1,957 research outputs found

    Design and Evaluation of a Vision-Based UI for People with Large Cognitive-Motor Disabilities

    Get PDF
    Recovering from multiple traumatic brain injury (TBI) is a very difficult task, depending on the severity of the lesions, the affected parts of the brain and the level of damage (locomotor, cognitive or sensory). Although there are some software platforms to help these patients to recover part of the lost capacity, the variety of existing lesions and the different degree to which they affect the patient, do not allow the generalization of the appropriate treatments and tools in each case. The aim of this work is to design and evaluate a machine vision-based UI (User Interface) allowing patients with a high level of injury to interact with a computer. This UI will be a tool for the therapy they follow and a way to communicate with their environment. The interface provides a set of specific activities, developed in collaboration with the multidisciplinary team that is currently evaluating each patient, to be used as a part of the therapy they receive. The system has been successfully tested with two patients whose degree of disability prevents them from using other types of platforms

    Convergence in myoelectric control:Between individual patterns of myoelectric learning

    Get PDF
    Objective: To support the design of assistive devices and prostheses, we investigated the changes in upper-limb muscle synergies during the practice of a myoelectric controlled game using proportional-sequential control. Methods: We evaluated 1) whether individual muscle synergies change in their structure; 2) variability; 3) distinctiveness; and 4) whether individuals become more similar with practice. Ten individuals practiced a myoelectric-controlled serious game for ten consecutive days (25 min/day) and one day after one week without training (retention). Results: The results showed that individuals decreased the number of synergies employed and modified their flexor synergies structure, becoming more similar as a group with practice. Nevertheless, within-individual synergies' variability and distinctiveness did not change. Conclusion: These results point out that individuals do not demonstrate muscle patterns less variable or differentiable after practice. However, participants increased performance and became more attuned to the task dynamics. Significance: The present findings indicate that, depending on the task requirements, individuals converge to more similar muscle activation patterns - a feature that should be further explored in prosthetic design

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    Robot mediated communication: Enhancing tele-presence using an avatar

    Get PDF
    In the past few years there has been a lot of development in the field of tele-presence. These developments have caused tele-presence technologies to become easily accessible and also for the experience to be enhanced. Since tele-presence is not only used for tele-presence assisted group meetings but also in some forms of Computer Supported Cooperative Work (CSCW), these activities have also been facilitated. One of the lingering issues has to do with how to properly transmit presence of non-co-located members to the rest of the group. Using current commercially available tele-presence technology it is possible to exhibit a limited level of social presence but no physical presence. In order to cater for this lack of presence a system is implemented here using tele-operated robots as avatars for remote team members and had its efficacy tested. This testing includes both the level of presence that can be exhibited by robot avatars but also how the efficacy of these robots for this task changes depending on the morphology of the robot. Using different types of robots, a humanoid robot and an industrial robot arm, as tele-presence avatars, it is found that the humanoid robot using an appropriate control system is better at exhibiting a social presence. Further, when compared to a voice only scenario, both robots proved significantly better than with only voice in terms of both cooperative task solving and social presence. These results indicate that using an appropriate control system, a humanoid robot can be better than an industrial robot in these types of tasks and the validity of aiming for a humanoid design behaving in a human-like way in order to emulate social interactions that are closer to human norms. This has implications for the design of autonomous socially interactive robot systems

    Emotional engineering of artificial representations of sign languages

    Get PDF
    The fascination and challenge of making an appropriate digital representation of sign language for a highly specialised and culturally rich community such as the Deaf, has brought about the development and production of several digital representations of sign language (DRSL). These range from pictorial depictions of sign language, filmed video recordings to animated avatars (virtual humans). However, issues relating to translating and representing sign language in the digital-domain and the effectiveness of various approaches, has divided the opinion of the target audience. As a result there is still no universally accepted digital representation of sign language. For systems to reach their full potential, researchers have postulated that further investigation is needed into the interaction and representational issues associated with the mapping of sign language into the digital domain. This dissertation contributes a novel approach that investigates the comparative effectiveness of digital representations of sign language within different information delivery contexts. The empirical studies presented have supported the characterisation of the prescribed properties of DRSL's that make it an effective communication system, which when defined by the Deaf community, was often referred to as "emotion". This has led to and supported the developed of the proposed design methodology for the "Emotional Engineering of Artificial Sign Languages", which forms the main contribution of this thesis

    Sensorized garments developed for remote postural and motor rehabilitation

    Get PDF
    Every day, all around the world, millions of people request postural and/or motor rehabilitation. The rehabilitation process, also known as Tertiary Prevention, intends to be a sort of therapy to restore functionality and self-sufficiency of the patient, and regards not only millions of patients daily, but involves also a huge number of professionals in medical staffs, i.e. specialists, nurses, physiotherapists and therapists, social workers, psychologists, physiatrists. The care is given in hospitals, clinics, geriatric facilities, and with territorial home care. For the large number of patients as well as the medical staff and facilities necessary to support the appropriate postural and motor training, the monetary costs of rehabilitation is so large, it is difficult to estimate. So, every effort towards a simplification of the rehabilitation route is desirable and welcome, and this chapter covers this aspect

    Wheelchair-based game design for older adults

    Get PDF
    Few leisure activities are accessible to institutionalized older adults using wheelchairs; in consequence, they experience lower levels of perceived health than able-bodied peers. Video games have been shown to be an engaging leisure activity for older adults. In our work, we address the design of wheelchair-accessible motion-based games. We present KINECTWheels, a toolkit designed to integrate wheelchair movements into motion-based games, and Cupcake Heaven, a wheelchair-based video game designed for older adults using wheelchairs. Results of two studies show that KINECTWheels can be applied to make motion-based games wheelchair-accessible, and that wheelchair-based games engage older adults. Through the application of the wheelchair as an enabling technology in play, our work has the potential of encouraging older adults to develop a positive relationship with their wheelchair. Copyright 2013 ACM
    corecore