11,760 research outputs found

    Transparent Orchestration of Task-based Parallel Applications in Containers Platforms

    Get PDF
    This paper presents a framework to easily build and execute parallel applications in container-based distributed computing platforms in a user-transparent way. The proposed framework is a combination of the COMP Superscalar (COMPSs) programming model and runtime, which provides a straightforward way to develop task-based parallel applications from sequential codes, and containers management platforms that ease the deployment of applications in computing environments (as Docker, Mesos or Singularity). This framework provides scientists and developers with an easy way to implement parallel distributed applications and deploy them in a one-click fashion. We have built a prototype which integrates COMPSs with different containers engines in different scenarios: i) a Docker cluster, ii) a Mesos cluster, and iii) Singularity in an HPC cluster. We have evaluated the overhead in the building phase, deployment and execution of two benchmark applications compared to a Cloud testbed based on KVM and OpenStack and to the usage of bare metal nodes. We have observed an important gain in comparison to cloud environments during the building and deployment phases. This enables better adaptation of resources with respect to the computational load. In contrast, we detected an extra overhead during the execution, which is mainly due to the multi-host Docker networking.This work is partly supported by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316 project, by the Generalitat de Catalunya under contracts 2014-SGR-1051 and 2014-SGR-1272, and by the European Union through the Horizon 2020 research and innovation program under grant 690116 (EUBra-BIGSEA Project). Results presented in this paper were obtained using the Chameleon testbed supported by the National Science Foundation.Peer ReviewedPostprint (author's final draft

    Performance Evaluation of Microservices Architectures using Containers

    Get PDF
    Microservices architecture has started a new trend for application development for a number of reasons: (1) to reduce complexity by using tiny services; (2) to scale, remove and deploy parts of the system easily; (3) to improve flexibility to use different frameworks and tools; (4) to increase the overall scalability; and (5) to improve the resilience of the system. Containers have empowered the usage of microservices architectures by being lightweight, providing fast start-up times, and having a low overhead. Containers can be used to develop applications based on monolithic architectures where the whole system runs inside a single container or inside a microservices architecture where one or few processes run inside the containers. Two models can be used to implement a microservices architecture using containers: master-slave, or nested-container. The goal of this work is to compare the performance of CPU and network running benchmarks in the two aforementioned models of microservices architecture hence provide a benchmark analysis guidance for system designers.Comment: Submitted to the 14th IEEE International Symposium on Network Computing and Applications (IEEE NCA15). Partially funded by European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 639595) - HiEST Projec

    GNFC: Towards Network Function Cloudification

    Get PDF
    An increasing demand is seen from enterprises to host and dynamically manage middlebox services in public clouds in order to leverage the same benefits that network functions provide in traditional, in-house deployments. However, today's public clouds provide only a limited view and programmability for tenants that challenges flexible deployment of transparent, software-defined network functions. Moreover, current virtual network functions can't take full advantage of a virtualized cloud environment, limiting scalability and fault tolerance. In this paper we review and evaluate the current infrastructural limitations imposed by public cloud providers and present the design and implementation of GNFC, a cloud-based Network Function Virtualization (NFV) framework that gives tenants the ability to transparently attach stateless, container-based network functions to their services hosted in public clouds. We evaluate the proposed system over three public cloud providers (Amazon EC2, Microsoft Azure and Google Compute Engine) and show the effects on end-to-end latency and throughput using various instance types for NFV hosts

    Combining Blockchain and Swarm Robotics to Deploy Surveillance Missions

    Get PDF
    Current swarm robotics systems are not utilized as frequently in surveillance missions due to the limitations of the existing distributed systems\u27 designs. The main limitation of swarm robotics is the absence of a framework for robots to be self-governing, secure, and scalable. As of today, a swarm of robots is not able to communicate and perform tasks in transparent and autonomous ways. Many believe blockchain is the imminent future of distributed autonomous systems. A blockchain is a system of computers that stores and distributes data among all participants. Every single participant is a validator and protector of the data in the blockchain system. The data cannot be modified since all participants are storing and watching the same records. In this thesis, we will focus on blockchain applications in swarm robotics using Ethereum smart contracts because blockchain can make a swarm globally connected and secure. A decentralized application (DApp) is used to deploy surveillance missions. After mission deployment, the swarm uses blockchain to communicate and make decisions on appropriate tasks within Ethereum private networks. We set a test swarm robotics system and evaluate the blockchain for its performance, scalability, recoverability, and responsiveness. We conclude that, although blockchain enables a swarm to be globally connected and secure, there are performance limitations that can become a critical issue
    • …
    corecore