12 research outputs found

    From complex data to clear insights: visualizing molecular dynamics trajectories

    Get PDF
    Advances in simulations, combined with technological developments in high-performance computing, have made it possible to produce a physically accurate dynamic representation of complex biological systems involving millions to billions of atoms over increasingly long simulation times. The analysis of these computed simulations is crucial, involving the interpretation of structural and dynamic data to gain insights into the underlying biological processes. However, this analysis becomes increasingly challenging due to the complexity of the generated systems with a large number of individual runs, ranging from hundreds to thousands of trajectories. This massive increase in raw simulation data creates additional processing and visualization challenges. Effective visualization techniques play a vital role in facilitating the analysis and interpretation of molecular dynamics simulations. In this paper, we focus mainly on the techniques and tools that can be used for visualization of molecular dynamics simulations, among which we highlight the few approaches used specifically for this purpose, discussing their advantages and limitations, and addressing the future challenges of molecular dynamics visualization

    Scaling Up Medical Visualization : Multi-Modal, Multi-Patient, and Multi-Audience Approaches for Medical Data Exploration, Analysis and Communication

    Get PDF
    Medisinsk visualisering er en av de mest applikasjonsrettede områdene av visualiseringsforsking. Tett samarbeid med medisinske eksperter er nødvendig for å tolke medisinsk bildedata og lage betydningsfulle visualiseringsteknikker og visualiseringsapplikasjoner. Kreft er en av de vanligste dødsårsakene, og med økende gjennomsnittsalder i i-land øker også antallet diagnoser av gynekologisk kreft. Moderne avbildningsteknikker er et viktig verktøy for å vurdere svulster og produsere et økende antall bildedata som radiologer må tolke. I tillegg til antallet bildemodaliteter, øker også antallet pasienter, noe som fører til at visualiseringsløsninger må bli skalert opp for å adressere den økende kompleksiteten av multimodal- og multipasientdata. Dessuten er ikke medisinsk visualisering kun tiltenkt medisinsk personale, men har også som mål å informere pasienter, pårørende, og offentligheten om risikoen relatert til visse sykdommer, og mulige behandlinger. Derfor har vi identifisert behovet for å skalere opp medisinske visualiseringsløsninger for å kunne håndtere multipublikumdata. Denne avhandlingen adresserer skaleringen av disse dimensjonene i forskjellige bidrag vi har kommet med. Først presenterer vi teknikkene våre for å skalere visualiseringer i flere modaliteter. Vi introduserer en visualiseringsteknikk som tar i bruk små multipler for å vise data fra flere modaliteter innenfor et bildesnitt. Dette lar radiologer utforske dataen effektivt uten å måtte bruke flere sidestilte vinduer. I det neste steget utviklet vi en analyseplatform ved å ta i bruk «radiomic tumor profiling» på forskjellige bildemodaliteter for å analysere kohortdata og finne nye biomarkører fra bilder. Biomarkører fra bilder er indikatorer basert på bildedata som kan forutsi variabler relatert til kliniske utfall. «Radiomic tumor profiling» er en teknikk som genererer mulige biomarkører fra bilder basert på første- og andregrads statistiske målinger. Applikasjonen lar medisinske eksperter analysere multiparametrisk bildedata for å finne mulige korrelasjoner mellom kliniske parameter og data fra «radiomic tumor profiling». Denne tilnærmingen skalerer i to dimensjoner, multimodal og multipasient. I en senere versjon la vi til funksjonalitet for å skalere multipublikumdimensjonen ved å gjøre applikasjonen vår anvendelig for livmorhalskreft- og prostatakreftdata, i tillegg til livmorkreftdataen som applikasjonen var designet for. I et senere bidrag fokuserer vi på svulstdata på en annen skala og muliggjør analysen av svulstdeler ved å bruke multimodal bildedata i en tilnærming basert på hierarkisk gruppering. Applikasjonen vår finner mulige interessante regioner som kan informere fremtidige behandlingsavgjørelser. I et annet bidrag, en digital sonderingsinteraksjon, fokuserer vi på multipasientdata. Bildedata fra flere pasienter kan sammenlignes for å finne interessante mønster i svulstene som kan være knyttet til hvor aggressive svulstene er. Til slutt skalerer vi multipublikumdimensjonen med en likhetsvisualisering som er anvendelig for forskning på livmorkreft, på bilder av nevrologisk kreft, og maskinlæringsforskning på automatisk segmentering av svulstdata. Som en kontrast til de allerede fremhevete bidragene, fokuserer vårt siste bidrag, ScrollyVis, hovedsakelig på multipublikumkommunikasjon. Vi muliggjør skapelsen av dynamiske og vitenskapelige “scrollytelling”-opplevelser for spesifikke eller generelle publikum. Slike historien kan bli brukt i spesifikke brukstilfeller som kommunikasjon mellom lege og pasient, eller for å kommunisere vitenskapelige resultater via historier til et generelt publikum i en digital museumsutstilling. Våre foreslåtte applikasjoner og interaksjonsteknikker har blitt demonstrert i brukstilfeller og evaluert med domeneeksperter og fokusgrupper. Dette har ført til at noen av våre bidrag allerede er i bruk på andre forskingsinstitusjoner. Vi ønsker å evaluere innvirkningen deres på andre vitenskapelige felt og offentligheten i fremtidige arbeid.Medical visualization is one of the most application-oriented areas of visualization research. Close collaboration with medical experts is essential for interpreting medical imaging data and creating meaningful visualization techniques and visualization applications. Cancer is one of the most common causes of death, and with increasing average age in developed countries, gynecological malignancy case numbers are rising. Modern imaging techniques are an essential tool in assessing tumors and produce an increasing number of imaging data radiologists must interpret. Besides the number of imaging modalities, the number of patients is also rising, leading to visualization solutions that must be scaled up to address the rising complexity of multi-modal and multi-patient data. Furthermore, medical visualization is not only targeted toward medical professionals but also has the goal of informing patients, relatives, and the public about the risks of certain diseases and potential treatments. Therefore, we identify the need to scale medical visualization solutions to cope with multi-audience data. This thesis addresses the scaling of these dimensions in different contributions we made. First, we present our techniques to scale medical visualizations in multiple modalities. We introduced a visualization technique using small multiples to display the data of multiple modalities within one imaging slice. This allows radiologists to explore the data efficiently without having several juxtaposed windows. In the next step, we developed an analysis platform using radiomic tumor profiling on multiple imaging modalities to analyze cohort data and to find new imaging biomarkers. Imaging biomarkers are indicators based on imaging data that predict clinical outcome related variables. Radiomic tumor profiling is a technique that generates potential imaging biomarkers based on first and second-order statistical measurements. The application allows medical experts to analyze the multi-parametric imaging data to find potential correlations between clinical parameters and the radiomic tumor profiling data. This approach scales up in two dimensions, multi-modal and multi-patient. In a later version, we added features to scale the multi-audience dimension by making our application applicable to cervical and prostate cancer data and the endometrial cancer data the application was designed for. In a subsequent contribution, we focus on tumor data on another scale and enable the analysis of tumor sub-parts by using the multi-modal imaging data in a hierarchical clustering approach. Our application finds potentially interesting regions that could inform future treatment decisions. In another contribution, the digital probing interaction, we focus on multi-patient data. The imaging data of multiple patients can be compared to find interesting tumor patterns potentially linked to the aggressiveness of the tumors. Lastly, we scale the multi-audience dimension with our similarity visualization applicable to endometrial cancer research, neurological cancer imaging research, and machine learning research on the automatic segmentation of tumor data. In contrast to the previously highlighted contributions, our last contribution, ScrollyVis, focuses primarily on multi-audience communication. We enable the creation of dynamic scientific scrollytelling experiences for a specific or general audience. Such stories can be used for specific use cases such as patient-doctor communication or communicating scientific results via stories targeting the general audience in a digital museum exhibition. Our proposed applications and interaction techniques have been demonstrated in application use cases and evaluated with domain experts and focus groups. As a result, we brought some of our contributions to usage in practice at other research institutes. We want to evaluate their impact on other scientific fields and the general public in future work.Doktorgradsavhandlin

    sMolBoxes: Dataflow Model for Molecular Dynamics Exploration

    Get PDF
    We present sMolBoxes, a dataflow representation for the exploration and analysis of long molecular dynamics (MD) simulations. When MD simulations reach millions of snapshots, a frame-by-frame observation is not feasible anymore. Thus, biochemists rely to a large extent only on quantitative analysis of geometric and physico-chemical properties. However, the usage of abstract methods to study inherently spatial data hinders the exploration and poses a considerable workload. sMolBoxes link quantitative analysis of a user-defined set of properties with interactive 3D visualizations. They enable visual explanations of molecular behaviors, which lead to an efficient discovery of biochemically significant parts of the MD simulation. sMolBoxes follow a node-based model for flexible definition, combination, and immediate evaluation of properties to be investigated. Progressive analytics enable fluid switching between multiple properties, which facilitates hypothesis generation. Each sMolBox provides quick insight to an observed property or function, available in more detail in the bigBox View. The case studies illustrate that even with relatively few sMolBoxes, it is possible to express complex analytical tasks, and their use in exploratory analysis is perceived as more efficient than traditional scripting-based methods.acceptedVersio

    sMolBoxes: Dataflow Model for Molecular Dynamics Exploration

    Get PDF
    We present sMolBoxes, a dataflow representation for the exploration and analysis of long molecular dynamics (MD) simulations. When MD simulations reach millions of snapshots, a frame-by-frame observation is not feasible anymore. Thus, biochemists rely to a large extent only on quantitative analysis of geometric and physico-chemical properties. However, the usage of abstract methods to study inherently spatial data hinders the exploration and poses a considerable workload. sMolBoxes link quantitative analysis of a user-defined set of properties with interactive 3D visualizations. They enable visual explanations of molecular behaviors, which lead to an efficient discovery of biochemically significant parts of the MD simulation. sMolBoxes follow a node-based model for flexible definition, combination, and immediate evaluation of properties to be investigated. Progressive analytics enable fluid switching between multiple properties, which facilitates hypothesis generation. Each sMolBox provides quick insight to an observed property or function, available in more detail in the bigBox View. The case study illustrates that even with relatively few sMolBoxes, it is possible to express complex analyses tasks, and their use in exploratory analysis is perceived as more efficient than traditional scripting-based methods.Comment: 10 pages, 9 figures, IEEE VIS, TVC

    From Molecules to the Masses : Visual Exploration, Analysis, and Communication of Human Physiology

    Get PDF
    Det overordnede målet med denne avhandlingen er tverrfaglig anvendelse av medisinske illustrasjons- og visualiseringsteknikker for å utforske, analysere og formidle aspekter ved fysiologi til publikum med ulik faglig nivå og bakgrunn. Fysiologi beskriver de biologiske prosessene som skjer i levende vesener over tid. Vitenskapen om fysiologi er kompleks, men samtidig kritisk for vår forståelse av hvordan levende organismer fungerer. Fysiologi dekker en stor bredde romlig-temporale skalaer og fordrer behovet for å kombinere og bygge bro mellom basalfagene (biologi, fysikk og kjemi) og medisin. De senere årene har det vært en eksplosjon av nye, avanserte eksperimentelle metoder for å detektere og karakterisere fysiologiske data. Volumet og kompleksiteten til fysiologiske data krever effektive strategier for visualisering for å komplementere dagens standard analyser. Hvilke tilnærminger som benyttes i visualiseringen må nøye balanseres og tilpasses formålet med bruken av dataene, enten dette er for å utforske dataene, analysere disse eller kommunisere og presentere dem. Arbeidet i denne avhandlingen bidrar med ny kunnskap innen teori, empiri, anvendelse og reproduserbarhet av visualiseringsmetoder innen fysiologi. Først i avhandlingen er en rapport som oppsummerer og utforsker dagens kunnskap om muligheter og utfordringer for visualisering innen fysiologi. Motivasjonen for arbeidet er behovet forskere innen visualiseringsfeltet, og forskere i ulike anvendelsesområder, har for en sammensatt oversikt over flerskala visualiseringsoppgaver og teknikker. Ved å bruke søk over et stort spekter av metodiske tilnærminger, er dette den første rapporten i sitt slag som kartlegger visualiseringsmulighetene innen fysiologi. I rapporten er faglitteraturen oppsummert slik at det skal være enkelt å gjøre oppslag innen ulike tema i rom-og-tid-skalaen, samtidig som litteraturen er delt inn i de tre høynivå visualiseringsoppgavene data utforsking, analyse og kommunikasjon. Dette danner et enkelt grunnlag for å navigere i litteraturen i feltet og slik danner rapporten et godt grunnlag for diskusjon og forskningsmuligheter innen feltet visualisering og fysiologi. Basert på arbeidet med rapporten var det særlig to områder som det er ønskelig for oss å fortsette å utforske: (1) utforskende analyse av mangefasetterte fysiologidata for ekspertbrukere, og (2) kommunikasjon av data til både eksperter og ikke-eksperter. Arbeidet vårt av mangefasetterte fysiologidata er oppsummert i to studier i avhandlingen. Hver studie omhandler prosesser som foregår på forskjellige romlig-temporale skalaer og inneholder konkrete eksempler på anvendelse av metodene vurdert av eksperter i feltet. I den første av de to studiene undersøkes konsentrasjonen av molekylære substanser (metabolitter) ut fra data innsamlet med magnetisk resonansspektroskopi (MRS), en avansert biokjemisk teknikk som brukes til å identifisere metabolske forbindelser i levende vev. Selv om MRS kan ha svært høy sensitivitet og spesifisitet i medisinske anvendelser, er analyseresultatene fra denne modaliteten abstrakte og vanskelige å forstå også for medisinskfaglige eksperter i feltet. Vår designstudie som undersøkte oppgavene og kravene til ekspertutforskende analyse av disse dataene førte til utviklingen av SpectraMosaic. Dette er en ny applikasjon som gjør det mulig for domeneeksperter å analysere konsentrasjonen av metabolitter normalisert for en hel kohort, eller etter prøveregion, individ, opptaksdato, eller status på hjernens aktivitetsnivå ved undersøkelsestidspunktet. I den andre studien foreslås en metode for å utføre utforskende analyser av flerdimensjonale fysiologiske data i motsatt ende av den romlig-temporale skalaen, nemlig på populasjonsnivå. En effektiv arbeidsflyt for utforskende dataanalyse må kritisk identifisere interessante mønstre og relasjoner, noe som blir stadig vanskeligere når dimensjonaliteten til dataene øker. Selv om dette delvis kan løses med eksisterende reduksjonsteknikker er det alltid en fare for at subtile mønstre kan gå tapt i reduksjonsprosessen. Isteden presenterer vi i studien DimLift, en iterativ dimensjonsreduksjonsteknikk som muliggjør brukeridentifikasjon av interessante mønstre og relasjoner som kan ligge subtilt i et datasett gjennom dimensjonale bunter. Nøkkelen til denne metoden er brukerens evne til å styre dimensjonalitetsreduksjonen slik at den følger brukerens egne undersøkelseslinjer. For videre å undersøke kommunikasjon til eksperter og ikke-eksperter, studeres i neste arbeid utformingen av visualiseringer for kommunikasjon til publikum med ulike nivåer av ekspertnivå. Det er naturlig å forvente at eksperter innen et emne kan ha ulike preferanser og kriterier for å vurdere en visuell kommunikasjon i forhold til et ikke-ekspertpublikum. Dette påvirker hvor effektivt et bilde kan benyttes til å formidle en gitt scenario. Med utgangspunkt i ulike teknikker innen biomedisinsk illustrasjon og visualisering, gjennomførte vi derfor en utforskende studie av kriteriene som publikum bruker når de evaluerer en biomedisinsk prosessvisualisering målrettet for kommunikasjon. Fra denne studien identifiserte vi muligheter for ytterligere konvergens av biomedisinsk illustrasjon og visualiseringsteknikker for mer målrettet visuell kommunikasjonsdesign. Særlig beskrives i større dybde utviklingen av semantisk konsistente retningslinjer for farging av molekylære scener. Hensikten med slike retningslinjer er å heve den vitenskapelige kompetansen til ikke-ekspertpublikum innen molekyler visualisering, som vil være spesielt relevant for kommunikasjon til befolkningen i forbindelse med folkehelseopplysning. All kode og empiriske funn utviklet i arbeidet med denne avhandlingen er åpen kildekode og tilgjengelig for gjenbruk av det vitenskapelige miljøet og offentligheten. Metodene og funnene presentert i denne avhandlingen danner et grunnlag for tverrfaglig biomedisinsk illustrasjon og visualiseringsforskning, og åpner flere muligheter for fortsatt arbeid med visualisering av fysiologiske prosesser.The overarching theme of this thesis is the cross-disciplinary application of medical illustration and visualization techniques to address challenges in exploring, analyzing, and communicating aspects of physiology to audiences with differing expertise. Describing the myriad biological processes occurring in living beings over time, the science of physiology is complex and critical to our understanding of how life works. It spans many spatio-temporal scales to combine and bridge the basic sciences (biology, physics, and chemistry) to medicine. Recent years have seen an explosion of new and finer-grained experimental and acquisition methods to characterize these data. The volume and complexity of these data necessitate effective visualizations to complement standard analysis practice. Visualization approaches must carefully consider and be adaptable to the user's main task, be it exploratory, analytical, or communication-oriented. This thesis contributes to the areas of theory, empirical findings, methods, applications, and research replicability in visualizing physiology. Our contributions open with a state-of-the-art report exploring the challenges and opportunities in visualization for physiology. This report is motivated by the need for visualization researchers, as well as researchers in various application domains, to have a centralized, multiscale overview of visualization tasks and techniques. Using a mixed-methods search approach, this is the first report of its kind to broadly survey the space of visualization for physiology. Our approach to organizing the literature in this report enables the lookup of topics of interest according to spatio-temporal scale. It further subdivides works according to any combination of three high-level visualization tasks: exploration, analysis, and communication. This provides an easily-navigable foundation for discussion and future research opportunities for audience- and task-appropriate visualization for physiology. From this report, we identify two key areas for continued research that begin narrowly and subsequently broaden in scope: (1) exploratory analysis of multifaceted physiology data for expert users, and (2) communication for experts and non-experts alike. Our investigation of multifaceted physiology data takes place over two studies. Each targets processes occurring at different spatio-temporal scales and includes a case study with experts to assess the applicability of our proposed method. At the molecular scale, we examine data from magnetic resonance spectroscopy (MRS), an advanced biochemical technique used to identify small molecules (metabolites) in living tissue that are indicative of metabolic pathway activity. Although highly sensitive and specific, the output of this modality is abstract and difficult to interpret. Our design study investigating the tasks and requirements for expert exploratory analysis of these data led to SpectraMosaic, a novel application enabling domain researchers to analyze any permutation of metabolites in ratio form for an entire cohort, or by sample region, individual, acquisition date, or brain activity status at the time of acquisition. A second approach considers the exploratory analysis of multidimensional physiological data at the opposite end of the spatio-temporal scale: population. An effective exploratory data analysis workflow critically must identify interesting patterns and relationships, which becomes increasingly difficult as data dimensionality increases. Although this can be partially addressed with existing dimensionality reduction techniques, the nature of these techniques means that subtle patterns may be lost in the process. In this approach, we describe DimLift, an iterative dimensionality reduction technique enabling user identification of interesting patterns and relationships that may lie subtly within a dataset through dimensional bundles. Key to this method is the user's ability to steer the dimensionality reduction technique to follow their own lines of inquiry. Our third question considers the crafting of visualizations for communication to audiences with different levels of expertise. It is natural to expect that experts in a topic may have different preferences and criteria to evaluate a visual communication relative to a non-expert audience. This impacts the success of an image in communicating a given scenario. Drawing from diverse techniques in biomedical illustration and visualization, we conducted an exploratory study of the criteria that audiences use when evaluating a biomedical process visualization targeted for communication. From this study, we identify opportunities for further convergence of biomedical illustration and visualization techniques for more targeted visual communication design. One opportunity that we discuss in greater depth is the development of semantically-consistent guidelines for the coloring of molecular scenes. The intent of such guidelines is to elevate the scientific literacy of non-expert audiences in the context of molecular visualization, which is particularly relevant to public health communication. All application code and empirical findings are open-sourced and available for reuse by the scientific community and public. The methods and findings presented in this thesis contribute to a foundation of cross-disciplinary biomedical illustration and visualization research, opening several opportunities for continued work in visualization for physiology.Doktorgradsavhandlin

    Isoflächenrekonstruktion aus Serienschnitten

    Get PDF

    Applied Visualization in the Neurosciences and the Enhancement of Visualization through Computer Graphics

    Get PDF
    The complexity and size of measured and simulated data in many fields of science is increasing constantly. The technical evolution allows for capturing smaller features and more complex structures in the data. To make this data accessible by the scientists, efficient and specialized visualization techniques are required. Maximum efficiency and value for the user can only be achieved by adapting visualization to the specific application area and the specific requirements of the scientific field. Part I: In the first part of my work, I address the visualization in the neurosciences. The neuroscience tries to understand the human brain; beginning at its smallest parts, up to its global infrastructure. To achieve this ambitious goal, the neuroscience uses a combination of three-dimensional data from a myriad of sources, like MRI, CT, or functional MRI. To handle this diversity of different data types and sources, the neuroscience need specialized and well evaluated visualization techniques. As a start, I will introduce an extensive software called \"OpenWalnut\". It forms the common base for developing and using visualization techniques with our neuroscientific collaborators. Using OpenWalnut, standard and novel visualization approaches are available to the neuroscientific researchers too. Afterwards, I am introducing a very specialized method to illustrate the causal relation of brain areas, which was, prior to that, only representable via abstract graph models. I will finalize the first part of my work with an evaluation of several standard visualization techniques in the context of simulated electrical fields in the brain. The goal of this evaluation was clarify the advantages and disadvantages of the used visualization techniques to the neuroscientific community. We exemplified these, using clinically relevant scenarios. Part II: Besides the data preprocessing, which plays a tremendous role in visualization, the final graphical representation of the data is essential to understand structure and features in the data. The graphical representation of data can be seen as the interface between the data and the human mind. The second part of my work is focused on the improvement of structural and spatial perception of visualization -- the improvement of the interface. Unfortunately, visual improvements using computer graphics methods of the computer game industry is often seen sceptically. In the second part, I will show that such methods can be applied to existing visualization techniques to improve spatiality and to emphasize structural details in the data. I will use a computer graphics paradigm called \"screen space rendering\". Its advantage, amongst others, is its seamless applicability to nearly every visualization technique. I will start with two methods that improve the perception of mesh-like structures on arbitrary surfaces. Those mesh structures represent second-order tensors and are generated by a method named \"TensorMesh\". Afterwards I show a novel approach to optimally shade line and point data renderings. With this technique it is possible for the first time to emphasize local details and global, spatial relations in dense line and point data.In vielen Bereichen der Wissenschaft nimmt die Größe und Komplexität von gemessenen und simulierten Daten zu. Die technische Entwicklung erlaubt das Erfassen immer kleinerer Strukturen und komplexerer Sachverhalte. Um solche Daten dem Menschen zugänglich zu machen, benötigt man effiziente und spezialisierte Visualisierungswerkzeuge. Nur die Anpassung der Visualisierung auf ein Anwendungsgebiet und dessen Anforderungen erlaubt maximale Effizienz und Nutzen für den Anwender. Teil I: Im ersten Teil meiner Arbeit befasse ich mich mit der Visualisierung im Bereich der Neurowissenschaften. Ihr Ziel ist es, das menschliche Gehirn zu begreifen; von seinen kleinsten Teilen bis hin zu seiner Gesamtstruktur. Um dieses ehrgeizige Ziel zu erreichen nutzt die Neurowissenschaft vor allem kombinierte, dreidimensionale Daten aus vielzähligen Quellen, wie MRT, CT oder funktionalem MRT. Um mit dieser Vielfalt umgehen zu können, benötigt man in der Neurowissenschaft vor allem spezialisierte und evaluierte Visualisierungsmethoden. Zunächst stelle ich ein umfangreiches Softwareprojekt namens \"OpenWalnut\" vor. Es bildet die gemeinsame Basis für die Entwicklung und Nutzung von Visualisierungstechniken mit unseren neurowissenschaftlichen Kollaborationspartnern. Auf dieser Basis sind klassische und neu entwickelte Visualisierungen auch für Neurowissenschaftler zugänglich. Anschließend stelle ich ein spezialisiertes Visualisierungsverfahren vor, welches es ermöglicht, den kausalen Zusammenhang zwischen Gehirnarealen zu illustrieren. Das war vorher nur durch abstrakte Graphenmodelle möglich. Den ersten Teil der Arbeit schließe ich mit einer Evaluation verschiedener Standardmethoden unter dem Blickwinkel simulierter elektrischer Felder im Gehirn ab. Das Ziel dieser Evaluation war es, der neurowissenschaftlichen Gemeinde die Vor- und Nachteile bestimmter Techniken zu verdeutlichen und anhand klinisch relevanter Fälle zu erläutern. Teil II: Neben der eigentlichen Datenvorverarbeitung, welche in der Visualisierung eine enorme Rolle spielt, ist die grafische Darstellung essenziell für das Verständnis der Strukturen und Bestandteile in den Daten. Die grafische Repräsentation von Daten bildet die Schnittstelle zum Gehirn des Menschen. Der zweite Teile meiner Arbeit befasst sich mit der Verbesserung der strukturellen und räumlichen Wahrnehmung in Visualisierungsverfahren -- mit der Verbesserung der Schnittstelle. Leider werden viele visuelle Verbesserungen durch Computergrafikmethoden der Spieleindustrie mit Argwohn beäugt. Im zweiten Teil meiner Arbeit werde ich zeigen, dass solche Methoden in der Visualisierung angewendet werden können um den räumlichen Eindruck zu verbessern und Strukturen in den Daten hervorzuheben. Dazu nutze ich ein in der Computergrafik bekanntes Paradigma: das \"Screen Space Rendering\". Dieses Paradigma hat den Vorteil, dass es auf nahezu jede existierende Visualiserungsmethode als Nachbearbeitunsgschritt angewendet werden kann. Zunächst führe ich zwei Methoden ein, die die Wahrnehmung von gitterartigen Strukturen auf beliebigen Oberflächen verbessern. Diese Gitter repräsentieren die Struktur von Tensoren zweiter Ordnung und wurden durch eine Methode namens \"TensorMesh\" erzeugt. Anschließend zeige ich eine neuartige Technik für die optimale Schattierung von Linien und Punktdaten. Mit dieser Technik ist es erstmals möglich sowohl lokale Details als auch globale räumliche Zusammenhänge in dichten Linien- und Punktdaten zu erfassen

    Integral Curve Clustering and Simplification for Flow Visualization: A Comparative Evaluation

    Get PDF

    Skeletonization methods for image and volume inpainting

    Get PDF
    Image and shape restoration techniques are increasingly important in computer graphics. Many types of restoration techniques have been proposed in the 2D image-processing and according to our knowledge only one to volumetric data. Well-known examples of such techniques include digital inpainting, denoising, and morphological gap filling. However efficient and effective, such methods have several limitations with respect to the shape, size, distribution, and nature of the defects they can find and eliminate. We start by studying the use of 2D skeletons for the restoration of two-dimensional images. To this end, we show that skeletons are useful and efficient for volumetric data reconstruction. To explore our hypothesis in the 3D case, we first overview the existing state-of-the-art in 3D skeletonization methods, and conclude that no such method provides us with the features required by efficient and effective practical usage. We next propose a novel method for 3D skeletonization, and show how it complies with our desired quality requirements, which makes it thereby suitable for volumetric data reconstruction context. The joint results of our study show that skeletons are indeed effective tools to design a variety of shape restoration methods. Separately, our results show that suitable algorithms and implementations can be conceived to yield high end-to-end performance and quality of skeleton-based restoration methods. Finally, our practical applications can generate competitive results when compared to application areas such as digital hair removal and wire artifact removal
    corecore