51 research outputs found

    New variational and multisymplectic formulations of the Euler-Poincar\'e equation on the Virasoro-Bott group using the inverse map

    Full text link
    We derive a new variational principle, leading to a new momentum map and a new multisymplectic formulation for a family of Euler--Poincar\'e equations defined on the Virasoro-Bott group, by using the inverse map (also called `back-to-labels' map). This family contains as special cases the well-known Korteweg-de Vries, Camassa-Holm, and Hunter-Saxton soliton equations. In the conclusion section, we sketch opportunities for future work that would apply the new Clebsch momentum map with 22-cocycles derived here to investigate a new type of interplay among nonlinearity, dispersion and noise.Comment: 19 page

    Waltzing peakons and compacton pairs in a cross-coupled Camassa-Holm equation

    Full text link
    We consider singular solutions of a system of two cross-coupled Camassa-Holm (CCCH) equations. This CCCH system admits peakon solutions, but it is not in the two-component CH integrable hierarchy. The system is a pair of coupled Hamiltonian partial differential equations for two types of solutions on the real line, each of which separately possesses exp(-|x|) peakon solutions with a discontinuity in the first derivative at the peak. However, there are no self-interactions, so each of the two types of peakon solutions moves only under the induced velocity of the other type. We analyse the `waltzing' solution behaviour of the cases with a single bound peakon pair (a peakon couple), as well as the over-taking collisions of peakon couples and the antisymmetric case of the head-on collision of a peakon couple and a peakon anti-couple. We then present numerical solutions of these collisions, which are inelastic because the waltzing peakon couples each possess an internal degree of freedom corresponding to their `tempo' -- that is, the period at which the two peakons of opposite type in the couple cycle around each other in phase space. Finally, we discuss compacton couple solutions of the cross-coupled Euler-Poincar\'e (CCEP) equations and illustrate the same types of collisions as for peakon couples, with triangular and parabolic compacton couples. We finish with a number of outstanding questions and challenges remaining for understanding couple dynamics of the CCCH and CCEP equations

    Soliton Dynamics in Computational Anatomy

    Full text link
    Computational anatomy (CA) has introduced the idea of anatomical structures being transformed by geodesic deformations on groups of diffeomorphisms. Among these geometric structures, landmarks and image outlines in CA are shown to be singular solutions of a partial differential equation that is called the geodesic EPDiff equation. A recently discovered momentum map for singular solutions of EPDiff yields their canonical Hamiltonian formulation, which in turn provides a complete parameterization of the landmarks by their canonical positions and momenta. The momentum map provides an isomorphism between landmarks (and outlines) for images and singular soliton solutions of the EPDiff equation. This isomorphism suggests a new dynamical paradigm for CA, as well as new data representation.Comment: published in NeuroImag

    Invariant higher-order variational problems II

    Full text link
    Motivated by applications in computational anatomy, we consider a second-order problem in the calculus of variations on object manifolds that are acted upon by Lie groups of smooth invertible transformations. This problem leads to solution curves known as Riemannian cubics on object manifolds that are endowed with normal metrics. The prime examples of such object manifolds are the symmetric spaces. We characterize the class of cubics on object manifolds that can be lifted horizontally to cubics on the group of transformations. Conversely, we show that certain types of non-horizontal geodesics on the group of transformations project to cubics. Finally, we apply second-order Lagrange--Poincar\'e reduction to the problem of Riemannian cubics on the group of transformations. This leads to a reduced form of the equations that reveals the obstruction for the projection of a cubic on a transformation group to again be a cubic on its object manifold.Comment: 40 pages, 1 figure. First version -- comments welcome

    Projective structure and integrable geodesic flows on the extension of Bott-Virasoro group

    Get PDF
    This is a sequel to our paper (Lett. Math. Phys. (2000)), triggered from a question posed by Marcel, Ovsienko, and Roger in their paper (1997). In this paper, we show that the multicomponent (or vector) Ito equation, modified dispersive water wave equation, and modified dispersionless long wave equation are the geodesic flows with respect to an L2 metric on the semidirect product space Diffs(S1)⋉C∞(S1)kˆ, where Diffs(S1) is the group of orientation preserving Sobolev Hs diffeomorphisms of the circle. We also study the projective structure associated with the matrix Sturm-Liouville operators on the circle

    Controlled Lagrangians and Stabilization of Euler--Poincar\'e Mechanical Systems with Broken Symmetry

    Full text link
    We extend the method of Controlled Lagrangians to Euler--Poincar\'e mechanical systems with broken symmetry, and find stabilizing controls of unstable equilibria of such mechanical systems. Our motivating example is a top spinning on a movable base: The gravity breaks the symmetry with respect to the three-dimensional rotations and translations of the system, and also renders the upright spinning equilibrium unstable. We formulate the system as Euler--Poincar\'e equations with advected parameters using semidirect Lie group SE(3)⋉R4\mathsf{SE}(3) \ltimes \mathbb{R}^{4}, and find a control that is applied to the base to stabilize the equilibrium.Comment: 13 pages, 4 figure
    • …
    corecore