense, the MTL acts as a

deep auto-encoder (DAE). The other sub-tasks of the MTL can still model P(y|x)

as a multinomial distribution when trained using the CE criterion. An illustration

of this framework is shown in Fig. 4.5.

The first task is trained using PTs, the second task is trainedusing DTs, and the

third task is trained using raw features. Since the backpropagated errors generated

from training PTs are noisy, the DAE can help fix these errors and thus discover

more useful hidden layer representations. The MTL is trained to minimize the

45

Figure 4.5: MTL using deep auto-encoder.

46

following loss:

L(W) = LCE-PT(W) + λDTLCE-DT(W) + λDAELDAE(W), (4.16)

whereLCE-PT(W) andLCE-DT(W) are the CE losses at the first and second sub-

tasks of the MTL respectively. They are represented by Eq. (4.2) and Eq. (4.3).

The final lossLDAE(W) is the MSE loss and is given by

LDAE(W) =
∑

t

‖xt − x̂t‖
2 . (4.17)

Auto-encoders have been previously used for noise reduction using single-layer

networks in [75] and deeper recurrent layers in [76]. The denoising auto-encoder

is basically a single-layer neural network which attempts to reconstruct a clean

version of its own noisy input. In [76], this idea was furtherextend to deeper

layers as deep denoising auto-encoder. By incorporating the RNN structure, it

becomes a deep recurrent denoising auto-encoder.

More recently, deep denoising auto-encoders in the MTL framework have been

used in the problem of far-field speech recognition [77]. In the far-field scenario,

speech signals captured by distant microphones located faraway from speakers

are susceptible to dereveberation and additive noise. In contrast, time synchro-

nized speech signals captured by close-talk microphones are relatively clean. An

auto-encoder was used to learn the mapping between the noisysignals of distant

microphones and the relatively clean signals of close-talkmicrophones. Since the

primary objective is to improve the classification performance of an ASR system,

the authors in [77] integrate the auto-encoder into an MTL framework. Thus, the

unified network optimizes two tasks simultaneously - the denoising task and the

recognition task.

Auto-encoders have also been used to generate bottleneck features in under-

resourced scenarios when little training data are available. For example, in [78],

the authors train a stack of deep auto-encoders (DAEs) in a layer-wise unsuper-

vised manner to predict clean speech from artificially corrupted noisy speech.

Then a bottleneck layer, an additional hidden layer, and a final softmax layer are

added to the stack of DAEs before fine-tuning the entire network using backprop-

agation.

More relevant to our work is the study in [79]. The authors train a neural net-

work to recognize digits from inaccurately labeled images in the MNIST dataset.

47

To incorporate a notion of perceptual consistency in the training, they train an

auto-encoder in parallel to promote top-down consistency of model predictions

with the observations. This allowed the model to discover the noise pattern in the

data.

4.5 Results

In this section, we present the results for the methods described in Section 4.3 and

Section 4.4.

4.5.1 Data

• Corpus: Multilingual audio files were obtained from the Special Broadcasting

Service (SBS) network which publishes multilingual radio podcasts in Aus-

tralia. These data include over 1000 hours of speech in 68 languages. The

following languages were used in our experiments: Swahili (swh), Amharic

(amh), Dinka (din), Mandarin (cmn), Arabic (arb), Cantonese (yue), and Hun-

garian (hun). The corpus is summarized in Table 4.1. The podcasts were not

entirely homogeneous in the target language and contain utterances interspersed

with segments of music and English words. An HMM-based language identi-

fication system was used to isolate regions that correspond mostly to the target

language. These long segments were then split into smaller 5-second utter-

ances.

Table 4.1: SBS multilingual corpus.

Language Utterances Phones
Train Test

Swahili (swh) 462 123 48
Amharic (amh) 516 127 37
Dinka (din) 248 53 27
Mandarin (cmn) 467 113 52
Arabic (arb) 468 112 46
Cantonese (yue) 544 148 32
Hungarian (hun) 459 117 65
All - - 82

48

• Turkers: More than 2500 Turkers participated in transcribing, with roughly

30% of them claiming to know only English. The remaining Turkers claimed

knowing other languages such as Spanish, French, German, Japanese, and Man-

darin. The utterances were limited to a length of 5 seconds. This is because the

Turkers did not understand the utterance language and it waseasier for them

to annotate short utterances than long. Since English was the most common

language among the Turkers, they were asked to annotate the sounds using En-

glish letters. The sequence of letters was not meant to be meaningful English

words or sentences since this would be detrimental to the final performance.

The important criterion was that the annotated letters represent sounds they

heard from the utterances as if they were listening to a sequence of nonsense

syllables in some exotic language. Since no Turker is likelyto generate the

perfect transcript, each utterance was transcribed by 10 Turkers creating 10 dif-

ferent transcripts per utterance. These transcripts were converted to phones and

merged into a PT using [24]. Turkers were typically paid $500per 10 Turkers

for transcribing an hour of audio.

• PTs and DTs: PTs, worth about 1 hour of audio in the target language, were

collected from Turkers. The same audio files were presented to native tran-

scribers to generate DTs. However, the DTs in the target language were never

used for training ASR systems. These were used only for benchmarking oracle

error rates. The oracle scenario is the ideal scenario whereone would have ac-

cess to DTs in the target language. PTs in the target language(URL) and DTs

in the source languages (WRL) were used for training ASR systems. We are

now ready to outline the amounts of training data that were used for training an

ASR in the target language (URL)L.

1. PTs inL: PTs, from about 40 minutes of audio inL, were collected from

Turkers who did not speakL.

2. Zero DTs inL: No DTs inL were used for training an ASR inL.

3. DTs only in source languages: DTs from six other source languages (, L)

were used for training an ASR inL. About 40 minutes of DTs were used per

source language. Hence, the total amount of DTs available for training was

≈ 4 hours (40 minutes/language× 6 languages).

4. Unsupervised data: There were about 5.5 hours of unsupervised data inL.

The development and test sets were worth 10 minutes each. Thetest utterances

49

were sufficiently shuffled so as to avoid biasing to a subset of speakers or to

a specific gender. As an example, consider Table 4.2 whereswh is the target

language to be recognized. Then the training set consists of40 minutes of PTs

in swh and 40 minutes of DTs in each ofamh, din, cmn, arb, yue, andhun

combined.

Table 4.2: Training set when Swahili (swh) is target language.

Language Transcript Type Size
Swahili (swh) PT 40 min
Amharic (amh) DT 40 min
Dinka (din) DT 40 min
Mandarin (cmn) DT 40 min
Arabic (arb) DT 40 min
Cantonese (yue) DT 40 min
Hungarian (hun) DT 40 min
Swahili (swh) - 5.5 hrs

• Universal Phone Set: The orthographic transcriptions for the PTs and DTs

were converted to IPA based phone transcriptions. The canonical pronuncia-

tion was derived from a lexicon. If a lexicon was not available, a language-

specific G2P model was used. To form a set of multilingual phone symbols,

diphthongs/triphthongs were split into two/three individual phone symbols un-

less they were the same as English diphthongs. Diacritics such as tones and

stress markers tend to make the phone symbols unique to a particular language.

Therefore, to enable phone merging across languages, such language specific

diacritics were removed from the canonical phone transcriptions.

This was followed by merging the phones to a reduced phone set. If an IPA

phone symbol was unique in the sense that it appeared in the phone transcrip-

tions of only one language, then that symbol was merged with another symbol

which differs in only one distinctive feature. Repeating this processseveral

times guarantees that each phone is represented in at least two languages. This

enables sharing data across languages. The merged phone setis the multilin-

gual or universal phone set. The total number of phones in themultilingual set

(i.e., all languages) was 82 which excludes the silence phone. An individual

breakdown of phones per language is outlined in Table 4.1.

• Language Models: Finally, phone based language models (LMs) were built

from the text in the target language mined from Wikipedia. Tomeasure the

50

performance of the ASR systems, phone error rate (PER) was used as the eval-

uation metric. All experiments were conducted using the Kaldi toolkit [48].

Kaldi source code in C++ and toy examples of the proposed models are avail-

able in our github repository.1

4.5.2 Features

Thirteen dimensional MFCCs, spliced with+/- 3 neighboring frames, were ex-

tracted from speech utterances. These were then transformed using a LDA trans-

form followed by feature-space maximum likelihood linear regression (fMLLR)

transform resulting in 40-dimensional fMLLR features. These features were kept

low dimensional to avoid the curse-of-dimensionality problem which is more

likely to occur in under-resourced scenarios. These features were then mean nor-

malized using cepstral mean normalization (CMN) before using them for DNN

training.

4.5.3 Baselines and Proposed Models

The following baselines were used in our evaluation:

• Monolingual GMM-HMM and DNN (Section 4.5.4): These models were

trained using DTs in the target language. This is the oracle scenario if we

assume DTs were to be available in the target language. The oracle scenario

was used only for benchmarking performance against other models. For

DNN training, the DNN was first initialized using RBM pre-training2 [80]

using unlabeled data from source languages. Following this, a softmax layer

was added on top of the SHLs and the DNN was fine-tuned using CE train-

ing with DTs in the target language.

• Multilingual GMM-HMM and DNN (Section 4.5.5): These modelsnever

used any DTs or PTs in the target language. They were trained after pooling

the DTs from all the source languages. Hence, these are multilingual ASRs.

After RBM pre-training using source languages, the DNN was fine-tuned

using CE training with DTs from the source languages as targets. Since

1git clone -b teacher-student https://github.com/irrawaddy28/SBS-kaldi-2015
2All DNNs considered in this study were initialized using RBMpre-training using 6 shared

hidden layers (SHLs) with 1024 nodes per layer.

51

target language data were not used during training, these models are not

adapted to the target language.

• Self-training DNN (Section 4.5.6): This is the model that was described in

Section 4.2. This is an adapted model since a multilingual DNN was used

to decode the utterances in the target language and then the decoded labels

were used as the new targets for another round of training.

• MAP GMM-HMM (Section 4.5.7): This is the GMM-HMM model MAP

adapted to the target language using PTs in the target language.

• Vanilla DNN (Section 4.5.8): This is the DNN model adapted tothe target

language using PTs in the target language. After RBM pre-training, a single

softmax layer was added and fine-tuned using PTs in the targetlanguage.

The following are the proposed methods that were used in our evaluation:

• MTL-CE (Sections 4.5.9): This is the MTL model, from Section4.3.1,

adapted to the target language. It has two softmax layers. The first soft-

max layer was fine-tuned using PTs in the target language. Thesecond

softmax layer was fine-tuned using DTs in source languages. Both the tasks

were trained to minimize the CE loss. The MTL model never usedany DTs

in the target language.

• MTL-KD (Section 4.5.10): This is the MTL model, from Section4.3.2,

adapted to the target language. The first task of the MTL modelwas trained

to minimize the lossEKD in Eq. (4.5) with 0< ρ < 1 andT ≥ 1. Specif-

ically, values ofρ ∈ {0.2, 0.4, 0.6, 0.8} were used. For the special case of

T = 1, Eq. (4.5) becomes KLD regularization [74].

• MTL-TI (Section 4.5.11): This is the MTL model, from Section4.3.3,

adapted to the target language. The first task of the MTL modelwas trained

to minimize the lossEsoft in Eq. (4.11) andEhard in Eq. (4.12) while using

ρ ∈ {0.2, 0.4, 0.6, 0.8}.

• MTL-DAE (Sections 4.5.12): This is the semi-supervised MTLmodel,

from Section 4.4.1, adapted to the target language. It is trained using PTs

and unlabeled data in the target language along with DTs in source lan-

guages.

52

4.5.4 Monolingual GMM-HMM and DNN

In the first baseline, monolingual GMM-HMM and DNN models were trained and

tested using DTs in the target language. This is the oracle scenario if we assume

DTs were to be available in the target language.

The monolingual PERs over a total of about 7K-8K phones are given in Ta-

ble 4.3. This gives us an estimate about the approximate bestcase (lower bound)

PERs.

Table 4.3: PERs of monolingual GMM-HMM and DNN models. Dev set in
parentheses.

Lang PER (%)
GMM-HMM DNN

swh 35.13 (45.78) 34.25 (39.64)
amh 51.90 (48.68) 46.69 (44.07)
din 51.56 (47.03) 48.37 (48.00)
cmn 31.80 (26.14) 28.26 (25.16)

4.5.5 Multilingual GMM-HMM and DNN

In this experiment, we assume DTs in the target language are not available during

training. However, DTs of the source languages are still available. Thus, DTs

from the 6 source languages were pooled together to train multilingual GMM-

HMMs and multilingual DNNs. Decision tree clustering of themultilingual data

resulted in about 1000 senones. The multilingual DNNs were trained using 6

hidden layers with 1024 nodes per layer and a final softmax layer with about 1000

output nodes representing the senones.

Table 4.4: PERs of multilingual GMM-HMM and DNN models. Dev set in
parentheses.

Lang PER (%)
GMM-HMM DNN # Senones

swh 63.02 (66.00) 60.40 (61.62) 950
amh 68.65 (68.47) 65.56 (64.82) 1008
din 67.93 (66.79) 63.81 (65.44) 1012
cmn 69.55 (67.08) 59.50 (59.50) 985

The PERs are given in Table 4.4. Expectedly, due to lack of DTsin the target

language, the PERs are much higher than the oracle case in Table 4.3. Hence,

53

the PERs in Table 4.4 establish the worst case (upper bound) PERs. In all subse-

quent experiments, we start from the worst case PERs in Table4.4 and attempt to

approach the best case PERs in Table 4.3 by including PTs during training.

4.5.6 Self-Training DNN

In this experiment, we use a self-training algorithm [51] inwhich a multilingual

DNN decodes the training utterances in the target language and then uses the

confidence selected decoded labels to retrain itself in the target language [52].

Self-training is an unsupervised adaptation method.

The objective of this experiment is to evaluate the efficacy of ASR generated

labels which in this case are self-training transcripts (STs). Since the multilin-

gual DNN is not trained using the target language DTs, the decoded labels are

very likely to be unreliable. Hence, we use only a subset of frames, selected by

first evaluating the frame level confidences [51]. The frame confidences are sim-

ply the values of the posteriors of the best path in the decoding lattice generated

as the output of the multilingual DNN. In the second step, an empirically deter-

mined threshold is chosen and compared with the frame confidences. Any frame

whose confidence is above the threshold is selected for training. Otherwise, it is

discarded.

Table 4.5: PERs of self-trained DNN models. Dev set in parentheses.

Lang PER %
DNN

swh 58.12 (60.36)
amh 64.16 (63.95)
din 63.13 (62.26)
cmn 57.37 (57.73)

The results are given in Table 4.5. Compared to the multilingual DNN in Ta-

ble 4.4, the improvement due to self-training is in the range0.68%-2.28%. We

determined frame confidence thresholds as 0.5 or 0.6 from thedevelopment set.

4.5.7 Maximum A Posteriori GMM-HMM (MAP GMM-HMM)

In this experiment, the multilingual GMM-HMM model in Section 4.5.5 is adapted

using the PTs of the target language. The multilingual GMM-HMM acoustic

54

model is adapted using MAP adaptation described in more detail in [15, 50]. The

main component in this step is that the ASR search graph, represented as a WFST

mapping from the acoustic signal to a sentence, is defined by the composition

H ◦C◦L◦G◦PT instead of the usualH ◦C◦L◦G. Here,PT is the confusion net-

work of phones obtained from crowd workers as was described in Section 2.1.3.

The PER results for the MAP adapted GMM are under the column MAP GMM-

HMM in Table 4.6. The PER results for the multilingual DNN (column MULTI-

DNN in Table 4.6) are replicated from Table 4.4 for purposes of comparison.

The absolute improvement in PERs as a result of adapting using PTs is in the

range 3.12%-15.08%. This is much better than the improvement obtained using

ASR labels (STs) in the previous section. Since the MAP GMM-HMM models

significantly outperform the self-trained DNNs, we use MAP GMM-HMM as the

starting baseline within the class of PT adapted models.

4.5.8 Vanilla DNN

In this experiment, we follow the conventional procedure ofadapting a multi-

lingual DNN to the target language. In the first step, the softmax layer of the

multilingual DNN (Section 4.5.5) is replaced by a randomly initialized softmax

layer while retaining the SHLs [38]. The resulting DNN is then fine-tuned using

the forced alignments generated by the MAP adapted model (Section 4.5.7). This

is the conventional way to adapt a DNN using DTs [37]. However, this approach

does not work very well for PTs largely due to the presence of incorrect labels

in PTs [16]. The results are shown under the column Vanilla DNNin Table 4.6.

Clearly, the performance of Vanilla DNNis worse than MAP GMM-HMM for

Swahili and Dinka and only marginally better for Amharic. Onan average, the

Vanilla DNN marginally outperforms the MAP GMM-HMM by only about 0.22%

absolute.

4.5.9 Multi-Task Learning With Cross Entropy (MTL-CE)

In this experiment, instead of using a single softmax layer,we use two separate

softmax layers (one per task) as illustrated in Fig. 4.4. Thefirst task is trained

with PTs in the target language, whereas the second task is trained with DTs in the

source languages. In addition, we found data augmentation beneficial for training.

55

That is, we introduced two additional copies of the input data to the first task. The

results are shown under the column MTL-CE in Table 4.6. The absolute decrease

in PER compared to the Vanilla DNN is consistent across all languages and is in

the range 1.00%-1.5%. Comparing the PT adapted MTL-CE with the unadapted

MULTI-DNN, the absolute decrease in PER is in the range 4.77%-15.51%.

Table 4.6: PERs of multilingual DNN (MULTI-DNN), MAP GMM-HMM,
Vanilla DNN, MTL-CE models. The number in the parentheses isthe absolute
improvement in PER over MULTI-DNN. Best PER for each is language
highlighted in bold.

Lang PER (%)
Unadapted PT Adapted

MULTI-DNN MAP GMM-HMM Vanilla DNN MTL-CE
swh 60.40 (0.0) 45.32 (15.08) 45.89 (14.51)44.89 (15.51)
amh 65.56 (0.0) 61.98 (3.58) 61.72 (3.84) 60.79 (4.77)
din 63.81 (0.0) 59.48 (4.33) 59.64 (4.17) 58.65 (5.16)
cmn 59.50 (0.0) 56.38 (3.12) 55.03 (4.47) 53.53 (5.97)

4.5.10 Multi-Task Learning With Knowledge Distillation
(MTL-KD)

In this experiment, we train the MTL model using KD. The PERs comparing the

MTL models trained with CE, KLD, and KD losses are outlined inTable 4.7. We

highlight only the most interesting cases withρ in the range 0.6− 0.2 andT = 2.

From Table 4.7, it is clear that the KD models outperform the baseline CE and

KLD models.

Now, we analyze the effect ofT andρ on recognition rates. Keepingρ fixed and

varyingT is equivalent to comparing KLD with KD models. Thus, asT increases

(keepingρ constant), KD models outperform their KLD counterparts most of the

time. IncreasingT makes the class correlations more pronounced. This indicates

that the temperature parameter improves the generalization capacity of the DNNs

by avoiding tuning to the noisy PTs. Next, keepingT > 1 fixed and varyingρ

is equivalent to comparing within the family of KD models. Asρ decreases, the

PERs tend to decrease first and then increase. Desirable values ofρ areρ < 0.5.

This implies that the performance improves when the model relies increasingly

on the teacher labels rather than the PT labels. However, this trend reverses for

very low values ofρ. For example, in the extreme case whenρ = 0 (completely

56

Table 4.7: PERs of different MTL models trained with CE, KLD, and KD losses.
The parametersρ andT are the weighting and temperature parameters in
Eq. (4.5). Best PER for each is language highlighted in bold.

Model Parameters Language
ρ T swh amh din cmn

MTL-CE 1 - 44.89 60.79 58.65 53.53
MTL-KLD 0.6 1 44.11 59.97 58.19 51.00
MTL-KLD 0.4 1 44.21 59.36 58.33 50.29
MTL-KLD 0.2 1 44.63 59.55 58.65 50.93
MTL-KD 0.6 2 44.12 59.82 58.15 50.93
MTL-KD 0.4 2 43.66 59.40 57.97 49.85
MTL-KD 0.2 2 44.40 59.08 58.26 49.38

ignoring PT labels), we noticed exceedingly high PERs above85%. This proves

that PT labels are still useful.

4.5.11 Multi-Task Learning With Target Interpolation (MTL-TI)

In this experiment, we train the MTL model using TI. The PERs comparing the

CE and TI models are outlined in Table 4.8. Again, we highlight only the most in-

teresting cases ofρ (0.6−0.2). Clearly, both variants of TI models outperform the

CE model. Among the TI models, TI (Soft) outperforms TI (Hard) for the African

languages (Swahili, Amharic, and Dinka). For Mandarin, TI (Hard) outperforms

TI (Soft) by a small margin. Surprisingly, for both TI (Hard)and TI (Soft),ρ = 0.4

is the most desirable value. Moreover, quite conveniently,this value ofρ does not

change across languages explored in this study. Similar to the KD model, values

of ρ < 0.5 imply that the performance improves when the model relies increas-

ingly on the DNN labels rather than the PT labels. This means interpolation is

useful and that the new interpolated targets are effective in alleviating the noise in

PT labels. However, similar to the KD model, settingρ = 0 results in very high

PERs.

Finally, a summary of the best KD and TI models for each language, along with

their parameters, is highlighted in Table 4.9. The average improvement is about

2.12% absolute. This is quite useful for us considering thatthis is a zero-resource

scenario with no access to reliable ground truth DTs in the target URL.

57

Table 4.8: PERs of different MTL models trained with CE and TI losses. The
parameterρ is the weighting parameter in Eq. (4.11) and Eq. (4.12).

Model Parameter Language
ρ swh amh din cmn

MTL-CE 1.0 44.89 60.79 58.65 53.53
MTL-TI (Hard) 0.6 43.96 60.44 58.69 51.14
MTL-TI (Hard) 0.4 44.08 59.98 57.94 49.81
MTL-TI (Hard) 0.2 44.24 60.58 59.19 51.20
MTL-TI (Soft) 0.6 43.49 60.19 58.62 51.09
MTL-TI (Soft) 0.4 43.29 59.65 57.65 50.02
MTL-TI (Soft) 0.2 44.16 61.14 59.26 50.79

Table 4.9: Summary of the best MTL-KD and MTL-TI models. Absolute
improvements over the MTL-CE model inside parentheses.

Lang Baseline (CE) Best Parameters
PER PER Model ρ T

swh 44.89 43.29 (1.60) TI (Soft) 0.4 -
amh 60.79 59.08 (1.71) KD 0.2 2
din 58.65 57.65 (1.00) TI (Soft) 0.4 -
cmn 53.53 49.38 (4.15) KD 0.2 2

4.5.12 Multi-Task Learning With Deep Auto-Encoder
(MTL-DAE)

In this experiment, we train the MTL model in a semi-supervised fashion as illus-

trated in Fig. 4.5. Although the MTL models in the preceding sections improve

PERs over the Vanilla DNN, they do not make use of large amounts of untran-

scribed audio data that are available in the target language. Thus, we use the DAE

as an additional sub-task in the MTL framework. The structure of the DAE is

simple. It uses the same SHLs as those in the MTL framework. Inaddition, it

has a distinct output layer which is simply an affine transform layer added on top

of the final SHL of the MTL. Thus, the SHL acts as the encoder andthe affine

transform layer acts as the decoder. The DAE is trained to minimize the MSE loss

between the input features and output of the decoder.

We used about 4000 untranscribed utterances from the targetlanguage for train-

ing the DAE. First, fMLLR features were generated for the untranscribed utter-

ances through a two-pass estimation of the fMLLR transforms. The PT adapted

MAP GMM-HMM model was treated as the alignment model. Following this,

the fMLLR features were normalized to zero mean and unit variance. In an iden-

58

tical fashion, the input features for all tasks in the MTL were normalized. This

helps avoid the possibility of generating large MSE errors at the DAE output. In

addition, we keep the weighting termλDAE in Eq. (4.16) to low values between

0.001-0.005.

The frames used to train the DAE far outnumbered the frames for other tasks.

This results in minibatches getting biased toward the DAE task. In order to main-

tain a balance of frames across all tasks in the minibatch, wecreate duplicate

copies of frames for both the PT and DT tasks. We used 4-6 copies for the PT

tasks and 1-2 copies for the DT tasks. The number of copies andacceptable val-

ues ofλDT in (4.16) were found from the development set.

Comparisons of the baseline models (GMM-HMM, Vanilla DNN) and the pro-

posed MTL models (MTL+CE, MTL+KD, MTL+TI, MTL+DAE) are given in

Figs. 4.6-4.9.

GMM-HMM Vanilla DNN MTL+CE MTL+KD MTL+TI MTL+DAE
42

43

44

45

46

45.32

45.89

44.89

43.66

43.29

43.72

PT Adapted Model

P
E

R
%

Baselines Proposed

Figure 4.6: Comparison of PERs PT adapted baseline vs. proposed models in
Swahili.

4.6 Summary

In this chapter, we summarized the improvements in PERs obtained using the

PT adapted proposed MTL models over the unadapted multilingual DNN and

59

GMM-HMM Vanilla DNN MTL+CE MTL+KD MTL+TI MTL+DAE
58

59

60

61

62
61.98

61.72

60.79

59.08

59.65

59.32

PT Adapted Model

P
E

R
%

PERs of PT Adapted ASRs in Amharic

Baselines Proposed

Figure 4.7: Comparison of PERs PT adapted baseline vs. proposed models in
Amharic.

GMM-HMM Vanilla DNN MTL+CE MTL+KD MTL+TI MTL+DAE
56

57

58

59

60

59.48
59.64

58.65

57.97

57.65 57.65

PT Adapted Model

P
E

R
%

Baselines Proposed

Figure 4.8: Comparison of PERs PT adapted baseline vs. proposed models in
Dinka.

60

GMM-HMM Vanilla DNN MTL+CE MTL+KD MTL+TI MTL+DAE

48

50

52

54

56

56.38

55.03

53.53

49.38
49.81

51.97

PT Adapted Model

P
E

R
% Baselines Proposed

Figure 4.9: Comparison of PERs of PT adapted baseline vs. proposed models in
Mandarin.

the PT adapted Vanilla DNN. This is highlighted in the fourthcolumn of Ta-

ble 4.10. The best MTL models for Swahili, Amharic, Dinka, Mandarin are

MTL+TI, MTL+KD, MTL+TI/MTL+DAE, MTL+KD respectively. The average

relative improvements of the best MTL over the Multilingualand Vanilla DNNs

are 16.22% and 5.89% respectively.

In addition to this, we evaluate the utility factor of PTs in the last column of

Table 4.10. We define the utility factor of PTs as the fractionof phones recovered

using a PT adapted model (for e.g., best MTL model) compared to a DT adapted

model (for e.g., monolingual/oracle DNN). The average utility factor is 43.02%.

Table 4.10: Summary of PERs for the unadapted baseline DNN (MULTI-DNN),
PT adapted baseline DNN (Vanilla DNN), PT adapted proposed MTL (best
MTL), DT adapted monolingual DNN (MONO-DNN). Relative improvements
in PER of the best MTL over MULTI-DNN and Vanilla DNN are in thefourth
column. Utility factor of PTs for different languages are in the last column.

Lang A. MULTI-DNN B. Vanilla DNN C. Best MTL (Rel. PER) D. MONO-DNN Utility = A−C
A−D

(Unadapted) (PT Adapted) (PT Adapted) (DT Adapted)
swh 60.40 45.89 43.29 (28.33, 5.67) 34.25 65.43%
amh 65.56 61.72 59.08 (9.89, 4.28) 46.69 34.34%
din 63.81 59.64 57.65 (9.65, 3.34) 48.37 39.90%
cmn 59.50 55.03 49.38 (17.00,10.27) 28.26 32.40%

Despite these improvements, there are about 35-68% (100 - Utility) phones

61

that could be recovered. Future work includes compensatinglabel noise by inter-

polating PT labels with neural network predictions and estimating noisy channel

(misperception) models of the non-native Turkers using DNNs.

62

Chapter 5

End-to-End Large Vocabulary Automatic
Speech Recognition

5.1 Introduction

In the last few years, an emerging trend in automatic speech recognition (ASR)

research has been the study of E2E systems [4, 81–89]. An E2E ASR system di-

rectly transduces an input sequence of acoustic featuresx to an output sequence of

probabilities of tokensy (phonemes, characters, words etc.). This reconciles well

with the notion that ASR is inherently a sequence-to-sequence task mapping in-

put waveforms to output token sequences. Some widely used contemporary E2E

approaches for sequence-to-sequence transduction are: (a) Connectionist Tempo-

ral Classification (CTC) [1, 11], (b) Recurrent Neural Network Encoder-Decoder

(RNN-ED) [12, 13, 26, 27], and (c) RNN Transducer (RNN-T) [90]. These ap-

proaches have been successfully applied to large scale ASR [81–85, 88, 91–93].

In this study, we confine our focus primarily on CTC models.

The remainder of the chapter is organized as follows. In Section 5.2, we provide

a summary of past work. In Sections 5.3-5.5, we explain the proposed Attention

CTC, Hybrid CTC, and Mixed-unit CTC respectively. In Section 5.6, we provide

experimental evaluations of our proposed algorithms. Finally, we summarize our

study in Section 5.7.

5.2 Background

As one of the most popular E2E methods, the CTC approach [1, 11] was intro-

duced to map input speech frames into output label sequences[4, 73, 81, 82, 92,

94–100]. To deal with the issue that the number of output labels is shorter than

the number of input speech frames in speech recognition tasks, CTC introduces a

specialblank label and allows for repetition of labels to force the outputand input

63

sequences to have the same length.

CTC outputs are usually dominated by blank labels. The outputs corresponding

to the non-blank labels usually occur with spikes in their posteriors. Thus, an easy

way to generate ASR outputs using CTC is to concatenate the non-blank labels

corresponding to the posterior spikes and collapse those labels into word outputs

if needed. This is known as greedy decoding. It is a very attractive feature for

E2E modeling as there is neither any LM nor any complex decoding involved.

The E2E models used in this study use greedy decoding.

As the goal of ASR is to generate a word sequence from speech acoustics,

the word is the most natural output unit for E2E models. A big challenge in the

word-based CTC model, a.k.a. acoustic-to-word CTC or word CTC, is the OOV

issue [101–104]. In [92, 95, 99], only the most frequent words in the training

set were used as output targets whereas the remaining words were just tagged as

OOVs (or UNKs). These OOVs can be neither modeled nor recognized as valid

words during evaluation. For example, if the transcriptionof an utterance is “have

you been to newyorkabc” in which newyorkabc is an OOV (infrequent) word, the

training token or recognition output sequence for this utterance will be “have you

been to OOV”. The presence of OOV tag in the ASR output degrades the end-user

experience. In [95], a CTC with up to 25 thousand (k) word targets was explored.

However, the ASR accuracy of the word CTC was far below the accuracy of a

context dependent (CD) phoneme CTC model, partially due to the high OOV rate

when using only around 3k hours of training data.

Thus, the accuracy gap between a word CTC and CD phoneme CTC can be

attributed to multiple reasons. First, training a word CTC requires orders of mag-

nitude of more training data than a CD phoneme CTC because words which can

be modeled well require sufficient number of training examples. Words which do

not meet the sufficiency requirement are simply tagged as OOVs. Hence, these

words cannot be modeled as valid words during training and recognized during

evaluation. Second, even in the presence of large training data, it is difficult to

capture the entire vocabulary of a language. For example, a word CTC cannot

handle emerging hot-words which become popular after a network has been built.

Several studies in the past have attempted to address these issues. In [92], it

was shown that by using 100k words as output targets and by training the model

with 125k hours of data, a word CTC was able to outperform a CD phoneme CTC.

However, easy accessibility to such large databases is rare. Usually, at most a few

thousand hours of data are easily accessible. In [105], the authors were able to

64

train a word CTC model with only 2k hours of data with ASR accuracy compara-

ble to a CD phoneme CTC. Their proposed training regime included initializing

the word CTC with a well-trained phoneme CTC, curriculum learning [106], Nes-

terov momentum-based stochastic gradient descent, dropout, and low rank matrix

factorization [107]. To address the hot-words issue, [105]also proposed a spell

and recognize (SAR) model which has a combination of words and characters

as output targets. The SAR model is used to learn to first spella word as a se-

quence of characters and then recognize it as a whole word. Whenever an OOV

is detected, the decoder consults the letter sequence from the speller. Thus, the

displayed hypothesis is more meaningful to the users than OOV. However, the

overall recognition accuracy of the SAR model improved onlymarginally over a

word-only CTC.

In this study, we propose a three-stage solution to improve the recognition ac-

curacy of the all-neural word CTC using only 3.4k hours of data while also alle-

viating the OOV issue. Furthermore, our proposed word CTC also outperforms

a conventional CD phoneme CTC using strong LM and complex graph based de-

coding.

• First, we proposeAttention CTC [20] to address the inherent hard alignment

problem in CTC. Since CTC relies on the hidden feature vectorat the current

time to make predictions, it does not directly attend to feature vectors of the

neighboring frames. This is the hard alignment problem. Thebasic idea for

improving CTC is to blend some concepts from RNN-ED into CTC modeling.

• Second, we proposeHybrid CTC [100] which is a single CTC consisting of a

word CTC and a letter CTC trained jointly using multi-task learning [55, 56].

We train the word CTC first and then add a letter CTC as an auxiliary task

by sharing the hidden layers of the word CTC. During recognition, the word

CTC generates a word sequence, and the character CTC is only consulted at the

OOV segments. This makes the Hybrid CTC capable of recognizing OOVs and

thereby reducing errors introduced by OOVs.

• Finally, we further improve the word CTC and reduce OOV errors by introduc-

ing Mixed-unit CTC [21]. Here, the OOV word is decomposed into a mixed-

unit sequence of frequent words and letters at the training stage. During test-

ing, we do greedy decoding for the whole E2E system in a singlestep with-

out the need of using the two-stage (OOV-detection and then letter-sequence-

65

consulting) process as in Hybrid CTC.

With all these components, the final word CTC improves the baseline word CTC

by relative 12.09% WER reduction and also outperforms the traditional CD phoneme

CTC with strong LM and decoder by relative 6.79%.

5.3 Attention CTC

In this section, we outline various steps required to model attention directly within

CTC. An example of the proposed Attention CTC network is shown in Fig. 5.1.

We propose the following key ideas to blend attention into CTC. (a) First, we

derive context vectors usingtime convolution features (Sec 5.3.1) and apply at-

tention weights on these context vectors (Sec 5.3.2). This makes it possible for

CTC to be trained using soft alignments instead of hard. (b) Second, to improve

attention modeling, we incorporate animplicit language model (Sec 5.3.3) during

CTC training. (c) Finally, we extend our attention modelingfurther by introducing

component attention (Sec 5.3.4) where context vectors are produced as a result of

applying attention on hidden features across both time and their individual com-

ponents. Since our network is basically a CTC network, the input and output

sequences are of the same length (i.e.,T = U). However, we will use the indices

t andu to denote the time step for input and output sequences respectively. This

is only to maintain notational consistency with the equations in RNN-ED. It is

understood that every input framext generates outputyt = yu.

5.3.1 Time Convolution (TC) Features

Consider a rank-3 tensorW′ ∈ Rn1×n2×C. For simplicity, assumen1 = n2 = n

wheren is the dimension of the hidden featureht. Our attention model consid-

ers a small subsequence ofh rather than the entire sequence. This subsequence,

(hu−τ, · · · , hu, · · · , hu+τ), will be referred to as theattention window. Its length is

C and it is centered around the current timeu. Let τ represent the length of the

66

Figure 5.1: An example of an Attention CTC network with an attention window
of sizeC = 3 (i.e.,τ = 1).

67

window on either side ofu. Thus,C = 2τ + 1. Thencu can be computed using

cu =W′ ∗ h

=

u+τ
∑

t=u−τ

W′
u−tht

∆
=

u+τ
∑

t=u−τ

gt

= γ

u+τ
∑

t=u−τ

αu,tgt. (5.1)

Here,gt ∈ R
n represents thef iltered signal at timet. The last step Eq. (5.1) holds

whenαu,t =
1
C andγ = C. Since Eq. (5.1) is similar to Eq. (2.11) in structure,cu

represents a special case context vector with uniform attention weightsαu,t =
1
C ,

t ∈ [u − τ, u + τ]. Also, cu is a result of convolving featuresh with W′ in time.

Thus,cu represents atime convolution feature andW′ a time convolution kernel.

This is illustrated in Fig. 5.1 for the case ofτ = 1 (after ignoring the Attend block

and lettingαu,t =
1
3).

5.3.2 Content Attention (CA) and Hybrid Attention (HA)

To incorporate non-uniform attention in Eq. (5.1), we need to compute a non-

uniform αu,t for eacht ∈ [u − τ, u + τ] using an attention network similar to

Eq. (2.12). However, since there is no explicit decoder likeEq. (2.10) in CTC,

there is no decoder statesu. Therefore, we usezu instead ofsu. The termzu ∈ R
K

is the logit to the softmax and is given by

zu =Wsoftcu + bsoft,

yu = Softmax(zu), (5.2)

whereWsoft ∈ R
K×n, bsoft ∈ R

K. Thus, Eq. (5.2) is similar to the Generate(.)

function in Eq. (2.9) but lacks the dependency onyu−1 andsu. Consequently, the

Attend(.) function in Eq. (2.12) becomes

αu = Attend(zu−1,αu−1, g), (5.3)

68

whereh in Eq. (2.12) is replaced withg = (gu−τ, · · · , gu+τ). Next, the scoring

function Score(.) in Eq. (2.13) is modified by replacing the raw signalht with the

filtered signalgt. Thus, the new Score(.) function becomes

eu,t = Score(zu−1,αu−1, gt), (5.4)

=



















vT tanh(Uzu−1 +Wgt + b), (content)

vT tanh(Uzu−1 +Wgt + Vfu,t + b) (hybrid)
(5.5)

with fu,t a function ofαu−1 through Eq. (2.16). The content and location infor-

mation are encoded inzu−1 andαu−1 respectively. The role ofW in Eq. (5.5) is

to projectgt for eacht ∈ [u − τ, u + τ] to a common subspace. Score normal-

ization of Eq. (5.4) can be achieved using the softmax operation in Eq. (2.14) to

generate non-uniformαu,t for t ∈ [u − τ, u + τ]. Now, αu can be plugged into

Eq. (5.1), along withg to generate the context vectorcu. This completes the at-

tention network. We found that excluding the scale factorγ in Eq. (5.1), even for

non-uniform attention, was detrimental to the final performance. Therefore, we

continue to useγ = C.

5.3.3 Implicit Language Model (LM)

The performance of the attention model can be improved further by providing

more reliable content information from the previous time step. This is possible by

introducing another recurrent network that can utilize content from several time

steps in the past. This network, in essence, would learn an implicit LM. In partic-

ular, we feedzLM
u−1 (hidden state of the LM network) instead ofzu−1 to the Attend(.)

function in Eq. (5.3). To build the LM network, we follow an architecture similar

to RNN-LM [108]. As illustrated in the LM block of Fig. 5.1, the input to the

network is computed by stacking the previous outputzu−1 with the context vector

cu−1 and feeding it to a recurrent functionH(.). This is represented as

zLM
u−1 = H(xu−1, zLM

u−2), xu−1 =















zu−1

cu−1















, (5.6)

αu = Attend(zLM
u−1,αu−1, g). (5.7)

We modelH(.) using a long short-term memory (LSTM) unit [109] withn mem-

ory cells and input and output dimensions set toK + n (sincexu−1 ∈ R
K+n) andn

69

(sincezLM
u−1 ∈ R

n) respectively. One problem withzLM
u−1 is that it encodes the content

of a pseudo LM, rather than a true LM, since CTC outputs are interspersed with

blank symbols by design. Another problem is thatzLM
u−1 is a real-valued vector in-

stead of a one-hot vector. Hence, this LM is an implicit LM rather than an explicit

or a true LM.

5.3.4 Component Attention (COMA)

In the previous sections,αu,t ∈ U is a scalar term weighting the contribution of

the entire vectorgt ∈ R
n to generate the outputyu through Eq. (5.1) and Eq. (5.2).

This means alln components of the vectorgt are weighted by the same scalar

αu,t. In this section, we consider weighting each component ofgt distinctively.

Therefore, we need a vector weightαu,t ∈ U
n instead of the scalar weightαu,t ∈ U

for eacht ∈ [u − τ, u + τ]. The vectorαu,t can be generated by first computing

an n-dimensional scoreeu,t for eacht. This is easily achieved using the Score(.)

function in Eq. (5.5) but without taking the inner product with v. For example, in

the case of hybrid, the scoring function becomes

eu,t = tanh(Uzu−1 +Wgt + Vfu,t + b). (5.8)

Now, we haveC column vectors [eu,u−τ, · · · , eu,u+τ], one for eacht, where each

eu,t ∈ (−1, 1)n. Let eu,t, j ∈ (−1, 1) be the jth component of the vectoreu,t. To

computeαu,t, j from eu,t, j, we normalizeeu,t, j acrosst keepingj fixed. Thus,αu,t, j is

computed as

αu,t, j =
exp(eu,t, j)

∑u+τ
t′=u−τ exp(eu,t′, j)

, j = 1, · · · , n. (5.9)

Since exp(.) and tanh(.) are both one-to-one functions, their composition is also

one-to-one. Thus, there is a one-to-one relation betweenαu,t, j andgt(j). Conse-

quently,αu,t, j can be interpreted as the amount of contribution ofgt(j) in com-

puting cu(j). Now, from Eq. (5.9), we know the values of the vectorsαu,t, t ∈

[u − τ, u + τ]. Under the COMA formulation, the context vectorcu can be com-

puted using

cu = Annotate(αu, g, γ) = γ
u+τ
∑

t=u−τ

αu,t ⊙ gt, (5.10)

70

where⊙ is the Hadamard product.

In the past, attempts have been made to apply attention but onRNN-ED mod-

els. For example, in [110], the authors explored the use of attention-based RNN-

ED [26,27] for word outputs. In other studies, CTC was used toimprove attention-

based RNN-ED indirectly using an MTL framework consisting of both CTC and

RNN-ED. CTC was used as either at the top layer [111, 112] or atthe intermedi-

ate encoder layer [113] of the network. However, none of these approaches used

attention directly within the CTC network. Note that as extensions of CTC, both

RNN-T [90,93] and RNN aligner [86] either change the objective function or the

training process to relax the frame independence assumption of CTC. The pro-

posed Attention CTC is different from all these approaches since we use attention

mechanism to improve the hidden layer representations withmore context infor-

mation without changing the CTC objective function and training process. Our

primary motivation in this work is to address the hard alignment problem of CTC,

as outlined earlier, by modeling attention directly withinthe CTC framework.

5.4 Hybrid CTC

In this section, we describe the Hybrid CTC model. To solve the OOV issue in

the acoustic-to-word model, the Hybrid CTC model uses a wordCTC as the pri-

mary model and a letter CTC as the auxiliary model in an MTL framework. The

word CTC model emits a word sequence, and the output of the letter CTC is only

consulted at the segment where the word CTC emits an OOV token. This is il-

lustrated in Fig. 5.2. The word CTC generates the sequence “play artist OOV”.

The word sequence from the letter CTC is “play artist ratatat”. Since the segment

containing “ratatat” from the letter CTC has the most time overlap with the seg-

ment containing “OOV” from the word CTC, the OOV token “OOV” is replaced

with “ratatat”. Thus, the final output of the Hybrid CTC is “play artist ratatat”.

The detailed steps for building the Hybrid CTC model are described as follows:

• Build a multi-layer LSTM-CTC model with words as its output units. Map

all the words occurring less thanN times in the training data as the OOV to-

ken. The output units in this LSTM-CTC model are all the wordsoccurring

at leastN times in the training data, together with OOV, blank, and silence

tokens.

71

« «

«

Shared

Hidden

Layers

Hybrid decision area

character sequence

word sequence

LSTM layer for

character output

LSTM layer for

word output

Figure 5.2: An example of how the Hybrid CTC solves the OOV issue of the
acoustic-to-word CTC. The words “play, artist, OOV” are obtained from the
word CTC. The words “play artist ratatat” are obtained from the letter CTC.
Hence, the final output of Hybrid CTC is “play, artist, ratatat” with the first two
words obtained from the word CTC and the last word obtained from letter CTC.

• Freeze the bottomL − 1 hidden layers of the word-CTC, add one LSTM

hidden layer and one softmax layer to build a new LSTM-CTC model with

letters as its output units.

• During testing, generate the word output sequence using greedy decoding.

If the output word sequence contains an OOV token, replace the OOV token

with the word generated from the character CTC that has the largest time

overlap with the OOV token.

72

Table 5.1: Examples of how words are represented with different output units.
“Newyork” is a frequent word while “newyorkabc” is an OOV (infrequent word).
The word-based CTC treats “newyork” as a unique output node and
“newyorkabc” as the OOV output node.

Decomposition Type newyork newyorkabc
All words: single-letter n e w y o r k n e w y o r k a b c
All words: double-letter ne wy or k ne wy or ka bc
All words: triple-letter new yor k new yor kab c
All words: word newyork OOV
OOVs only: single-letter newyork n e w y o r k a b c
OOVs only: word+single-letter newyork newyork a b c
OOVs only: word+triple-letter newyork newyork abc

5.5 Multi-letter and Mixed-unit CTC

In this section, we first describe the letter-based Multi-letter CTC and then the

word-based Mixed-unit CTC.

5.5.1 Multi-letter CTC

Inspired by gram CTC [98] and multi-phone CTC [114], we extend the output

units with double-letter and triple-letter units to benefitfrom long temporal units

which are more stable. We hope to improve the Hybrid CTC system as the OOV

token may be replaced by more precise words generated by the CTC with multi-

letter units.

Gram CTC and multi-phone CTC are based on letters and phonemes respec-

tively, but allow to output variable number of letters (i.e., gram) and phonemes

at each time step. The units in gram CTC and multi-phone CTC are learned au-

tomatically with the modified forward-backward algorithm to take care of all the

decompositions. Both of them need much more complicated decoding than greedy

decoding when generating outputs. In contrast, we simply decompose every word

(which includes both frequent and OOV words) into a sequenceof one or more

letter units, with examples shown in the first three rows of Table 5.1. This decom-

position is much simpler, without changing the CTC forward-backward process

and can use the same greedy decoding procedure as the CTC withsingle-letter

units.

73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

11
2

11
5

11
8

12
1

12
4

« «

«

Mixed-unit sequence

Play artist rat at at

Figure 5.3: An example of how the Mixed-unit CTC solves the OOV issue of the
acoustic-to-word CTC. The final output of Mixed-unit CTC is “play, artist, rat at
at”.

5.5.2 Mixed-unit CTC

In Hybrid CTC, the shared-hidden-layer constraint is used to help the time syn-

chronization of word outputs between the word and letter CTCmodels. However,

the blank symbol dominates most of the frames, and thereforethe time synchro-

nization may not be very reliable. The ideal case should be when the spoken word

is in the frequent word list, the system emits a word output. And when the spoken

word is an OOV (infrequent) word, the system emits a letter sequence from which

a word is generated by collapsing the letter sequence. This cannot be done with

the Hybrid CTC because the two CTCs are running in parallel without a perfect

time synchronization. A direct solution is to train a singleCTC model with mixed

units (combination of words and multi-letter units). This is illustrated in Fig. 5.3.

If the word is a frequent word, then we just keep it in the output token list. If the

74

word is an OOV (infrequent word), then we decompose it into a letter sequence.

As shown in the fifth row of Table 5.1, the OOV “newyorkabc” is decomposed

into “n e w y o r k a b c” for single letter decompositions. However, the word

“newyork” is not decomposed because it is a frequent word. Therefore, the output

units of the CTC are mixed units, with both words (for frequent words) and letters

(for OOV words).

However, we note that artificially decomposing OOVs only into single-letter

sequences may confuse CTC training because the network output modeling units

are frequent words and letters. To solve such a potential issue, we decompose

the OOV words into a combination of frequent words and letters. For example,

in the last two rows of Table 5.1, the OOV “newyorkabc” is decomposed into

“newyork a b c” if we use words and single-letter units or “newyork abc” if we

use words and triple-letter units. In the CTC with mixed units, we use “$” to

separate each word in the sentence. For example, the sentence “have you been to

newyorkabc” is decomposed into “$ have $ you $ been $ to $ newyork abc $”.

If $ is not used to separate words, we do not know how to collapse the mixed

units (words+letters) into output word sequences. During training, since the OOV

words are decomposed into mixed units from words and letters, there is no OOV

output node in the Mixed-unit CTC model. Consequently, during testing, the

model is very likely to emit OOV words as a sequence of frequent words and

letters while still emitting frequent words when frequent words are spoken.

In the past, other studies [93, 115] have explored using sub-word units such as

wordpieces [116]. Using wordpieces, a word is decomposed into smaller lexical

units which can be a mixture of valid words and non-linguistic multi-letter units

based on their frequency of occurrences. Our approach is different from building

wordpieces since we decomposeonly OOVs while still retaining the high fre-

quency words as whole word units.

5.6 Results

In this section, we compare the performance of the proposed CTCs with the base-

line CTCs. The proposed methods were evaluated using the Microsoft’s Cortana

voice assistant task. The training and test sets contain approximately 3.3 mil-

lion utterances (∼ 3400 hours) and 5600 utterances (∼ 6 hours) respectively in

US-English. First, we evaluate the performance of our proposed Attention CTC

75

(Section 5.3) and Multi-letter CTC (Section 5.5.1) using letter CTCs. Then, we

evaluate the performance of our proposed Hybrid CTC (Section 5.4) and Mixed

Unit CTC (Section 5.5.2) using both words and letters as output targets.

All CTC models were trained on top of either unidirectional or bidirectional

LSTMs (BLSTMs). The unidirectional LSTM has 1024 memory cells while the

BLSTM has 512 memory cells in each direction (therefore still 1024 output di-

mensions when combining outputs from both directions). Then they are linearly

projected to 512 dimensions. The base feature vector computed every 10 ms frame

is an 80-dimensional vector containing log filterbank energies. Eight frames of

base features were stacked together (m = 80× 8 = 640) as the input to the unidi-

rectional CTC, while three frames were stacked together (m = 80×3 = 240) as the

input to the bidirectional CTC. The skip size for both unidirectional and bidirec-

tional CTCs was three frames as in [95]. The dimensionn of vectorsht, gt, cu was

set to 512. For decoding, the greedy decoding procedure (no complex decoder or

external LM) was used. Thus, our systems are pure all-neuralsystems.

5.6.1 Experiments with Letter-Based CTCs

In this section, we evaluate the performance of our proposedAttention CTC (Sec-

tion 5.3) and Multi-letter CTC (Section 5.5.1) using letters as output targets. The

motivation behind improving letter-based CTC is the following. As the outputs

from the letter CTC are used to replace the OOV token from the word CTC dur-

ing testing, the letter CTC should be as accurate as possible.

5.6.1.1 Unidirectional CTC with 28-letter set (Section 5.3)

In the first set of experiments, Vanilla CTC [1] and AttentionCTC models were

evaluated with a unidirectional 5-layer LSTM. The output layer has 28 output

nodes (hence, K= 28) corresponding to a 28-letter set (26 letters ‘a’-‘z’+ space

+ blank).τ was empirically set to 4, which means the context window size(C) for

attention was 9. The results are tabulated in Table 5.2. The top row summarizes

the WER for Vanilla CTC. All subsequent rows under “Attention CTC” summa-

rize the WER for the proposed CTC models when attention modeling capabilities

were gradually added in a stage-wise fashion. The best Attention CTC model

is in the last row and it outperforms the Vanilla CTC model by 18.75% relative.

76

Table 5.2: WERs of letter-based Vanilla CTC [1] and Attention CTC for
τ = 4 (C = 9) trained with a 5-layer unidirectional LSTM and 28-letterset.
Relative WER improvements are in parentheses.

E2E Model (letter-based) WER (%)
Vanilla CTC 29.60 (0.00)
Attention CTC
TC (Sec 5.3.1) 27.36 (07.56)
+CA (Sec 5.3.2) 25.41 (14.16)
+HA (Sec 5.3.2) 25.62 (13.45)
+LM (Sec 5.3.3) 24.74 (16.42)
+COMA (Sec 5.3.4) 24.05 (18.75)

Table 5.3: WERs of letter-based Vanilla CTC [1] and Attention CTC for
τ = 4 (C = 9) trained with a 5-layer BLSTM and 28-letter set. Relative WER
improvements are in parentheses.

E2E Model (letter-based) WER (%)
Vanilla CTC 26.36 (0.00)
Attention CTC
TC (Sec 5.3.1) 25.21 (04.36)
+CA (Sec 5.3.2) 22.73 (13.77)
+HA (Sec 5.3.2) 22.52 (14.57)
+LM (Sec 5.3.3) 21.69 (17.72)
+COMA (Sec 5.3.4) 20.81 (21.06)

There is a slight increase in WER when adding HA on top of CA. Ingeneral, for

the other experiments, we find that adding HA is beneficial although the gains

are marginal compared to all the other enhancements (CA, LM,COMA). Benefits

of location based attention could become more pronounced when attention spans

over very large contexts [26].

5.6.1.2 Bidirectional CTC with 28-letter set (Section 5.3)

In this set of experiments, the Vanilla and Attention CTC models were evaluated

with a BLSTM of 5-layers andτ = 4 using the 28-letter set. Otherwise, we

followed the same training regime as in the previous Section5.6.1.1. The results

are tabulated in Table 5.3. Similar to the unidirectional case, the best Attention

CTC model outperforms Vanilla CTC by about 21.06% relative.This shows that

even a strong baseline like bidirectional CTC does not undermine the efficacy of

the proposed Attention CTC models.

77

Table 5.4: WERs of letter-based Vanilla CTC [1] and Attention CTC for
τ = 4 (C = 9) trained with a 5-layer BLSTM and 83-letter set. Relative WER
improvements are in parentheses.

E2E Model (letter-based) WER (%)
Vanilla CTC 23.29 (0.00)
Attention CTC
TC (Sec 5.3.1) 22.30 (04.25)
+CA (Sec 5.3.2) 21.34 (08.37)
+HA (Sec 5.3.2) 20.81 (10.65)
+LM (Sec 5.3.3) 19.98 (14.21)
+COMA (Sec 5.3.4) 18.49 (20.61)

5.6.1.3 Bidirectional CTC with 83-letter set (Section 5.3)

In this set of experiments, in addition to the BLSTM, we construct a new letter

set by adding new characters on top of the 28-letter set [97].These additional

letters include capital letters used in the word-initial position, double-letter units

representing repeated characters likell, apostrophes followed by letters such as

‘de, ‘r etc. Readers may refer to [97] for more details. Altogether such a large

unit inventory has 83 letters, and we refer to it as the 83-letter set. The results

for this experiment are tabulated in Table 5.4. Again, Attention CTC models

consistently outperform Vanilla CTC with the best relativeimprovement close to

20.61%. This shows that the proposed Attention CTC network can achieve similar

improvements, no matter whether the Vanilla CTC is built with advanced model-

ing capabilities (from unidirectional to bidirectional) or different sets of letter units

(28 vs. 83 units).

5.6.1.4 Multi-letter CTC (Section 5.5.1)

In the preceding experiment, we were able to improve the WER by expanding

the number of letters. Motivated by these observations, we evaluate the impact of

using different sizes of letter units. The single-letter set has 30 symbols, including

26 English characters [a-z], ’, *, $, and blank. The double-letter and triple-letter

sets have 763 and 8939 symbols respectively, covering all the double-letter and

triple-letter occurrence in the training set. All the CTC models in this section are

6-layer BLSTMs. As shown in the second column of Table 5.5, the WER reduces

significantly when the output units become larger, i.e., more stable. The letter

CTC using triple-letter as output units achieves 13.28% WER, reducing 24.29%

78

Table 5.5: WERs of letter-based CTC models, trained with 6-layer BLSTMs,
having single, double, and triple-letter output units (Section 5.5.1). Three
structures are evaluated: Vanilla CTC [1], Attention CTC (τ = 4), and Attention
CTC (τ = 4) sharing 5 hidden layers with the word CTC.

E2E Model WER (%)
(letter-based) Vanilla Attention Attention

5 layers sharing
single-letter 17.54 14.30 16.74
double-letter 15.37 12.16 14.00
triple-letter 13.28 11.36 12.81

relative WER from the letter CTC using single-letter as output units.

The Attention CTC is then trained withτ = 4. As shown in the third column

of Table 5.5, Attention CTC improves over the Vanilla CTC hugely, obtaining

18.47%, 20.88%, and 14.46% relative WER reduction for single-letter, double-

letter, and triple-letter CTC models respectively. The best letter CTC is the one

with triple-letter outputs and attention modeling, which can obtain 11.36% WER.

The Hybrid CTC model described in Section 5.4 has both word and letter CTCs,

which share 5 hidden LSTM layers. On top of the shared hidden layers, we add a

new LSTM hidden layer and a softmax layer to model letter outputs (single, dou-

ble, or triple-letters). Attention modeling is applied to boost the performance. As

shown in the fourth column of Table 5.5, the WER of letter CTC with such shared-

hidden-layer constraint performs worse than its counterpart (Attention CTC in

third column). This indicates one shortcoming of the HybridCTC - it sacrifices

the accuracy of the letter CTC because of the shared-hidden-layer constraint used

to synchronize the word outputs between the word and letter CTCs.

5.6.2 Experiments With Word-Based CTCs

Having improved the letter CTC in the previous section, we now evaluate the

performance of our proposed Hybrid CTC (Section 5.4) and Mixed-unit CTC

(Section 5.5.2) using both words and letters as output targets. However, we re-

fer to these CTCs as word CTCs for simplicity in terminology.We are primarily

interested in boosting the accuracy of recognizing non-OOVwords while also

recognizing the OOV words as close as possible to the ground truth words.

For the baseline word CTC (Vanilla CTC [1]) model, we built a 6-layer BLSTM.

This model has around 27k output targets which is the same as the number of fre-

79

Table 5.6: WERs of word-based Vanilla CTC [1] and Hybrid CTC (Section 5.4)
models. All Hybrid CTC models have a word-based CTC and a letter-based
Attention CTC (τ = 4), sharing 5 hidden layers. All CTC models were trained
with 6-layer BLSTMs.

E2E Model WER (%)
Vanilla CTC (word only) 9.84
Hybrid CTC: word+ double-letter Attention CTC 9.66
Hybrid CTC: word+ triple-letter Attention CTC 9.66

quent words in the training data. These frequent words occurred at least 10 times

in the training data. All the other words (infrequent words)were mapped to an

OOV output token. We have also tried other word CTCs with varying number of

output units. However, the model using 27k word outputs performs the best. This

word CTC model yields 9.84% WER, among which the OOV tokens contribute

1.87% WER. It significantly improves the WER of unidirectional word CTC re-

ported in [100] which indicates that bidirectional modeling is critical to the E2E

system. Unless otherwise stated, all CTC models in this section except Attention

CTC use the same structure as the Vanilla CTC model.

5.6.2.1 Hybrid CTC (Section 5.4)

As the CTC models with double-letter and triple-letter output units worked very

well in Table 5.5, we use them to build the Hybrid CTC models with the OOV

lookup process described in Section 5.4. The Hybrid CTC usesa 6-layer BLSTM,

i.e., 5 shared-hidden-layers and an additional layer for each task (word and let-

ter CTC). Thus, the underlying structure of Hybrid CTC is similar to that of the

Vanilla CTC. As shown in Table 5.6, both hybrid models achieved 9.66% WER.

Several factors contribute to such small improvement (from9.84% WER of the

Vanilla CTC) of the Hybrid CTC. First, the shared-hidden-layer constraint de-

grades the performance of the letter CTC, potentially affecting the final hybrid

system performance. Second, although the shared-hidden-layer constraint helps

to synchronize the word outputs from the word and letter CTC,we still observed

that the time synchronization can fail sometimes. In such cases, the OOV token

is replaced with its neighboring frequently occurring wordbecause of word seg-

ments misalignment. Because of these factors, although thetriple-letter CTC is

better than double-letter CTC in Table 5.5, there is no difference in the WERs

when they are integrated into the Hybrid CTC setup in which they handle only a

80

Table 5.7: WERs of word-based Vanilla CTC [1], Mixed-unit CTC
(Section 5.5.2), and Mixed-unit CTC+ Attention. All CTC models were trained
with 6-layer BLSTMs.

E2E Model WER (%)
Vanilla CTC (word only) 9.84
Mixed (OOV: single-letter) CTC 20.10
Mixed (OOV: word+ single-letter) CTC 10.17
Mixed (OOV: word+ double-letter) CTC 9.58
Mixed (OOV: word+ triple-letter) CTC 9.32
Mixed (OOV: word+ triple-letter) Attention CTC 8.65

Table 5.8: Summary of WERs of conventional CD phoneme CTC, word-based
Vanilla CTC [1], and word-based Mixed-unit CTC+ Attention. All CTC models
were trained with 6-layer BLSTMs.

Model LM WER(%)
1. Conventional: CD phoneme CTC X 9.28
2. E2E: Vanilla CTC (word only) ✗ 9.84
3. E2E: Mixed-unit+ Attention CTC ✗ 8.65

Improvement #3 vs #1 #3 vs #2
Relative 6.79% 12.09%

small portion of OOV words.

5.6.2.2 Mixed-unit CTC (Section 5.5.2)

We evaluate the CTC with mixed units in Table 5.7. As before, the word-based

Vanilla CTC achieves a WER of 9.84%. In the first experiment, the mixed units

contain single-letters and 27k frequent words. During training, we decompose

OOV words into single-letter sequences. As analyzed in Section 5.5.2, artifi-

cially decomposing OOV words into letter sequences, while still retaining the fre-

quent words, confuses CTC training. Therefore, the trainedCTC model achieved

20.10% WER. When looking at the posterior spikes of this model, we observed

that the word spikes and letter spikes are scattered into each other which proves

our hypothesis.

Next, we decompose OOV words into a combination of frequent word and

single-letter sequences, and train the CTC network with themixed units (around

27k output targets). Immediately, the WER improved to 10.17%, but still a lit-

tle worse than the Vanilla CTC. This is because the single-letter sequence brings

instability to the modeling. When we decompose the OOV wordsinto a combina-

81

tion of frequent words and double-letters (slightly higherthan 27k output targets),

the situation becomes better, and the resulting WER is 9.58%. When the triple-

letters and frequent words are used (totally 33k output targets), the WER reaches

9.32%, beating the Vanilla CTC by 5.28% relative WER reduction.

Next, we improve the final Mixed-unit CTC model by applying attention. To

save computational costs, because of large number of outputunits, we did not

integrate the implicit LM in Eq. (5.6). The WER becomes 8.65%, which is about

relative 12.09% WER reduction from the 9.84% WER of Vanilla CTC.

Finally, we compare the Mixed-unit+ Attention CTC model with a traditional

CD phoneme CTC. We trained a CD phoneme 6-layer BLSTM with theCTC cri-

terion, modeling around 9000 tied CD phonemes. This CD phoneme CTC model

achieves 9.28% WER when decoding with a 5-gram LM with totally around 100

million (M) N-grams. Despite a strong CD phoneme CTC model (with LM), the

Mixed-unit+ Attention CTC model (without any LM or complex decoder) is able

to outperform the CD phoneme CTC model by about 6.79% relative. We summa-

rize these WERs in Table 5.8.

Note that the proposed method not only reduces the WER of the word CTC, but

also improves the user experience. The proposed method provides more meaning-

ful output without outputting any OOV token to distract users. Most of the time,

even if the proposed method cannot get the OOV word right, it comes out with a

very close output. For example, the proposed method recognizes “text fabine” as

“text fabian” and “call zubiate” as “call zubiat”, while theVanilla CTC can only

output “text OOV” and “call OOV”.

5.7 Summary

We advance acoustic-to-word CTC model by proposing Attention CTC, Hybrid

CTC, and Mixed-unit CTC. In Attention CTC, we blend attention-based modeling

capability directly within the CTC framework. To solve the OOV issue in word

CTC, we presented Hybrid CTC which uses a word and letter CTC as the primary

and auxiliary tasks in an MTL framework. Finally, to boost the performance of

Hybrid CTC, we introduced Mixed-unit CTC whose output unitsare frequent

words combined with sequences of multi-letters. For the frequent word, we just

model it with a unique output node. For the OOV word, we decompose it into

a sequence of frequent words and multi-letters. We evaluateall these methods

82

on a 3400 hours Microsoft Cortana voice assistant task. The proposed acoustic-

to-word Mixed-unit CTC when combined with attention reduces relative 12.09%

WER from the word-based Vanilla CTC. Such an acoustic-to-word CTC is a pure

end-to-end model without any LM and complex decoder. It alsooutperforms

the traditional CD phoneme CTC with strong LM and decoder by relative 6.79%

WER reduction.

83

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we proposed ASR models for two contrasting tasks characterized

by the amounts of labeled data available for training. We discussed various draw-

backs associated with each task, proposed solutions, and successfully demon-

strated the efficacy of our proposition using experiments conducted with real-

world data.

In the first part of the thesis, we dealt with under-resourcedscenarios which are

typically prevalent in under-resourced languages. In the first case, we assumed

the availability of very limited amounts of transcribed data in the target language

(URL) while simultaneously having access to large amounts of transcribed data

in several source languages (WRLs). Training ASR systems with the limited data

in the target language often leads to poor generalization primarily due to the over-

fitting problem. To alleviate this, we proposed transfer learning techniques which

transfer the acoustical knowledge from the source languages to the target lan-

guage. In particular, we defined a new objective function which minimizes the

cross-entropy of the target language along with a regularizer which minimizes the

cross-entropy of the source languages. It is well known thatregularization helps

prevent overfitting the model by constraining the model parameters to lie in a more

reliable space.

In the second case, we assumed a more adverse scenario when there are ab-

solutely no transcribed data in the target language. This can be attributed to

the difficulty of finding native transcribers in the target language.To partially

overcome this difficulty, we resorted to collecting transcriptions from online non-

native crowd workers, or Turkers, who neither speak the target language nor have

any familiarity with it. Because of their non-nativity, thelabels they provide are

usually inaccurate and noisy. We experimentally proved that DNNs trained using

84

noisy labels do not necessarily improve error rates over GMMs. To mitigate this

problem, we proposed four DNN models trained with MTL style training. The

first model was trained using a mixture of noisy PTs and clean DTs in two sepa-

rate sub-tasks of the MTL network. In the second model, we added a DAE as a

third sub-task. The DAE tries to reconstruct the inputs (rawfeatures) at its out-

put by minimizing the MSE between the inputs and the outputs.This is a case

of semi-supervised learning since the DAE can be trained without labels. In the

third model, we proposed training MTL using Knowledge Distillation. Here, we

were able to transfer knowledge from a well-trained multilingual DNN (teacher

model) to the target language DNN (student model) using a generalized softmax.

In the fourth model, we proposed training MTL using Target Interpolation. In

this method, the confidences of the labels provided by noisy transcriptions are

modified using the confidences of the target language DNN.

In the second part of the thesis, we proposed advancing all-neural speech recog-

nition by directly incorporating attention modeling within the CTC framework.

One drawback of with CTC is the hard alignment problem as it relies only on the

current input to generate the current output. In reality, the output at the current

time is influenced not only by the current input but also by inputs in the past and

future. We address this issue by incorporating attention into the CTC framework.

The key idea behind attention is that it is able to apply weights to each of cur-

rent, past, and future inputs depending on the degree of influence they exert on

the output. To this end, we derive new context vectors using time convolution fea-

tures to model attention as part of the CTC network. To further improve attention

modeling, we utilize content information extracted from a network representing

an implicit language model. Finally, we introduce vector based attention weights

that are applied on context vectors across both time and their individual compo-

nents.

6.2 Future Work

This thesis lays the foundation for some interesting futureresearch directions.

• Despite the initial success in training ASR systems using noisy labels provided

by the Turkers (non-native speakers), a number of problems still need to be

addressed. Finding the kinds of errors the Turkers make while transcribing a

85

foreign language could further lower the error rates. For example, an American

Turker will usually perceive the three allophones of the voiceless stop conso-

nant -[t] (voiceless alveolar stop),[t”] (voiceless dental stop), and[t”h] (voiceless

aspirated dental stop) - as only[t]. Thus, the Turker makes two errors by mis-

perceiving the allophones[t”] and[t”h] as[t]. The question to address is: How do

we incorporate these misperception errors into a DNN? One possible solution

is the following. We know we have DTs for the WRLs. On top of this, we

could collect corresponding PTs by letting the non-native Turkers transcribe

the same set of utterances. Following this, we could train a DNN using DTs

first. A softmax layer could then be added on top of this trained DNN. Then

the DNN could be retrained using PTs, updating the parameters of the softmax

layer while keeping the lower layers fixed. The net effect of this two-stage

training is that the resulting DNN models the misperceptionerrors caused by

the Turkers and has the ability to auto-correct such errors.

• One drawback of the attention-based CTC model is that it doesnot make use

of large amounts of text-only data that are easily availableonline from news

broadcasts, articles, books etc. It is possible to use a recurrent neural net-

work transducer (RNN-T) [90] training paradigm that can train on both text

and acoustic data. This will have the ability to learn a language model and an

acoustic model in the same network.

• Attention modeling could be further explored for acoustic model adaptation in

different environments. Acoustic models tend to be domain dependent and do

not perform well if there is a mismatch between training and test conditions. As

an alternative, the Mixture of Experts (MoE) model [117–119] was introduced

for multi-domain modeling. It combines the outputs of several domain specific

models (or experts) using a gating network. The role of the gating network

is to derive weights, one for each expert. The final output of the MoE model

is a linear combination of the outputs of the experts weighted by the weights

obtained from the gating network. However, one drawback is that the gating

network directly uses raw inputs and is unaware of the state of the experts.

Moreover, the gating network does not take into consideration the output at

the previous time step. The MoE model could benefit by using our attention

model instead of a simple gating network. First, the outputsof the experts

could be used as the inputs to the attention model. Next, the attention model

could use the outputs and expert weights from the previous time step to generate

86

the weights at the current time. From our initial experiments in [120], we have

demonstrated that a MoE model equipped with attention is able to outperform

a baseline model using an LSTM based gating network and lowers the WER by

20.48% relative.

87

References

[1] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: Labelling unsegmented sequence data with re-
current neural networks,” inProc. Int. Conf. in Learning Representations,
2006, pp. 369–376.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed, N. Jaitly, A. Se-
nior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks
for acoustic modeling in speech recognition: The shared views of four re-
search groups,”IEEE Sig. Process. Magazine., vol. 29, no. 6, pp. 82–97,
2012.

[3] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig,
X. He, J. Williams et al., “Recent advances in deep learning for speech
research at Microsoft,” inProc. ICASSP. IEEE, 2013, pp. 8604–8608.

[4] D. Yu and J. Li, “Recent progresses in deep learning basedacoustic
models,” IEEE/CAA J. of Autom. Sinica., vol. 4, no. 3, pp. 399–412,
July 2017. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=7974889

[5] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 30–42, Jan
2012.

[6] O. Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn, and D.Yu, “Con-
volutional neural networks for speech recognition,”IEEE Trans. Audio,
Speech, Lang. Process., vol. 22, no. 10, pp. 1533–1545, Oct 2014.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov 1997.

[8] O. Vinyals, S. V. Ravuri, and D. Povey, “Revisiting recurrent neural net-
works for robust ASR,” inICASSP, 2012.

[9] L. Besacier, E. Barnard, A. Karpov, and T. Schultz, “Automatic speech
recognition for under-resourced languages: A survey,”Speech Communi-
cation, vol. 56, pp. 85–100, Jan 2014.

88

[10] D. Crystal,Language Death, First ed. New York: Cambridge University
Press, 2002, ISBN 978-0521012713.

[11] A. Graves and N. Jaitley, “Towards end-to-end speech recognition with re-
current neural networks,” inProc. of Machine Learning Research, 2014,
pp. 1764–1772.

[12] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” inProc. Empirical
Methods in Natural Language Processing, 2014.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” inICLR, 2015.

[14] A. Das and M. Hasegawa-Johnson, “Cross-lingual transfer learning during
supervised training in low-resource scenarios,” inInterspeech, 2015, pp.
3531–3535.

[15] M. Hasegawa-Johnson, P. Jyothi, D. McCloy, M. Mirbagheri, G. Liberto,
A. Das, B. Ekin, C. Liu, V. Manohar, H. Tang, E. Lalor, N. Chen,P. Hager,
T. Kekona, R. Sloan, and A. K. C. Lee, “ASR for under-resourced lan-
guages from probabilistic transcription,”IEEE Trans. Audio, Speech, Lang.
Process., vol. 25, no. 1, pp. 46 – 59, 2017.

[16] A. Das and M. Hasegawa-Johnson, “An investigation on training deep neu-
ral networks using probabilistic transcriptions,” inInterspeech, 2016, pp.
3858–3862.

[17] A. Das, P. Jyothi, and M. Hasegawa-Johnson, “Automaticspeech recogni-
tion using probabilistic transcriptions in Swahili, Amharic, and Dinka,” in
Interspeech, 2016.

[18] A. Das, M. Hasegawa-Johnson, and K. Veselý, “Deep autoencoder based
multi-task learning using probabilistic transcriptions,” in Interspeech, 2017,
pp. 2073–2077.

[19] A. Das and M. Hasegawa-Johnson, “Improving DNNs trained with non-
native transcriptions using knowledge distillation and target interpolation,”
in Interspeech, 2018, pp. 2434–2438.

[20] A. Das, J. Li, R. Zhao, and Y. Gong, “Advancing connectionist temporal
classification with attention modeling,” inProc. ICASSP, 2018.

[21] J. Li, G. Ye, A. Das, R. Zhao, and Y. Gong, “Advancing acoustic-to-word
CTC model,” inProc. ICASSP, 2018.

89

[22] A. Das, J. Li, G. Ye, R. Zhao, and Y. Gong, “Advancing acoustic-to-word
CTC model with attention and mixed-units,”IEEE Trans. Audio, Speech,
Lang. Process., submitted for publication.

[23] P. Jyothi and M. Hasegawa-Johnson, “Acquiring speech transcriptions us-
ing mismatched crowdsourcing,” inAAAI, 2015.

[24] P. Jyothi and M. Hasegawa-Johnson, “Transcribing continuous speech us-
ing mismatched crowdsourcing,” inInterspeech, 2015, pp. 2774–2778.

[25] H. Sak, A. Senior, K. Rao, O. Irosy, A. Graves, F. Beaufays, and J. Schalk-
wyk, “Learning acoustic frame labeling for speech recognition with recur-
rent neural networks,” inProc. ICASSP, 2015, pp. 4280–4284.

[26] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brake, and Y. Bengio,
“End-to-end attention-based large vocabulary speech recognition,” CoRR,
vol. abs/1508.04395, 2015. [Online]. Available: http://arxiv.org/abs/1508.
04395

[27] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” inProc. NIPS, 2015.

[28] B. Wheatley, K. Kondo, W. Anderson, and Y. Muthusamy, “An evaluation
of cross-language adaptation for rapid HMM development in anew lan-
guage,” inICASSP, vol. 1, 1994, pp. I237–240.

[29] T. Schultz and A. Waibel, “Fast bootstrapping of LVCSR systems with mul-
tilingual phoneme sets,” inEurospeech., 1997.

[30] J. Kohler, “Language adaptation of multilingual phonemodels for vocab-
ulary independent speech recognition tasks,” inICASSP, vol. 1, 1998, pp.
417–420.

[31] A. Stolcke, F. Grezl, M.-Y. Hwang, X. Lei, N. Morgan, andD. Vergyri,
“Cross-domain and cross-lingual portability of acoustic features estimated
by multilayer perceptrons,” inICASSP, 2006, pp. 321–324.

[32] S. Thomas, S. Ganapathy, and H. Hermansky, “Cross-lingual and multi-
stream posterior features for low resource LVCSR systems,”in Interspeech,
2010.

[33] F. Grézl, M. Karafiát, S. Kontár, and J.Černocký, “Probabilistic and bottle-
neck features for LVCSR of meetings,” inICASSP, 2007.

[34] S. Thomas, S. Ganapathy, and H. Hermansky, “Multilingual MLP features
for low-resource LVCSR systems,” inICASSP, 2012.

[35] P. Swietojanski, A. Ghoshal, and S. Renals, “Unsupervised cross-lingual
knowledge transfer in DNN-based LVCSR,” inIEEE SLT Workshop, 2012.

90

[36] J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross language knowlege
transfer using multilingual deep neural network with shared hidden layers,”
in Proc. ICASSP, 2013.

[37] A. Ghoshal, P. Swietojanski, and S. Renals, “Multilingual training of deep
neural networks,” inICASSP, 2013, pp. 7319–7323.

[38] N. Vu, W. Breiter, F. Metze, and T. Schultz, “An investigation on initializa-
tion schemes for multilayer perceptron training using multilingual data and
their effect on ASR performance,” inInterspeech, 2012, pp. 2586–2589.

[39] J.-T. Huang, “Semi-supervised learning for acoustic and prosodic
modeling in speech applications,” Ph.D. dissertation, University of Illinois
at Urbana-Champaign, 2012. [Online]. Available: http://www.isle.illinois.
edu/sst/pubs/2012/huang12thesis.pdf

[40] J.-T. Huang and M. Hasegawa-Johnson, “On semi-supervised learning
of Gaussian mixture models for phonetic classification,” inNAACL HLT
Workshop on Semi-Supervised Learning, 2013.

[41] P. Huang and M. Hasegawa-Johnson, “Cross-dialectal data transferring for
Gaussian mixture model training in Arabic speech recognition,” 4th Inter-
national Conference on Arabic Language Processing, pp. 119–123, 2012.

[42] L. R. Rabiner, “A tutorial on hidden Markov models and selected applica-
tions in speech recognition,”Proceedings of the IEEE, vol. 77, no. 2, pp.
257–286, 1989.

[43] Özgül Salor and M. Demirekler, “On developing new text and audio cor-
pora and speech recognition tools for the Turkish language,” in Interspeech,
2002, pp. 349–352.

[44] J. L. Hieronymus, “ASCII phonetic symbols for the world’s languages:
WORLDBET,” J. Int. Phonetic Association, 1993.

[45] R. Gopinath, “Maximum likelihood modeling with Gaussian distributions
for classification,” inICASSP, 1998, pp. 661–664.

[46] M. J. F. Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,”Computer Speech and Language., vol. 12, pp.
75–98, 1997.

[47] K.-F. Lee and H.-W. Hon, “Speaker-independent phone recognition using
hidden Markov models,”IEEE Trans. Acoust., Speech, Signal Process.,
vol. 37, no. 11, pp. 1641–1648, November 1989.

91

[48] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlı́ček, Y. Qian, P. Schwarz, J. Silovský, G. Stem-
mer, and K. Veselý, “The Kaldi speech recognition toolkit,” in IEEE ASRU
Workshop., 2011.

[49] T. Schultz and A. Waibel, “Language independent and language adap-
tive acoustic modeling for speech recognition,”Speech Communication,
vol. 35, pp. 31–51, Aug 2001.

[50] C. Liu, P. Jyothi, H. Tang, V. Manohar, R. Sloan, T. Kekona, M. Hasegawa-
Johnson, and S. Khudanpur, “Adapting ASR for under-resourced languages
using mismatched transcriptions,” inICASSP, 2016, pp. 5840–5844.

[51] K. Vesely, M. Hannemann, and L. Burget, “Semi-supervised training of
deep neural networks,” inIEEE ASRU Workshop., 2013, pp. 267–272.

[52] K. Knill, M. J. F. Gales, A. Ragni, and S. Rath, “Languageindependent and
unsupervised acoustic models for speech recognition and keyword spot-
ting,” in Interspeech, 2014.

[53] K. Yu, M. Gales, and P. Woodland, “Unsupervised adaptation with discrim-
inative mapping transforms,”IEEE Trans. Audio, Speech, Lang. Process.,
vol. 17, no. 4, pp. 714–723, May 2009.

[54] D. Yu, M. L. Seltzer, J. Li, J.-T. Huang, and F. Seide, “Feature learning in
deep neural networks - Studies on speech recognition tasks,” in Int. Conf.
Learn. Rep., 2013.

[55] R. Caruana, “Multitask learning,”Machine Learning, vol. 28, no. 1, pp.
41–75, Jul 1997.

[56] M. L. Seltzer and J. Droppo, “Multi-task learning in deep neural networks
for improved phoneme recognition,” inICASSP, 2013, pp. 6965–6969.

[57] S. Scanzio, P. Laface, L. Fissore, R. Gemello, and F. Mana, “On the use of
a multilingual neural network front-end,” inProc. Interspeech, 2008, pp.
2711–2714.

[58] K. Veselý, M. Karafiat, F. Grezl, M. Janda, and E. Egorova, “The language-
independent bottleneck features,” inProc. IEEE SLT, 2012, pp. 336–341.

[59] Z. Tuske, J. Pinto, D. Willett, and R. Schluter, “Investigation on cross-
and multilingual MLP features under matched and mismatchedacoustical
conditions,” inProc. ICASSP, 2013, p. 7349–7353.

[60] H. Su and H.Xu, “Multi-softmax deep neural network for semi-supervised
training,” in Interspeech, 2015.

92

[61] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” inarXiv:1503.02531, 2015.

[62] L. J. Ba and R. Caruana, “Do deep nets really need to be deep?” in NIPS,
2014.

[63] J. Li, R. Zhao, J.-T. Huang, and Y. Gong, “Learning small-size DNN with
output-distribution-based criteria,” inInterspeech, 2014.

[64] W. Chan, N. R. Ke, and I. Lane, “Transfering knowledge from a RNN to a
DNN,” in Proc. Interspeech, 2015, pp. 3264–3268.

[65] L. Lu, M. Guo, and S. Renals, “Knowledge distillation for small-footprint
highway networks,” inProc. ICASSP, 2017, pp. 4820–4824.

[66] K. Markov and T. Matsui, “Robust speech recognition using generalized
distillation framework,” inInterspeech, 2016, pp. 2364–2368.

[67] S. Watanabe, T. Hori, J. L. Roux, and J. Hershey, “Student-teacher network
learning with enhanced features,” inICASSP, 2017.

[68] T. Asami, R. Masumura, Y. Yamaguchi, H. Masataki, and Y.Aono, “Do-
main adaptation of DNN acoustic models using knowledge distillation,” in
Proc. ICASSP, 2017.

[69] J. Li, M. Seltzer, X. Wang, R. Zhao, and Y. Gong, “Large scale domain
adaptation via teacher-student learning,” inInterspeech, 2017.

[70] J. Cui, B. Kingsbury, B. Ramabhadran, G. Saon, T. Sercu,K. Audhkhasi,
A. Sethy, M. Nussbaum-Thom, and A. Rosenberg, “Knowledge distillation
across ensembles of multilingual models for low-resource languages,” in
Proc. ICASSP, 2017, pp. 4825–4829.

[71] Y. Chebotar and A. Waters, “Distilling knowledge from ensembles of
neural networks for speech recognition,” inProc. Interspeech, 2016, p.
3439–3443.

[72] G. Tucker, M. Wu, M. Sun, S. Panchapagesan, G. Fu, and S. Vitaladevuni,
“Model compression applied to small-footprint keyword spotting,” in Proc.
Interspeech, 2016, p. 1878–1882.

[73] J. Li, R. Zhao et al., “Developing far-field speaker system via teacher-
student learning,” inProc. ICASSP, 2018.

[74] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “KL-divergence regularized deep
neural network adaptation for improved large vocabulary speech recogni-
tion,” in Proc. ICASSP, 2013, pp. 7893–7897.

93

[75] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” in ICML, 2008,
pp. 1096–1103.

[76] A. L. Mass, Q. V. Le, T. M. O’Neil, O. Vinyals, P. Nguyen, and A. Y. Ng,
“Recurrent neural networks for noise reduction in robust ASR,” in Inter-
speech, 2012, pp. 22–25.

[77] Y. Qian, T. Tan, and D. Yu, “An investigation into using parallel data for
far-field speech recognition,” inICASSP, 2016, pp. 5725–5729.

[78] J. Gehring, Y. Miao, F. Metze, and A. Waibel, “Extracting deep bottleneck
features using stacked autoencoders,” inICASSP, 2013, pp. 3377–3381.

[79] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A.Rabi-
novich, “Training deep neural networks on noisy labels withbootstrap-
ping,” arXiv:1412.6596, 2014.

[80] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” inAdv. in Neural Information Processing
Systems, 2006, pp. 153–160.

[81] H. Sak, A. Senior, K. Rao, O. Irsoy, A. Graves, F. Beaufays, and J. Schalk-
wyk, “Learning acoustic frame labeling for speech recognition with recur-
rent neural networks,” inProc. ICASSP. IEEE, 2015, pp. 4280–4284.

[82] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end speech recog-
nition using deep RNN models and WFST-based decoding,” inProc.
ASRU. IEEE, 2015, pp. 167–174.

[83] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend
and spell,” CoRR, vol. abs/1508.01211, 2015. [Online]. Available:
http://arxiv.org/abs/1508.01211

[84] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, and N. Jaitly,
“A comparison of sequence-to-sequence models for speech recognition,”
in Proc. Interspeech, 2017, pp. 939–943.

[85] E. Battenberg, J. Chen, R. Child, A. Coates, Y. Gaur, Y. Li, H. Liu,
S. Satheesh, D. Seetapun, A. Sriram et al., “Exploring neural transduc-
ers for end-to-end speech recognition,”arXiv preprint arXiv:1707.07413,
2017.

[86] H. Sak, M. Shannon, K. Rao, and F. Beaufays, “Recurrent neural aligner:
An encoder-decoder neural network model for sequence to sequence map-
ping,” in Proc. Interspeech, 2017.

94

[87] H. Hadian, H. Sameti, D. Povey, and S. Khudanpur, “Flat-start single-stage
discriminatively trained HMM-based models for ASR,”IEEE Trans. Audio,
Speech, Lang. Process., vol. 26, no. 11, pp. 1949–1961, June 2018.

[88] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen,
A. Kannan, R. J. Weiss, K. Rao, K. Gonina et al., “State-of-the-art speech
recognition with sequence-to-sequence models,” inProc. ICASSP, 2018.

[89] T. N. Sainath, C.-C. Chiu, R. Prabhavalkar, A. Kannan, Y. Wu, P. Nguyen,
and Z. Chen, “Improving the performance of online neural transducer mod-
els,” arXiv preprint arXiv:1712.01807, 2017.

[90] A. Graves, “Sequence transduction with recurrent neural networks,”CoRR,
vol. abs/1211.3711, 2012. [Online]. Available: http://arxiv.org/abs/1211.
3711

[91] L. Lu, X. Zhang, K. H. Cho, and S. Renals, “A study of the recurrent neural
network encoder-decoder for large vocabulary speech recognition,” in Proc.
Interspeech, 2015.

[92] H. Soltau, H. Liao, and H. Sak, “Neural speech recognizer: Acoustic-
to-word LSTM model for large vocabulary speech recognition,” arXiv
preprint arXiv:1610.09975, 2016.

[93] K. Rao, H. Sak, and R. Prabhavalkar, “Exploring architectures, data and
units for streaming end-to-end speech recognition with RNN-Transducer,”
in Proc. ASRU, 2017.

[94] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng,
“Deep speech: Scaling up end-to-end speech recognition,”CoRR, vol.
abs/1412.5567, 2014. [Online]. Available: http://arxiv.org/abs/1412.5567

[95] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate recurrent
neural network acoustic models for speech recognition,” inProc. Inter-
speech, 2015.

[96] N. Kanda, X. Lu, and H. Kawai, “Maximum a posteriori based decoding
for CTC acoustic models,” inProc. Interspeech, 2016, pp. 1868–1872.

[97] G. Zweig, C. Yu, J. Droppo, and A. Stolcke, “Advances
in all-neural speech recognition,” inProc. ICASSP, 2017. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
advances-neural-speech-recognition/ pp. 4805–4809.

[98] H. Liu, Z. Zhu, X. Li, and S. Satheesh, “Gram-CTC: Automatic unit se-
lection and target decomposition for sequence labelling,”arXiv preprint
arXiv:1703.00096, 2017.

95

[99] K. Audhkhasi, B. Ramabhadran, G. Saon, M. Picheny, and D. Nahamoo,
“Direct acoustics-to-word models for English conversational speech recog-
nition,” in Proc. Interspeech, 2017.

[100] J. Li, G. Ye, R. Zhao, J. Droppo, and Y. Gong, “Acoustic-to-word model
without OOV,” in Proc. ASRU. IEEE, 2017.

[101] I. Bazzi, “Modelling out-of-vocabulary words for robust speech recogni-
tion,” Ph.D. dissertation, Massachusetts Institute of Technology, 2002.

[102] B. Decadt, J. Duchateau, W. Daelemans, and P. Wambacq,“Transcription
of out-of-vocabulary words in large vocabulary speech recognition based
on phoneme-to-grapheme conversion,” inProc. ICASSP, vol. 1, 2002, pp.
I–861.

[103] A. Yazgan and M. Saraclar, “Hybrid language models forout of vocabulary
word detection in large vocabulary conversational speech recognition,” in
Proc. ICASSP, vol. 1, 2004, pp. I–745.

[104] M. Bisani and H. Ney, “Open vocabulary speech recognition with flat hy-
brid models,” inProc. Interspeech, 2005, pp. 725–728.

[105] K. Audhkhasi, B. Kingsbury, B. Ramabhadran, G. Saon, and M. Picheny,
“Building competitive direct acoustics-to-word models for English conver-
sational speech recognition,” inProc. ICASSP, 2018.

[106] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learn-
ing,” in Proc. International Conference on Machine Learning, 2009.

[107] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran,
“Low-rank matrix factorization for deep neural network training with high-
dimensional output targets,” inProc. ICASSP, 2013.

[108] T. Mikolov, M. Karafiát, L. Burget, J.̆Cernocký, and S. Khudanpur, “Re-
current neural networks based language model,” inProc. Interspeech, 2010,
pp. 1045–1048.

[109] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[110] L. Lu, X. Zhang, and S. Renais, “On training the recurrent neural network
encoder-decoder for large vocabulary end-to-end speech recognition,” in
Proc. ICASSP, 2016, pp. 5060–5064.

[111] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attentionbased end-to-end
speech recognition using multi-task learning,” inProc. ICASSP, 2017, pp.
4835–4839.

96

[112] T. Hori, S. Watanabe, Y. Zhang, and W. Chan, “Advances in joint CTC-
attention based end-to-end speech recognition with a deep CNN encoder
and RNN-LM,” arXiv preprint arXiv:1706.02737, 2017.

[113] S. Toshniwal, H. Tang, L. Liu, and K. Livescu, “Multitask learning with
low-level auxiliary tasks for encoder-decoder based speech recognition,” in
Proc. Interspeech, 2017, pp. 3532–3536.

[114] O. Siohan, “CTC training of multi-phone acoustic models for speech recog-
nition,” in Proc. Interspeech, 2017, pp. 709–713.

[115] W. Chan, Y. Zhang, Q. Le, and N. Jaitly, “Latent sequence decomposi-
tions,” arXiv preprint arXiv:1610.03035, 2016.

[116] Y. Wu, M. Schuster, Z. Chen, , Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between humanand machine
translation,” CoRR, vol. abs/1609.08144, 2016. [Online]. Available:
http://arxiv.org/abs/1609.08144

[117] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixture of local experts,”Neural Computation, vol. 3, no. 1, pp. 79–87,
1991.

[118] M. I. Jordan and R. A. Jacobs, “Hierarchical mixture ofexperts and the EM
algorithm,”Neural Computation, vol. 6, no. 2, pp. 181–214, 1994.

[119] J. Tani and S. Nolfi, “Learning to perceive the world as articulated: An
approach for hierarchical learning in sensory-motor systems,” Neural Net-
works, vol. 12, no. 7, pp. 1131–1141, 1999.

[120] A. Das, J. Li, C. Liu, and Y. Gong, “Universal acoustic modeling using
neural mixture models,” inProc. ICASSP, submitted for publication.

97

