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Abstract We develop a framework for polynomial regres-
sion on Riemannian manifolds. Unlike recently developed
spline models on Riemannian manifolds, Riemannian poly-
nomials offer the ability to model parametric polynomials of
all integer orders, odd and even. An intrinsic adjoint method
is employed to compute variations of the matching func-
tional, and polynomial regression is accomplished using a
gradient-based optimization scheme. We apply our polyno-
mial regression framework in the context of shape analysis
in Kendall shape space as well as in diffeomorphic landmark
space. Our algorithm is shown to be particularly convenient
in Riemannian manifolds with additional symmetry, such as
Lie groups and homogeneous spaces with right or left invari-
ant metrics. As a particularly important example, we also
apply polynomial regression to time-series imaging data us-
ing a right invariant Sobolev metric on the diffeomorphism
group. The results show that Riemannian polynomials pro-
vide a practical model for parametric curve regression, while
offering increased flexibility over geodesics.

Keywords Polynomial - Riemannian geometry -
Regression - Rolling maps - Lie groups - Shape space

1 Introduction

Comparative studies are essential to biomedical statistical
analysis. In the context of shape, such analyses are used
to discriminate between healthy and disease states based
on observations of anatomical shapes within individuals in
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the two populations [35]. Commonly, in these methods the
shape data are modelled on a Riemannian manifold and in-
trinsic coordinate-free manifold-based methods are used [8].
This prevents bias due to arbitrary choice of coordinates and
avoids the influence of unwanted effects. For instance, by
modelling shapes with a representation incapable of repre-
senting scale and rotation of an object and using intrinsic
manifold-based methods, scale and rotation are guaranteed
not to effect the analysis [19].

Many conditions such as developmental disorders and
neurodegeneration are characterized not only by shape char-
acteristics, but by abnormal frends in anatomical shapes over
time. Thus it is often the temporal dependence of shape
that is most useful for comparative shape analysis. The field
of regression analysis involves studying the connection be-
tween independent variables and observed responses [34].
In particular, this includes the study of temporal trends in a
observed data.

In this work, we extend the recently developed geodesic
regression model [12] to higher order polynomials using in-
trinsic Riemannian manifold-based methods. We show that
this Riemannian polynomial model is able to provide in-
creased flexibility over geodesics, while remaining in the
parametric regression setting. The increase in flexibility is
particularly important, as it enables a more accurate descrip-
tion of shape trends and, ultimately, more useful compara-
tive regression analysis.

While our primary motivation is shape analysis, the Rie-
mannian polynomial model is applicable in a variety of ap-
plications. For instance, directional data is commonly mod-
elled as points on the sphere S?, and video sequences repre-
senting human activity are modelled in Grassmannian man-
ifolds [36].

In computational anatomy applications, the primary ob-
jects of interest are elements of a group of symmetries acting
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on the space of observable data. For instance, rigid motion
is studied using the groups SO(3) and SE(3), acting on a
space of landmark points or scalar images. Non-rigid mo-
tion and growth is modelled using infinite-dimensional dif-
feomorphism groups, such as in the currents framework [37]
for unlabelled landmarks or the large deformation diffeo-
morphic metric mapping (LDDMM) framework of deform-
ing images [30]. We show that in the presence of a group
action, optimization of our polynomial regression model us-
ing an adjoint method is particularly convenient.

This work is an extension of the Riemannian polynomial
regression framework first presented by Hinkle et al. [15]. In
Sects. 57, we give a new derivation of polynomial regres-
sion for Lie groups and Lie group actions with Riemannian
metrics. By performing the adjoint optimization directly in
the Lie algebra, the computations in these spaces are greatly
simplified over the general formulation. We show how this
Lie group formulation can be used to perform polynomial
regression on the space of images acted on by groups of dif-
feomorphisms.

1.1 Regression Analysis and Curve-Fitting

The study of the relationship between measured data and de-
scriptive variables is known as the field of regression anal-
ysis. As with most statistical techniques, regression analy-
ses can be broadly divided into two classes: parametric and
non-parametric. The most widely used parametric regres-
sion methods are linear and polynomial regression in Eu-
clidean space, wherein a linear or polynomial function is
fit in a least-squares fashion to observed data. Such meth-
ods are the staple of modern data analysis. The most com-
mon non-parametric regression approaches are kernel-based
methods and spline smoothing approaches which provide
great flexibility in the class of regression functions. How-
ever, their non-parametric nature presents a challenge to in-
ference problems; if, for example, one wishes to perform a
hypothesis test to determine whether the trend for one group
of data is significantly different from that of another group.

In previous work, non-parametric kernel-based and
spline-based methods have been extended to observations
that lie on a Riemannian manifold with some success [8, 18,
22, 26], but intrinsic parametric regression on Riemannian
manifolds has received limited attention. Recently, Flet-
cher [12] and Niethammer et al. [31] have each indepen-
dently developed a form of parametric regression, geodesic
regression, which generalizes the notion of linear regression
to Riemannian manifolds. Geodesic models are useful, but
are limited by their lack of flexibility when modelling com-
plex trends.

Fletcher [12] defines a geodesic regression model by in-
troducing a manifold-valued random variable Y,

Y = Exp(Exp(p, Xv), €), ()

where p € M is an initial point and v € T, M an initial ve-
locity. The geodesic curve Exp(p, Xv) then relates the in-
dependent variable X € R to the dependent random vari-
able Y, via this equation and the Gaussian random vector
€ € Tgxp(p,xv)M. In this paper, we extend this model to a
polynomial regression model

Y =Exp(y(X), €), ()

where the curve y (X) is a Riemannian polynomial of integer
order k. In the case that M is Euclidean space, this model is
simply

k
Vi :
Y=p+2i—ﬁx’+e, (©)
i=1

where the point p and vectors v; constitute the parameters
of our model.

In this work we use the common term regression to de-
scribe methods of fitting polynomial curves using a sum
of squared error penalty function. In Euclidean spaces, this
is equivalent to solving a maximum likelihood estimation
problem using a Gaussian noise model for the observed data.
In Riemannian manifolds, the situation is more nuanced, as
there is no consensus on how to define Gaussian distribu-
tions on general Riemannian manifolds, and in general the
least-squares penalty may not correspond to a log likelihood.
Many of the examples we will present are symmetric spaces:
Kendall shape space in two dimensions, the rotation group,
and the sphere, for instance. As Fletcher [12, Sect. 4] ex-
plains, least-squares regression in symmetric spaces does, in
fact, correspond to maximum likelihood estimation of model
parameters, using a natural definition of Gaussian distribu-
tion.

1.2 Previous Work: Cubic Splines

Noakes et al. [32] first introduced the notion of Rieman-
nian cubic splines. They fix the endpoints yg, y; € M of a
curve, as well as the derivative of the curve at those points
¥y € TyyM, y; € Ty, M. A Riemannian cubic spline is then
defined as any differentiable curve y : [0, 1] — M taking on
those endpoints and derivatives and minimizing

D (y) = lv d v, 4 d 4
<y)—/0 4,V (0.Vg, Ty (0))dr. 4)

As is shown by Noakes et al. [14, 32], between endpoints,
cubic splines satisfy the following Euler-Lagrange equation:

v d R(V d, 4.4 =0 5)
oV TV v @ )at =

Cubic splines are useful for interpolation problems on
Riemannian manifolds. However, cubic splines provide an
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insufficient model for parametric curve regression. For in-
stance, by increasing the order of derivatives in Eq. (4), cu-
bic splines are generalizable to higher order curves. Still,
only odd order splines may be defined in this way, and there
is no clear way to define even order splines.

Riemannian splines are parametrized by the endpoint
conditions, meaning that the space of curves is naturally ex-
plored by varying control points. This is convenient if con-
trol points such as observed data are given at the outset.
However, for parametric curve regression, curve models are
preferred that don’t depend on the data, such as the initial
conditions of a geodesic [12]. Although Eq. (5) provides an
ODE which could be used as such a parametric model in a
“spline shooting” algorithm, estimating initial position and
derivatives as parameters, the curvature term complicates in-
tegration and optimization.

1.3 Contributions in This Work

The goal of the current work is to extend the geodesic re-
gression model in order to accommodate more flexibility
while remaining in the parametric setting. The increased
flexibility introduced by the methods in this manuscript al-
low a better description of the variability in the data. The
work presented in this paper allows one to fit polynomial
regression curves on a general Riemannian manifold, us-
ing intrinsic methods and avoiding the need for unwrapping
and rolling. Since our model includes time-reparametrized
geodesics as a special case, information about time depen-
dence is also obtained from the regression without explicit
modeling by examining the collinearity of the estimated pa-
rameters.

We derive practical algorithms for fitting polynomial
curves to observations in Riemannian manifolds. The class
of polynomial curves we use, described by Leite & Krakow-
ski [24], is more suited to parametric curve regression than
are spline models. These polynomials curves are defined for
any integer order and are naturally parametrized via initial
conditions instead of control points. We derive explicit for-
mulas for computing derivatives with respect to the initial
conditions of these polynomials in a least-squares curve-
fitting setting.

In the following sections, we describe our method of fit-
ting polynomial curves to data lying in various spaces. We
develop the theory for general Riemannian manifolds, Lie
groups with right invariant metrics, and finally for spaces
acted on by such Lie groups. In order to keep each appli-
cation somewhat self-contained, results will be shown in
each case in the section in which the associated space is
treated, instead of in a separate results section following all
the methods.

@ Springer

2 Riemannian Geometry Preliminaries

Before defining Riemannian polynomials, we first review a
few basic results from Riemannian geometry and establish
a common notation. For a more in-depth treatment of this
background material see, for instance, do Carmo [9]. Let
(M, g) be a Riemannian manifold. At each point p € M,
the metric g defines an inner product on the tangent space
T,M. The metric also provides a method to differentiate
vector fields with respect to one another, referred to as the
covariant derivative. For smooth vector fields v, w € X(M)
and a smooth curve y : [0, 1] — M the covariant derivative
satisfies the following product rule:

P ©) w0) = (V4,0 0). w(r )
+(r®). Ve, wy®)).  (©

A geodesic y : [0, 1] — M is characterized (for instance)
by the conservation of kinetic energy along the curve:
dld d \ 0=alv d d )
a\ai " a7V N\ v a " alt |

which leads to the differential equation

d

v gy V= 0. ®)
This is called the geodesic equation and uniquely deter-
mines geodesics, parametrized by the initial conditions
(v(0), %y (0)) € T M. The mapping from the tangent space
at p into the manifold M, defined by integration of the geo-
desic equation, is called the exponential map and is writ-
ten Exp,, : T, M — M. The exponential map is injective on
a zero-centered ball B in T, M of some non-zero radius.
Thus, for a point g within a neighborhood of p, there exists
a unique vector v € T, M corresponding to a minimal length
path under the exponential map from p to ¢g. The mapping
of such points g to their associated tangent vectors v at p is
called the log map of g at p, denoted v =Log,, .

Given a curve y : [0, 1] — M, the covariant derivative
v d, provides a way to relate tangent vectors at different
points along y. A vector field w is said to be parallel trans-
ported along y if it satisfies the parallel transport equation,

Vj_lyw(y(t)) =0. )

Notice that the geodesic equation is a special case of paral-
lel transport, under which the velocity is parallel along the
curve itself.

3 Riemannian Polynomials

We now introduce Riemannian polynomials as a generaliza-
tion of geodesics [15]. Geodesics are generalizations to the
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Riemannian manifold setting of curves in R¢ with constant
first derivative. In the previous section we briefly reviewed
how the covariant derivative provides a way to define vector
fields which are analogous to constant vector fields along y,
via parallel transport.

We refer to the vector field V d, %y(r) as the acceler-
ation of the curve y. Curves with tparallel acceleration are
generalizations of curves in R whose coordinates are second
order polynomials, and satisfy the second order polynomial
equation,

d
(V) -y () =0. (10)

Extending this idea, a cubic polynomial is a curve with par-
allel jerk (time derivative of acceleration), and so on. Gen-
erally, a kth order polynomial in M is defined as a curve
y 1[0, 1] — M satisfying

k d
(Vg y()=0 (1)

for all times ¢ € [0, 1]. As with polynomials in Euclidean
space, polynomials are fully determined by initial conditions
att =0:

y(0) e M, (12)

d 0 eT, oM (13)

le y()M,

Ve L, oer,om i=1 k—1 14

( %y) EV( )e y(0) ) t=1,...,k— 1. ( )
Introducing vector fields vi (), ..., v (¢) € T, )M, we

write the following system of covariant differential equa-
tions, which is equivalent to Eq. (11):

d

Ey(t)=v1(t) 15)

Va, v =vier (@), i=1... k=1 (16)

Va v () =0. a7
aV

In this notation, the initial conditions that determine the
polynomial are y (0), v; (0),i =1,...,k.

The Riemannian polynomial equations cannot, in gen-
eral, be solved in closed form, and must be integrated nu-
merically. In order to discretize this system of covariant dif-
ferential equations, we implement a covariant Euler integra-
tor, depicted in Algorithm 1. A time step Atz is chosen and,
at each step of the integrator, y (t + At) is computed using
the exponential map:

y(t+ At) = Expy(,)(Atvl (t)). (18)

Each vector v; is incremented within the tangent space at
y(¢) and the results are parallel transported infinitesimally

Algorithm 1 Pseudocode for forward integration of k™ or-
der Riemannian polynomial
y < v(©0)
fori=1,...,kdo
V; < V; (0)
end for
t <0
repeat
w <— V]
fori=1,....,k—1do
v; < ParTrans(y, Atw, v; + Atvjy1)
end for
v < ParTrans(y, Atw, vg)
y < Exp, (Atw)
t<t+ At
until t=T

Fig. 1 Sample polynomial curves emanating from a common base-
point on the sphere (black = geodesic, blue = quadratic, red = cubic)

along a geodesic from y (¢) to y(t + At). For a proof that
this algorithm approximates the polynomial equations, see
Appendix A. The only ingredients necessary to integrate a
polynomial are the exponential map and parallel transport
on the manifold.

Figure 1 shows the result of integrating polynomials of
order one, two, and three on the sphere. The parameters,
the initial velocity, acceleration, and jerk, were chosen a
priori and a cubic polynomial was integrated to obtain the
blue curve. Then the initial jerk was set to zero and the blue
quadratic curve was integrated, followed by the black geo-
desic whose acceleration was also set to zero.

3.1 Polynomial Time Reparametrization

Geodesic curves propagate at a constant speed as a result of
their extremal action property. Polynomials provide flexibil-
ity not only in the class of paths that are possible, but in the
time dependence of the curves traversing those paths. If the
parameters of a polynomial y consist of collinear vectors
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v;(0) € T}, 0y M, then the path of y (the image of the map-
ping y) matches that of a geodesic, but the time dependence
has been reparametrized by some polynomial transforma-
tion 7 > co + 1t + cat? + ¢3t3. This generalizes the exis-
tence of polynomials in Euclidean space which are merely
polynomial transformations of a straight line path. Regres-
sion models could even be implemented in which the op-
erator wishes to estimate geodesic paths, but is unsure of
parametrization, and so enforces the estimated parameters
to be collinear.

4 Polynomial Regression via Adjoint Optimization

In order to regress polynomials against observed data J; €
M,j=1,...,Natknowntimest; eR,j=1,...,N, we
define the following objective function

=

Eo(v(0),v1(0), ..., 0 (0)) = Z (v@p. 1) (19

subject to the constraints given by Eqs. (15)—-(17). Note that
in this expression d represents the geodesic distance: the
minimum length of a path from the curve point y (¢;) to
the data point J;. The function Eq is minimized in order to
find the optimal initial conditions y (0), v; (0),i =1,...,k,
which we will refer to as the parameters of our model.

In order to determine the optimal parameters of the poly-
nomial, we introduce Lagrange multiplier vector fields X;
fori =0,...,k, often called the adjoint variables, and de-
fine the augmented Lagrangian function

E(y. {vi}, {A})

N

= Z V(tj) -]]

! d
+/0 <)\0(I) —y (@) — U](t)>
k=1 .1
+§,[) ()"i(t)vv%yvi(t)—vi+1(t)>dt

T
%—/a<kk0),V¢yka»dt (20)
0 dt

As is standard practice, the optimality conditions for this
equation are obtained by taking variations with respect to all
arguments of E, integrating by parts when necessary. The re-
sulting variations with respect to the adjoint variables yield
the original dynamic constraints: the polynomial equations.
Variations with respect to the primal variables gives rise to

@ Springer

the following system of equations, termed the adjoint equa-
tions (see B for derivation).

Vi i) =—hii() i=1....k 1)

k
Vi, ko) = — Z] R(vi (1), 1i()v1 (o), (22)
1=
where R is the Riemannian curvature tensor and the adjoint
variable A¢ takes jump discontinuities at time points where
data is present:

xolt;7) = 2o(t)

Note that this jump discontinuity corresponds to the varia-
tion of E with respect to y(¢;). The Riemannian curvature
tensor is defined by the formula [9]

=Log, ;) J;- (23)

R(u, v)w = V,Vow — V, Vyw — Vi o, (24)

and can be computed in closed form for many manifolds.
Gradients of E with respect to initial and final conditions
give rise to the terminal endpoint conditions for the adjoint
variables,

() =0, i=0,...k (25)

as well as expressions for the gradients with respect to the
parameters y (0), v; (0):

Sy E =—20(0), (26)
8u:0) E = — 2 (0). 27

In order to determine the value of the adjoint vector fields at
t =0, and thus the gradients of the functional Ey, the adjoint
variables are initialized to zero at time 1, then Eq. (22) is
integrated backward in time to t = 0.

Given the gradients with respect to the parameters, a sim-
ple steepest descent algorithm is used to optimize the func-
tional. At each iteration, y (0) is updated using the expo-
nential map and the vectors v; (0) are updated via parallel
translation. This algorithm is depicted in Algorithm 2.

Note that in the special case of a zero-order polyno-
mial (k = 0), the only gradient )¢ is simply the mean of
the log map vectors at the current estimate of the Fréchet
mean. So this method generalizes the common method of
Fréchet averaging on manifolds via gradient descent [13].
In the case of geodesic polynomials, kK = 1, the curvature
term in Eq. (22) indicates that A is a sum of Jacobi fields.
So this approach subsumes geodesic regression as presented
by Fletcher [12]. For higher order polynomials, the adjoint
equations represent a generalization of Jacobi field.

As we will see later, in some cases these adjoint equations
take a simpler form not involving curvature. In the case that
the manifold M is a Lie group, the adjoint equations can be
computed by taking variations in the Lie algebra, avoiding
explicit curvature computation.
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Algorithm 2 Pseudocode for reverse integration of adjoint
equations for k™ order Riemannian polynomial
y < y(T)
fori =0,...
)\i «~0
end for
t<T
repeat
w < v1(t)
Ao < ro+ At Y E_ Ri, Avy
if t =1; then
Ao < Ag + %Logy Ji
end if
fori=k,...,1do
A < ParTrans(y, —Arw, A; + AtA;—_1)
end for
Ao < ParTrans(y, —Arw, Ag)
y <« Expy (—Atw)

,k do

t<—t— At
until t=0
Sy E < —2Ao
fori=1,...,kdo
Sy E < —A;
end for

4.1 Coefficient of Determination (R?) in Metric Spaces

In order to characterize how well our model fits a given set
of data, we define the coefficient of determination of our
regression curve y (t), denoted R? [12]. As with the usual
definition of R?, we first compute the variance of the data.
Naturally, as the data lie on a non-Euclidean metric space,
instead of the standard sample variance, we substitute the
Fréchet variance, defined as

N
1 . o
var{yl,...,yN}=mngﬁg;d(y,y,o : (28)
]:

The sum of squared error for a curve y is the value Eg(y):

1 N
SSE = N;d()/(tj),yj)z. (29)

We then define R? as the amount of variance that has been
reduced using the curve y:

SSE

RP=1-—-— """
var{y1, ..., N}

(30)
Clearly a perfect fit will remove all error, resulting in an R>
value of one. The worst case (R? = 0) occurs when no poly-
nomial can improve over a stationary point at the Fréchet
mean, which can be considered a zero-order polynomial re-
gression against the data.

4.2 Example: Kendall Shape Space

A common challenge in medical imaging is the compari-
son of shape features which are independent of easily ex-
plained differences such as differences in pose (relative po-
sition and rotation). Additionally, scale is often uninterest-
ing as it is easily characterized by volume calculation and
explained mostly by intersubject variability or differences
in age. It was with this perspective that Kendall [19] origi-
nally developed his theory of shape space. Here we briefly
describe Kendall’s shape space of m-landmark point sets
in RY, denoted Z‘:)_,”. For a complete treatment of Kendall’s
shape space, the reader is encouraged to consult Kendall and
Le [20, 23].

Given a point set x = (x;j)i=1,...m,Xi € R4, translation
and scaling effects are removed by centering and uniform
scaling. This is achieved by translating the point set so that
the centroid is at zero, then scaling so that Z;”:l lxi]12 = 1.
After this standardization, x constitutes a point in the sphere
Stm=Dd=1 Thjs representation of shape is not yet complete
as it is effected by global rotation, which we wish to ignore.
Thus points on S™~D4=1 are referred to as preshapes and
the sphere S~ D4=1 is referred to as preshape space. Ken-
dall shape space X' is obtained by taking the quotient of the
preshape space by the action of the rotation group SO(d). In
practice, points in the quotient (referred to as shapes) are
represented by members of their equivalence class in pre-
shape space. We describe now how to compute exponential
maps, log maps, and parallel transport in shape space, us-
ing representatives in S D41 The work of O’Neill [33]
concerning Riemannian submersions characterizes the link
between the shape and preshape spaces.

The case d > 2 is complicated in that these spaces con-
tain degeneracies: points at which the mapping from pre-
shape space to X' fails to be a submersion [1, 11, 17]. De-
spite these pathologies, outside of a singular set, the shape
spaces are described by the theory of Riemannian submer-
sions. We assume the data lie within a single “manifold part”
away from any singularities, and show experiments in two
dimensions, so that these technical issues can be safely ig-
nored.

Each point p in preshape space projects to a point 7 (p)
in shape space. The shape 7 (p) is the orbit of p under the
action of SO(d). Viewed as a subset of Stm=Dd=1 " this or-
bit is a submanifold whose tangent space is a subspace of
that of the sphere. This subspace is called the vertical sub-
space of TPS(’”’I)‘J’1 and its orthogonal complement is the
horizontal subspace. Projections onto the two subspaces of
a vector v € T,,S(’"_l)d_1 are denoted by V(v) and H(v),
respectively. Curves moving along vertical tangent vectors
result in rotations of a preshape, and so do not indicate any
change in actual shape.

A vertical vector in preshape space arises as the derivative
of a rotation of a preshape. The derivative of such a rotation
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is a skew-symmetric matrix W, and its action on a preshape
x has the form (Wxj, ..., Wx,) € TS"~D4=1 The verti-
cal subspace is then spanned by such tangent vectors arising
from any linearly independent set of skew-symmetric matri-
ces. The projection H is performed by taking such a span-
ning set, performing Gram-Schmidt orthonormalization, and
removing each component.

The horizontal projection allows one to relate the covari-
ant derivative on the sphere to that on shape space. Lemma 1
of O’Neill [33] states that if X, Y are horizontal vector fields
at some point p in preshape space, then
HVxY = V3. Y, (31)
where V denotes the covariant derivative on preshape space
and V*, X*, and Y* are their counterparts in shape space.

For the manifold part of a general shape space X7, the
exponential map and parallel translation are performed us-
ing representatives preshapes in S”~1V4=1 For d > 2, this
must be done in a time-stepping algorithm, in which at each
time step an infinitesimal spherical parallel transport is per-
formed, followed by the horizontal projection. The resulting
algorithm can be used to compute the exponential map as
well. Computation of the log map is less trivial, as it requires
an iterative optimization routine. A special case arises in the
case when d = 2, in which case the entire space Z‘Zl" is a
manifold. In this case the exponential map, parallel trans-
port and log map are computed in closed form [12]. With
the exponential map, log map, and parallel transport, one
performs polynomial regression on Kendall shape space via
the adjoint method described previously.

4.2.1 Rat Calivaria Growth

We have applied polynomial regression in Kendall shape
space to the data first analyzed by Bookstein [2], which
consists of m = 8 landmarks on a midsagittal section of rat
calivaria (skulls excluding the lower jaw). The positions of
eight identifiable positions on the skull are available for 18
rats and at of eight ages apiece. Figure 2 shows Rieman-
nian polynomial fits of orders k =0, 1, 2, 3. Curves of the
same color indicate the synchronized motion of landmarks
within a preshape, and the collection of curves for all eight
landmarks represents a curve in shape space. While the geo-
desic curve in Kendall shape space shows little curvature,
the quadratic and cubic curves are less linear which demon-
strates the added flexibility provided by higher order polyno-
mials. The R? values agree with this qualitative difference:
the geodesic regression has R?> = 0.79, while the quadratic
and cubic regressions have R? values of 0.85 and 0.87, re-
spectively. While this shows that there is a clear improve-
ment in the fit due to increasing k from one to two, it also
shows that little is gained by increasing the order of the poly-
nomial beyond k = 2. Qualitatively, Fig. 2 shows that the
slight increase in R? obtained by moving from a quadratic
to cubic model corresponds to a marked difference in the
curves, indicating that the cubic curve is likely overfitting
the data. As seen in Table 1, increasing the order of polyno-
mial to four or five has very little effect on R? as well.
These results indicate that moving from a geodesic to
quadratic model provides an important improvement in
fit quality. This is consistent with the results of Kenobi
et al. [21], who also found that quadratic and possibly cubic
curves are necessary to fit this dataset. However, whereas
Kenobi et al. use polynomials defined in the tangent space

Fig. 2 Bookstein rat calivaria data after uniform scaling and Pro-
crustes alignment. The colors of lines indicate order of polynomial
used for the regression (black = geodesic, blue = quadratic, red = cu-
bic). Zoomed views of individual rectangles are shown at right, along
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with data points in gray. Note that the axes are arbitrary, due to scale-
invariance of Kendall shape space, but that they are the same for the
horizontal and vertical axes in these figures
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Table 1 R? for regression of rat dataset Table 2 R? for regression of corpus callosum dataset

Polynomial order k R? Polynomial order k R?

1 0.79 1 0.11
2 0.85 2 0.14
3 0.87 3 0.20
4 0.87 4 0.21
5 0.87 5 0.22

at the Fréchet mean of the data points, the polynomials we
use are defined intrinsically, independent of base point.

4.2.2 Corpus Callosum Aging

The corpus callosum, the major white matter bundle con-
necting the two hemispheres of the brain, is known to shrink
during aging [10]. Fletcher showed [12] that more nuanced
modes of shape change are observed using geodesic regres-
sion. In particular, the volume change observed in earlier
studies corresponds to a thinning of the corpus callosum
and increased curling of the anterior and posterior regions.
In order to investigate even higher modes of shape change
of the corpus callosum during normal aging, polynomial
regression was performed on data from the OASIS brain
database [27]. Magnetic resonance imaging (MRI) scans
from 32 normal subjects with ages between 19 and 90 years
were obtained from the database and a midsagittal slice was
extracted from each volumetric image. The corpus callosum
was then segmented on the 2D slices using the ITK-SNAP
program [39]. Sets of 64 landmarks for each patient were ob-
tained using the ShapeWorks program [6], which generates
samplings of each shape boundary with optimal correspon-
dences among the population.

Regression results for geodesic, quadratic, and cubic re-
gression are shown in Fig. 3. At first glance the results ap-
pear similar for the three different models, since the motion
envelopes each show the thinning and curling observed by
Fletcher. Indeed, the optimal quadratic curve is quite simi-
lar to the optimal geodesic, as reflected by their similar R>
values (0.13 and 0.12, respectively). However, moving from
a quadratic to cubic polynomial model delivers a substantial
increase in R? (from 0.13 to 0.21). This suggests that there
are interesting third-order phenomena at work. However, as
seen in Table 2, increasing the order beyond three results in
very little increase in R?, indicating that those orders overfit
the data, as was the case in the rat calivaria study as well.

Inspection of the estimated parameters for the optimal cu-
bic curve, shown in Fig. 4, reveals that the tangent vectors
appear to be collinear. As discussed in Sect. 3.1, this sug-
gests that the cubic curve is a geodesic that has undergone a
cubic time reparametrization.

Note that the R? values are quite low in this study. Sim-
ilar values were observed using geodesic regression in [12].

19 36 54 72 90
Age (years)

Fig. 3 Geodesic (fop, R* = 0.12) quadratic (middle, R* = 0.13) and
cubic (bottom, R*> = 0.21) regression for corpus callosum dataset.
Color represents age, with yellow indicating youth (age 19) and pur-
ple indicating old age (age 90)

As is noted, this is likely due to high inter-subject variability,
and that age is only able to explain an effect which is small
compared to differences between subjects. Fletcher [12] also
notes that although the effect may be small, geodesic regres-
sion gives a result which is significant (p = 0.009) using a
non-parametric permutation test.

Model selection, which in the case of polynomial regres-
sion amounts to the choice of polynomial order, is an im-
portant issue. R? always increases with increasing k, as we
have seen in these two studies. As a result, other measures
are sought which balance goodness of fit with complexity
of the curve model. Tools often used for model selection in
Euclidean polynomial regression, such as Akaike informa-

@ Springer



40

J Math Imaging Vis (2014) 50:32-52

= Geodesic
= Quadratic
| == Cubic

Reparametrization (arb. units)

‘\/‘

Real age (years)

Fig. 4 Parameters for regression of corpus callosa using a cubic poly-
nomial. The velocity (black), acceleration (blue) and jerk (red) are
nearly collinear, indicating that the estimated path is essentially a geo-
desic with cubic time reparametrization. The time reparametrization is
shown in the plot, for geodesic, quadratic, and cubic Riemannian poly-
nomial regression

tion criterion and Bayesian information criterion [5] make
assumptions about the distribution of data that are difficult
to generalize to the manifold setting. Extension of permuta-
tion testing for geodesic regression to higher orders would
be useful for this task, but such extension is not trivial on a
Riemannian manifold. We expect that such an extension of
permutation testing is possible in certain cases where it is
possible to define “exchangeability” under the null hypoth-
esis that the data follow a given order k trend. Currently, we
select models based on qualitative analysis of the fit curves,
as in the rat calivaria study, and R? values.

4.3 LDDMM Landmark Space

Analysis of landmarks is commonly done in an alterna-
tive fashion when scale and rotation invariance is not de-
sired. In this section, we present polynomial regression us-
ing the large distance diffeomorphic metric mapping (LD-
DMM) framework. This framework consists of a Lie group
of diffeomorphisms endowed with a right invariant Sobolev
metric acting on a space of landmark configurations. For a
more detailed description of the group action approach, the
reader is encouraged to consult Bruveris et al. [4]. We will
instead focus on the Riemannian structure of landmarks and
use the formulas for general Riemannian manifolds.

Given m landmarks in d dimensions, let M = R"< be the
space of all possible configurations. We denote by x; € R?
the location of the ith landmark point. Tangent vectors are
also represented as tuples of vectors, v = (V;)i=1,..m €
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R™4 | as are cotangent vectors o = (a)i=1,..m € R™d  Con-
trasting ordinary differential geometric methods in which
vectors and metrics are the objects of interest, it is more con-
venient to work with landmark covectors (which we refer to
as momenta). In such case the inverse metric (also called the
cometric) is generally written using a shift-invariant scalar
kernel K : R — R. The inner product of two covectors is
given by

(. Byrem = K(Ixi — x;1%)e ;.

i,j

(32)

The following Hamilton’s equations describe geodesics in
landmark space [38, Eq. (21)]:

d

4= Y K (=Pl &
J

d
%= 22()61' —xj))K'(Ixi — xj|2)°‘iT0‘j (34)
J

where K’ denotes the derivative of the kernel.

Introducing tangent vectors v = Ko and w = KB, par-
allel transport in LDDMM landmark space are computed in
coordinates using the following formula, derived by Younes
et al. [38, Eq. (25)]:

4 N
E,Bi =Kk (Z(xi —xj) " (w; — w)K'(|x; _xj|2)05j

j=1

N
- Z(xz' —x) T (i —v)K'(Ix; _xj|2),3j)

j=1

N
= @i —xp)y (I — x; 1) (@l B+ e B)). (39)

j=1

In order to integrate the adjoint equations, it is also neces-
sary to compute the Riemannian curvature tensor, which in
this case is more complicated. For an in-depth treatment, see
Micheli et al. [29, Theorem 2.2].

Using these approaches to computing parallel transport
and curvature, we implemented the general polynomial ad-
joint optimization method. We applied this approach to the
rat calivaria data, treating the data as absolute landmark po-
sitions (after Procrustes alignment) instead of as scale and
rotation invariant Kendall shapes.

Shown in Fig. 5 are the results of LDDMM landmark
polynomial regression. Notice that while the geodesic curve
in this case corresponds to nonlinear trajectories for the indi-
vidual landmarks, these paths do not fit the data quite as well
as the quadratic curve. In particular, the point at the crown
of the skull (labelled point A in Fig. 5) appears to change di-
rections in the quadratic curve, which is not possible using
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Fig. 5 Regression curves for Bookstein rat data using LDDMM land-
mark polynomials. The colors of lines indicate order of polynomial
used for the regression (black = geodesic, blue = quadratic). Zoomed

a geodesic. These qualitative improvements correspond to a
slight increase in R?, from 0.92 with the geodesic to 0.94
with the quadratic curve.

5 Riemannian Polynomials in Lie Groups

In this section, we consider the case when the configuration
manifold is a Lie group G. A tangent vector v € T,G at a
point g € G can be identified with a tangent vector at the
identity element e € G via either right or left translation by
g~ . The resulting element of T, G is referred to as the right
(respectively, left) trivialization of v. We call a vector field
X € X(G) right (respectively, left) invariant if the right triv-
ialization of X (g) is constant for all g. Both left and right
translation, considered as mappings TG — TG are linear
isomorphisms, and we will use the common notation g to
refer to T,G. The vector space g, endowed with the vec-
tor product given by the right trivialization of the negative
Jacobi-Lie bracket of right invariant vector fields is called
the Lie algebra of G.

Of particular importance to the study of Lie groups is
the adjoint representation, which for each group element g
determines a linear action Ad, on g called the adjoint action
and its dual action Ad; on g* which is called the coadjoint
action of g. In a Riemannian Lie group, the inner product on
g can be used to compute the adjoint of the adjoint action,
which we term the adjoint-transpose action Ad}, defined by

(Adf X, Y)= (X.Ad, Y) (36)

for all X, Y € g. The infinitesimal version of these actions
at the identity element are termed the infinitesimal adjoint
action, ady, and the infinitesimal adjoint-transpose action,
ad;. These operators, along with the metric at the identity,
encode all geometric properties such as covariant derivatives
and curvature in a Lie group with right invariant Rieman-
nian metric. For a more complete review of Lie groups and
the adjoint representation, see [28]. Following [25], we in-
troduce the symmetric product of two vectors X, Y € g as

symy Y = symy X = —(ad}, ¥ + ad}, X). (37)

views of individual rectangles are shown at right, along with data points
in gray. The data were aligned with respect to translation and rotation
but not scaling, which explains the clear growth trend

Extending X and Y to right invariant vector fields X , Y ,
the covariant derivative VY is also right invariant (c.f. [7,
Proposition 3.18]) and satisfies

(VgY)g™' = -Vxy (38)

where we have introduced the notation V for the reduced
Levi-Civita connection:

Vszéade~|—%sme Y. (39)
Notice that in this notation, ad represents the skew-sym-
metric component of the Levi-Civita connection, while sym
represents the symmetric component.

We use & to denote the right trivialized velocity of the
curve y(t) € G. Using our formula for the covariant deriva-
tive, one sees that the geodesic equation in a Lie group with

49

right invariant metric is the right “Euler-Poincaré” equation:

d _
&1 =V g1 =—ad &, (40)

The left Euler-Poincaré equation is obtained by removing
the negative sign from the right hand side. For polynomials,
the Euler-Poincaré equation is generalized to higher order.
Introducing &;,i =1, ..., k to represent the right trivialized
higher-order velocity vectors v;,

vi (1) =& (1)g (), (41)

the reduced Riemannian polynomial equations are

d

27O =8&r®) (42)
d —

25 O=Va&iO)+&in@), i=L....k=1 (43)
d —

27k = Ve & (D). (44)

Notice that these equations correspond precisely to the poly-
nomial equations (Eq. (15)).
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6 Polynomial Regression in Lie Groups

We have seen that the geodesic equation is simplified in
a Lie group with right invariant metric, using the Euler-
Poincaré equation. In this section, we derive the adjoint
equations used to perform geodesic and polynomial regres-
sion in a Lie group. Using right-trivialized adjoint variables,
we will see that the symmetries provided by the Lie group
structure result in adjoint equations more amenable to com-
putation than those in Sect. 4.

6.1 Geodesic Regression

Before moving on to polynomial regression, we first present
an adjoint optimization approach to geodesic regression in a
Lie group with right invariant metric. Suppose N data points
J;j € G are observed at times ¢; € [0, 1]. Using the geodesic
distance d : G x G — R, the least squares geodesic regres-
sion problem is to find the minimum of

1 N
E() =52 d(yp. /)", (45)

j=1

subject to the constraint that the curve y : [0,1] - G is a
geodesic.

In order to determine optimality conditions for y, con-
sider a variation of the geodesic y (¢), which is a vector field
along y that we denote 3y (¢) € T),(;)G. We denote by Z ()
the right trivialization of 8y (¢). The variation of y induces
the following variation in the trivialized velocity &; [16]:

d
8&1(1) = EZ(I) —adg, Z(1). (46)

Constraining §y to be a Jacobi field, we use the following
variation of the Euler-Poincaré equation to obtain

d d )
R =5<Eg1> = §(—ad] &) = sym;, 6¢1. (47)

Combining these results, we write the ordinary differential
equation (ODE) that determines, along with initial condi-
tions, the vector field Z:

d Z _ adg1 1 V4
dr (551) B < 0 Symsl) (5&)' (%)

This ODE constitutes a general perturbation of a geodesic
and the vector field Z(¢) is a right trivialized Jacobi field.
In order to compute the variations of E with respect to the
initial position y (0) and velocity &1 (0) of the geodesic y (¢),
the variations of E with respect to y (1) and &1 (1) are trans-
ported backward to ¢+ = 0 by the adjoint ODE. Introducing
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adjoint variables Ag(t), A1(¢) € g, the left trivialized varia-
tion of E with respect to y (¢) and the variation with respect
to &1 (¢) are given by

3y E =—20(0) (49)
8,0 E =—211(0). (50)

These variations are computed by initializing Ag(1) =
A1(1) = 0 and integrating the adjoint ODE backward to
t = 0. The adjoint ODE is obtained by simply computing
the adjoint of the ODE governing geodesic perturbations,
Eq. (48), with respect to the L?([0,1] — g) inner product.
The resulting adjoint ODE is

d [ —ad] 0 A
_<A0>: a0 ()\o>7 51)
dt \ M 1 symg, 1

where the adjoint of the symmetric product is given by
symy ¥ = —ady ¥ +ad}, X. (52)

The adjoint variable Ao takes jump discontinuities when
passing over data points:

2o(t7) = 2o (t) = (Log, ) Ty~ (53)

The jumps represent the residual vectors, obtained by right
trivialization of the Riemannian log map from the predicted
point y (¢;) to the data J;. Notice that the adjoint variable A
satisfies an equation resembling the Euler-Poincaré equation
and can likewise be solved in closed form:

_ + )
b=y A 0 - (54)

Jtj>t

This is particularly useful because it reduces the second or-
der ODE, Eq. (51), to an ODE of first order, since the first
equation is solved in closed form. We will soon see that this
simplification occurs even when using higher order polyno-
mials.

Finally, minimization of E is performed using the varia-
tions 8, (o) E, 8¢, (0) E using, for example the following gra-
dient descent steps:

y 0+ = Exp(—as,, o E)y (0)* (55)

E1(0 ! =0 — ad op E (56)

for some positive step size «, where k denotes the step of
the iterative optimization process. Note that commonly the
Riemannian exponential map Exp in the above expression
is replaced by a numerically efficient approximation such as
the Cayley map [3].
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6.2 Example: Rotation Group SO(3)

As an example, in this section we derive the algorithm for
polynomial regression in the group of rotations in three di-
mensions, SO(3). This group consists of orthogonal matri-
ces with determinant one, and has associated the Lie algebra
50(3) of skew-symmetric 3-by-3 matrices. Skew-symmetric
matrices can be bijectively identified with vectors in R? us-
ing the following mapping :

a 0 —c b
xR < 50(3), s|bl=c 0 —-al. 7
c —-b a 0

We use a star to indicate both this mapping R? — s0(3) and
its inverse, a notation which emphasizes that it is the Hodge
dual in R3, though it is also commonly written using a hat
symbol [28]. Using the cross product on R?, the star map is
also a Lie algebra isomorphism, so that

sadyy kY = X X Y. (58)

The adjoint action under the star is also quite convenient, as
it is given simply by matrix-vector multiplication:

Adg (+x) = *(gx) (59)

for any g € SO(3), x € R3.

We will use a left invariant metric given by a symmetric
positive definite 3-by-3 matrix A. For vectors x, y € R?, the
inner product is

(*x,*y)g=xTAy. (60)

With this inner product, the infinitesimal adjoint transpose
action is

sad] xy=—A"1(x x Ay). (61)

The most natural metric is that in which A is the identity ma-
trix. In that case, left invariance also implies right invariance
and skew-symmetry of ad', so that for any X, Y € s50(3):

- 1
symy YO0, Vsziade. (62)
The Euler-Poincaré equation in the biinvariant case is
e —adfe=—x xx€ =0 (63)
—&=a =—x%&x*€=0,
dt 5
implying that geodesics using the biinvariant metric have

constant trivialized velocity. The geodesic can then be in-
tegrated in closed form:

d
YW=y = y)=expis). (64)

Notice that the adjoint-transpose action of a rotation matrix
g € SO(3) on a 3-vector x is given by

* Adf (xx) = g x. (65)

So the first adjoint equation is given by

2@ =y Ty (D) (66)
= exp(—1£) exp(€)ro(1) (67)
=exp((1 — 1)&)ro(1) (68)
= do(1)cos((1 =[]

1
- m(*s x ag(1)) sin((1 —)[I€])
1
+ W *é(*é -Ao(l))(l — cos((l - t)||§||)).
(69)

where the last line is Rodrigues’ rotation formula. The sec-
ond adjoint equation, which determines the variation used
to update the velocity, is obtained by integrating this. For
geodesic regression with biinvariant metric, a closed form
solution is available for the second adjoint variable as well:

d

EM(I) = —xo(0) (70)
1
() :/ ro(s)ds (71)
t
I
=/\o(1)m sin((1—0)[]) (72)
1
- W(*E x ho(1)) (1 —cos((1 =)&)

1
+ EE # & (%€ - Ao(D)) (1 —1 = sin((1 =) [£]])).
6.3 Polynomial Regression

We apply a method similar to that of the previous section to
derive an adjoint optimization scheme for Riemannian poly-
nomial regression in a Lie group with right invariant metric.
A variation of the first equation gives Eq. (46). Taking vari-
ations of the other equations, noting that V is linear in each
argument, we have

d _ _
55&' = V5,6 + Vg, 68 + 8811 (73)

Along with Eq. (46), these provide the essential equations
for a polynomial perturbation Z of y, which can be con-
sidered a kind of higher-order Jacobi field. Introducing ad-
joint variables Ao, ..., Ax € g, the adjoint system is (see Ap-
pendix C for derivation)

d t
E)»o =— adsl A0 (74)
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k

d —

E)\l =—Xy— symgl A+ Z(—Vgi — sym;_))»i (75)
i=2

d = .

—Ai=—Ai—1 +Vg ki, i=2,...,k, (76)

dt

or, using only ad and adT, as

d i
E)»() =— ads1 Ao ()
4= d d
Ekl——ko-f-a g A1 —ad; &
k
! d dj dl 78
+5 (a&,)\i+a§ik,~—aki&) (78)
i=2

d 1 ¥ 4
Ek,‘ =—Ai_1+ E(adgl Ai— ad& Ai— adkl_ El) (79)
Fori =2,...,k, these equations resemble the original poly-

nomial equations. However, the evolution of A is influ-
enced by all adjoint variables and higher-order velocities in
a non-trivial way. The first adjoint equation again resem-
bles the Euler-Poincaré equation, and its solution is given
by Eq. (54).

6.3.1 Polynomial Regression in SO(3)

Revisiting the rotation group, we can extend the geodesic
regression results to polynomials. Representing Lie algebra
elements as 3-vectors &;, the equations for higher order poly-
nomials in SO(3) are

d
Ey(t) = (x€1(0)y (1) (80)
d = 81
Eél(t)—fz(t) (81)
eity= 1 : : =2, k-1
E%l(t)—iél(t)XEI(I)+§I+1(I)7 i=2,...,k—

(82)
d _1 83
E%‘k(t)—iél(t)xé'k(t)- (83)

In this case, closed form integration isn’t available, even
with a biinvariant metric. Even for higher order polynomi-
als, the first adjoint equation is integrated in closed form,
giving

2@ =y y(Hrg(1). (84)

7 Lie Group Actions
So far, we’ve seen that polynomial regression is particularly

convenient in Lie groups with right invariant metrics, reduc-
ing the adjoint system from second to first order using the

@ Springer

closed form integral of Ag. We now consider the case when
a Lie group G acts on another manifold M which is itself
equipped with a Riemannian metric. For our purposes, the
group action need not be transitive, in which case the target
space is called a “homogeneous space” for G.

Although the two approaches sometimes coincide, gener-
ally one must choose between using polynomials defined by
the metric in M, ignoring the action of G, or using curves
defined by the action of polynomials in G on points in M.
In cases when a Riemannian Lie group is known to act on
the space M, the primary object of interest is usually not the
path in the object space M, but the path of symmetries de-
scribed by the group elements. Therefore it is most natural to
use the Lie group structure to define paths in object space.
We employ this approach, in which polynomial regression
under a Riemannian Lie group action is studied primarily
using the Lie group elements.

Following this plan, we model a polynomial in M as a
curve p(t) defined using the group action:

p()=y().po (85)
where y is a polynomial of order k in G with parameters

y(0) € G, &1,....6k€g (86)

and po € M is a base point in the object space. Invariance of
the metric on G allows us to assume, without loss of flexi-
bility in the model, that the base deformation is the identity:
y(0) = e € G. Optimization is done by fixing y(0) =e € G
and minimizing a least squares objective function defined
using the metric on M, with respect to the base point pg € M
and the parameters of the Lie group polynomial, &1, ..., & €
g. This is accomplished using a similar adjoint method to
that presented in the previous sections, but where the jump
discontinuities in Ao are modified due to this change in ob-
jective function. In the following sections, we discuss this in
more detail and also derive the gradients with respect to the
base point pg.

7.1 Action on a General Manifold

A smooth group action can be differentiated to obtain a map-
ping from the Lie algebra g to the tangent space T), M at any
point p € M. Given a curve g(t) : (—e€,€) — G such that
g(0)=eand % lt=0g () = & € g, define the following map-
ping (c.f. [16]):

d
pp€) = = Og(t).p. (87)

t=

The function p,, is a linear mapping from g to 7, M, and
as such it has a dual pj; : TYM — g* that maps cotangent
vectors in M to the Lie coalgebra g*. This dual mapping
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we refer to as the cotangent lift momentum map and use the
notation J : T*M — g*.

The most important property of J is that it is preserved
under the coadjoint action:

Adz Jn=Jgm VYmeT*M. (88)

The action of g on the cotangent bundle, which appears
on the right-hand side above, maps a cotangent vector u at
point p to the vector g.u € T; »M. Replacing squared norm
with squared geodesic distance on the Riemannian manifold
M, the first adjoint variable is then given by

ro® =Y Jr@y )" .(Log, ) p I (89)

j,l‘j>l‘

Of particular interest is the case when the metric on G
and the metric on the manifold M coincide, in the sense that
for any vectors &, u € g and points p € M:

(&, u)g = (&.p.-P)T, M- (90)

Fixing a base point po € M, this means the mapping g —
g.po is a Riemannian submersion. If, additionally, the metric
on G is biinvariant, this implies that the covariant derivative
satisfies [33]

Ve pi.p=(Vew).p 1)

so that geodesics and polynomials in M are generated by
polynomials in G along with the action on the base point py.

7.1.1 Example: Rotations of the Sphere

Consider the sphere of radius one in R3, which is denoted
S%. The group SO(3) acts naturally on the sphere. For
this example, we will use the biinvariant metric on SO(3),
which corresponds to using the identity for the A matrix in
Sect. 6.2. Representing points on the sphere as unit vectors
in R3, the group action is simply left multiplication by a ma-
trix in SO(3):

y-p=yp (92)
§.p=é&p (93)

for all y € SO(3),& € s0(3), p € S*,v € T,S*. The in-
finitesimal action is in fact a cross product, which is easily
seen using the star map:

§.p=E&p=(x§) x p. %94)

Representing elements in so(3)* as 3-vectors, we derive
the cotangent lift momentum map as well; letting a € T,,Sz,

Ja=x(p x a). (95)

This can be interpreted as converting a linear momentum
on the surface of the sphere into an angular momentum in
50(3) using the cross product with the moment arm p. The
standard metric on the sphere corresponds to the standard
biinvariant metric on SO(3) so that, as discussed previously,
polynomials on S? correspond to polynomials in SO(3) act-
ing on points on the sphere.

The polynomial equations for the sphere are precisely
those for SO(3), along with the action of y (¢) on the base
point pg € S?. The derivative of y (¢) is replaced by the equa-
tion

d d
P = E(V(U-Po) =&1(1).p(1). (96)

The evolution of &; is the same as that for SO(3). Figure 6
shows example polynomial curves in the rotation group and
their action on a point on the sphere. Notice that the exam-
ple polynomials on the sphere are precisely those shown in
Fig. 1, although they were generated here using polynomials
on SO(3) instead of integrating directly on the sphere.

In order to integrate the adjoint equations, the jump dis-
continuities must be computed using the log map on the
sphere:

y —cosfx

Logxyzé( ) cos® = x'y. 97)

sinf
The flatting operation acts trivially on this vector, and the
action of SO(3) on covectors corresponds to matrix-vector
multiplication. Using this, along with the momentum map J,
we have the jump discontinuities for the first adjoint variable
Ao:

ho(17) = ro(t)) = v () x (Log, () J))- 98)

The higher adjoint variables satisfy the same ODEs as in
Sect. 6.3.1.

7.2 Lie Group Actions on Vector Spaces

We will assume in this section that the manifold is a vector
space V and that G acts linearly on the left on V. Given a
smooth linear group action, a vector £ in the Lie algebra g
acts linearly on a vector v € V in the following way

d
Ev= T gle). 99)
€ le=0

where g(e) is a curve in G satisfying g(0) = e and
%k:og(e) = &. Again we use the notation p, : g — V to
denote right-multiplication under this action:

méE:=Ev YveV eg. (100)
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Geodesic (k=1) Quadratic (k

Fig. 6 Sample polynomial curves in SO(3) and their action on a base
point pg € S? (black dot) on the sphere. In the rop row, the rotating co-
ordinate axes are shown for three polynomials. In the bottom row, the
arrows show the vectors & (0) (black), £(0) (blue), and &3(0) (red),
representing initial angular velocity, acceleration, and jerk. The action

In the vector space setting, the cotangent lift momentum
map (again defined as the dual of p,), is written using the
diamond notation introduced in [16]:
YveV,aeV*,

voaeg* (101)

(V0. §)(geg = @ puE)vey) YE €. (102)
The diamond map interacts with the coadjoint action Ad* in
a convenient way:
Ad;_l (voa)=(g.v)o(g.a). (103)
This relation is fundamental in that it shows that the dia-
mond map is preserved under the coadjoint action. This is
quite useful in our case, as we will soon see that diamond
maps show up commonly in variational problems on inner
product spaces.

Commonly, data is provided in the form of points J; in
the vector space V. In that case, the inner product on V is

@ Springer

Cubic (k = 3)

on the base point, p(f) = y (1). po € S?, is represented as a black curve
on the sphere. A geodesic corresponds to constant angular velocity,
while the non-zero acceleration and jerk in the quadratic and cubic
curves tilt the rotation axis

used to write the regression problem as a minimization of

N
1
Evw) =5 Y [vpve— 7[5,
j=1

(104)

subject to the constraint that y is a polynomial in G and vy €
V is an evolving template vector. Without loss of generality,
¥ (0) can also be constrained to be the identity so that vg is
the template vector at time zero. Optimization of Eq. (104)
with respect to v requires the variation

N
SwE =Yy~ (vtpvo—J;) . (105)
=1

Here the musical flat symbol b denotes lowering of indices
using the metric on V, an operation mapping V to V*. If
the group G acts by isometries on V, then the group action
commutes with flatting and the optimal base vector vy can
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be computed in closed form

N
R 1 1
v0=ﬁ§ y)~ ;. (106)

j=1

Even when G does not act by isometries, the optimal base
vector can often be solved for in closed form.
The variation with respect to y (¢;) is more interesting:
b
8yanE = (y(tj).v0) o (v (tj).v0 — Jj) . (107)
Using this along with the relation between the coadjoint ac-

tion and diamond map, we can write the first polynomial
adjoint variable in closed form

o= (r)w) o (yOre)~ (v —1;)).

Jitj>t

(108)
7.2.1 Example: Diffeomorphically Deforming Images

Right invariant Sobolev metrics on groups of diffeomor-
phisms are the main objects of study in computational
anatomy [30]. Describing an image I as a square integrable
function of a domain £2 C R?, the left action of a diffeomor-
phism y € Diff(£2) is

y.[:]oy_l. (109)

The corresponding infinitesimal action of a velocity field &
on an image is

£1=—¢TVI (110)
and the diamond map is
(I oa)(y)=—a(VI(y). (111)

Geodesic regression in this context, using an adjoint opti-
mization method, has been previously studied [31]. Using
their method, the initial momentum of a geodesic is con-
strained by horizontal: that is, L& (0) = Ip ¢ «(0). As a re-
sult, changes in base image I influence the behavior of the
deformation itself.

Using our method, the base velocity vectors &; are not
constrained to be horizontal. Implementation of polynomial
regression involves the expression above for the diamond

map, along with the ad and ad* operators [28]
ad: X =DéX — DXE, (112)
adf m =Dmé& +mdivg + (D)  m. (113)

Inserting this into the right Euler-Poincaré equation yields
the well-known EPDiff equation for geodesic evolution in

the diffeomorphism group [16]:

im = —Dmé —mdive — (DE) m.

= (114)

For polynomials, momenta m; = L§; are introduced and this
EPDiff equation is generalized to

d .
—my = —Dm & —m divé — (D& my +my

7 (115)
R L (LaiE - D,
Emz—ml-i-l‘i‘i( (D&1&; —Dé&;é1)

—Dm;& — (D&) m; —m; divE

—Dmi& — (D&) my —my divE) (116)
d —1 L(D& & — DEg;
Emk—z( (D&1& — DE&))

— Dmyéy — (D& my — my divE

— D& — (D&) ' my —m divé) (117)

The estimation of the base image Ip is simplified, as
Eq. (105) is solved in closed form using

> Dy oyi(y)

I =
o) >, Dy ()

(118)

As an example of image regression, synthetic data were
generated and geodesic regression was performed using the
adjoint method described above. Figure 7 shows the in-
put images, as well as the estimated geodesic trend, which
matches the input data well. Note that although the method
presented in [31] is similar, using our abstraction, geodesic
regression can be generalized to polynomials of any or-
der, and to data which are not necessarily scalar-valued im-
ages.

8 Discussion

The Riemannian polynomial framework we have presented
provides a general approach to regression for manifold-
valued data. The greatest limitation to performing polyno-
mial regression on a general Riemannian manifold is that
it requires computation of the Riemannian curvature ten-
sor, which is often tedious [29]. In a Lie group or homoge-
neous space, we have shown that the symmetries provided
by the group allow for not only simple integration using
parallel transport in the Lie algebra, but also simplified ad-
joint equations that do not require explicit curvature compu-
tation.

The theory of rolling maps on the sphere, introduced by
Jupp & Kent [18], offer another perspective on Riemannian
polynomials. On the sphere, this interesting interpretation is
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Fig. 7 Image regression
example. Three synthetic
images where generated (fop
row) at times 0,0.5,1. Geodesic
regression was performed,
resulting in the images shown in
the second row, corresponding
to the deformations in the last
row

11717
INNES
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related to the group action described above. Given a curve
y :10,1] —» SZ, consider embedding both the sphere and a
plane in R3 such that the plane is tangent to the sphere at
the point y (0). Now roll the sphere along so that it remains
tangent at y () at every time, and such that no slipping or
twisting occurs. The resulting path, y, : [0, 1] — R2, traced
out on the plane is called the unwrapped curve. Remarkably,
the property that y is a k-order polynomial on S? is equiva-
lent to the unwrapped curve y, being a k-order polynomial
in the conventional sense. For more information regarding
this connection to Jupp & Kent’s rolling maps, as well as a
comparison to Noakes’ cubic splines [32], the reader is re-
ferred to the literature of Leite & Krakowski [24].

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

Appendix A: Numerical Integration of the Polynomial
Equations

By definition, in the limit Az — 0, the exponential map sat-
isfies y (t) = v (¢). To see that the forward integration algo-
rithm shown in Algorithm 1 approximates the polynomial
equations, let w(¢) be any vector field parallel along y (¢).

@ Springer

That is,

Vymw(t) =0. (119)
Denote by Px;(t) = ParTrans(p, Atv, w) the parallel trans-
port of a vector w € T, M along a geodesic from point p for
time At in the direction of vector v € T, M. Then

d
_<w7 vi) = (V)/wa Ui) + (w9 V)}vi> = <w7 V)}vi)

T (120)

Now consider approximation of this inner product derivative
under our integration scheme:

d i 1
EW’ Vi)~ Alllf_f)lo E((PAtw(t)’ PAt(Ui(f) + AtviH(t)))

—(w®), vi(1))). (121)

The parallel transport operator is linear in the vectors being
transported, so

i<w, v;) &~ lim L((me(t), Parvi (1))
dt Ar—0 At

+ At(Parw (1), vip1 (1)) — (w(t), v; (1))
1
= lim E(((PAtw(r), Pavi () — (w(t), vi (1))

+ lim (Pasw(®). vi41 (1)) (122)
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The first line is zero, by definition of parallel transport. Also
note that lim;_.o Pa;w = w, so that
d

_(w1 Uj> = (wv V)}vi) ~ <w7 Ui+l>-

r (123)

As this holds for any parallel vector field w, this implies
that our integration algorithm approximates the polynomial
equation

Vyvi = viqg. (124)

Appendix B: Derivation of Adjoint Equations in
Riemannian Manifolds

In this appendix we derive the adjoint system for the polyno-
mial regression problem. The approach to calculus of varia-
tions on Riemannian manifolds described here is very simi-
lar to that employed by Noakes et al. [32]. Consider a sim-
plified objective function containing only a single data term,
at time 7':

T
E(%{vi},{li})Zd(V(T)»)’)va/O (Ao, y —v1)dt
k—1 T
“FZ/ <)\,',V);Ul' — vjy1)dt
i=170

T
+/ (A, Vyug)dt. (125)
0
Now consider taking variations of E with respect to the vec-
tor fields v;. For each i there are only two terms containing
v;, so if W is a test vector field along y, then the variation
of E with respect to v; in the direction W satisfies

T T T
/<av,.E,W>dt=/ (Ai,V];W)dt—/ (Ai_1, W)dt.
0 0 0

(126)
The first term is integrated by parts to yield
T T
f (80, E. W)dt = (A, W)|§ — f (Vyhi, W)dt
0 0
T
—/ (Mi—1, Wdt. (127)
0

The variation with respect to v; fori =1, ..., k is then given
by
Sy E=0=—=VpA; —Xi—1, t€(0,T) (128)
Svr)E=0=2;(T) (129)
Sy, 0 E =—Ai(1). (130)

In order to determine the differential equation for Ag, the
variation with respect to y must be computed. Let W again

denote a test vector field along y. For some € > 0, let {y; :
s € (—e€, €)} be a differentiable family of curves satisfying

W=y (131)
d

oyl =W (132)
ds s=0

If € is chosen small enough, the vector field W can be ex-
tended to a neighborhood of y such that [W, y] = 0, where
a dot indicates the derivative in the % direction. The vanish-
ing Lie bracket implies the following identities

Vwys =Vy W
VwVy =V, Vi + R(W, y5).

(133)
(134)

Finally, the vector fields v;, A; are extended along y; via par-
allel translation, so that

Vwv; =0 (135)
Vih; =0. (136)
The variation of E with respect to y satisfies
r d
/0 (5, B Widt = 5 E (. (), 0))] g
= —(Log, 1)y, W(T)
d (T .
+ —/ (X0, Ys — v1)dt
ds 0 s=0
d k—1 T
t Z/o (Aiy Vyvi — vig1)di -,
i=1
d T
e A (137)
ds Jo s=0

As the A; are extended via parallel translation, their inner
products satisfy

d
a(/\i, U)ls=0=(VwA;, U) + (X;, VwU) = (A;, VyU).
(138)

Then applying this to each term in the previous equation,
T
/ (8 E, W)dt = —(Log, 1y y, W(T))
0

T
+/ (*o, Vwy — Vv )dt
0
k—1 T
+Z/ (M, Vi Vpvi — Vipvig1)dt
0
i=1

T
—|—/ (A, Vw Vypug)dt. (139)
0
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Then by construction, since Vyv; =0,
T
f (8y E, W)dt = —(Log, 1)y, W(T))
0
T
+ [ o wiar
0

ko or
- Z/O (Ai, Vi Vyv)dt.
i=1

Then using the Lie bracket and curvature identities, this is
written as

(140)

T
/ (8, E, W)dt = —(Log,, 1)y, W(T))
0
T
+/ (Ao, Vy W)dt
0
k ar
+Z/ (Ai. Vy Vi + RW, y)v;)dt,
i=170
(141)
which is further simplified, again using the identity

Vin =0:

T
/O (8, E, W)dt = —(Log, 7y y, W(T))
T
+/ (Mo, Vy W)dt
0

k .1
+ 3 [ RO Dufar
i=170

Using the Bianchi identities, it can be demonstrated that the
curvature tensor satisfies the identity [9]:

(142)

(A,R(B,C)D)=—(B, R(D, A)C), (143)

for any vectors A, B, C, D. The covariant derivative along
y is also integrated by parts to arrive at

T
/O (8y E, W)dt = —(Log, 1)y, W(T))

T
+ (2o, W)IT — fo (Vyho, W)dt

ko oT
_Z/ (R(vi, 1)y, W)d. (144)
i=170

Finally, gathering terms, the adjoint equation for A and its
gradients are obtained:

k
8yiE=0==Vyho— Y R, )y, te(0,T) (145

i=1
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8y E=0=—Log, )y + Ao (146)

3y E =—Xo. (147)
Along with the variations with respect to v;, this constitutes
the full adjoint system. Extension to the case of multiple data
at multiple time points is trivial, and results in the adjoint
system presented in Sect. 4.

Appendix C: Derivation of Adjoint Equations in Lie
Groups

Let G be a Lie group with Lie algebra g, equipped with a
right invariant metric. Let y : [0, 1] — G be a polynomial in
G of order k with right-trivialized velocities &; : [0, 1] — g.
Recall the equations for a perturbation Z, §&; of this poly-
nomial:

d
—Z =0 —adg, Z (148)

dt

d _ _
ES& = Vg, & + Ve, 06 + 8811 (149)

The second equation can be rewritten
d 1 1 _
55&' =3 adsg, & + 5 Symsg, & + Vg 86 + 68541 (150)

1 1 —
= ) adg, 0861 + 3 symg, 881 + Vg, 68 + 8811

(151)
= (—Vg, +symg, )88 + Ve, 88 + 8841 (152)
This suggests the following matrix form ODE:
z
d | 8&
T
88
adg, I 0O o0 O
0 symg, 1 0
=] 0 —Vg+symg, Vg 1 0
0 —Vg+symg 0 Ve,
zZ
881
x| .. (153)
8

In order to derive the adjoint Jacobi field, one simply com-
putes the negative adjoint of the matrix in the above equa-
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tion. The adjoint of the above matrix is

- adg1 0 o 0 0
ol i vl t
- - Symé1 Ve, — symg, Vg, —symg,
0 1 —Ve, 0 .
0
0 0 I v
- Vg

(154)

Now note that the adjoint of the V¢ operator is — V¢, since
(using Eq. (52))

2V ¥ =adl ¥ 4 symf ¥ (155)
—adl Y —ady Y +ad] X (156)
=—ady Y —symy Y (157)
=-2VyY. (158)

Now let Ag, ..., At : [0, 1] — g be adjoint variables repre-
senting gradients with respect to position y and velocities
&1, ..., &. Using the equations above, we write the reduced
polynomial adjoint equations as

d

_ T
Eko =— adé1 Ao (159)
d koo
EM =—\o— symgI A+ Z(—ng — symgk))»k (160)
i=2
d = .
Ai=—Ai—1+Vghi i=2,... k. (161)

dt
The first adjoint variable, Ag, takes on jump discontinu-
ities when passing data points, which are derived identically
to the geodesic case. Also note that this derivation is for
right invariant metrics using right trivialized vectors, but the
equivalent derivation in the case of left invariance is essen-
tially identical.
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