62 research outputs found

    Euclidean reconstruction and reprojection up to subgroups

    Get PDF
    The necessaryand sufficient conditionsfor being able to estimatescene structure, motion and camera calibration from a sequence of images are very rarely satisfied in practice. What exactly can be estimated in sequences of practical importance, when such conditions are not satisfied? In this paper we give a complete answer to this question. For every camera motion that fails to meet the conditions, we give explicit formulas for the ambiguities in the reconstructed scene, motion and calibration. Such a characterization is crucial both for designing robust estimation algorithms (that do not try to recover parameters that cannot be recovered), and for generating novel views of the scene by controlling the vantage point. To this end, we characterizeexplicitly all the vantage points that give rise to a valid Euclidean reprojection regardless of the ambiguity in the reconstruction. We also characterize vantage points that generate views that are altogether invariant to the ambiguity. All the results are presented using simple notation that involves no tensors nor complex projective geometry, and should be accessible with basic background in linear algebra. 1

    Hyperparameter-free losses for model-based monocular reconstruction

    Get PDF
    This work proposes novel hyperparameter-free losses for single view 3D reconstruction with morphable models (3DMM). We dispense with the hyperparameters used in other works by exploiting geometry, so that the shape of the object and the camera pose are jointly optimized in a sole term expression. This simplification reduces the optimization time and its complexity. Moreover, we propose a novel implicit regularization technique based on random virtual projections that does not require additional 2D or 3D annotations. Our experiments suggest that minimizing a shape reprojection error together with the proposed implicit regularization is especially suitable for applications that require precise alignment between geometry and image spaces, such as augmented reality. We evaluate our losses on a large scale dataset with 3D ground truth and publish our implementations to facilitate reproducibility and public benchmarking in this field.Peer ReviewedPostprint (author's final draft

    Harmonic Exponential Families on Manifolds

    Get PDF
    In a range of fields including the geosciences, molecular biology, robotics and computer vision, one encounters problems that involve random variables on manifolds. Currently, there is a lack of flexible probabilistic models on manifolds that are fast and easy to train. We define an extremely flexible class of exponential family distributions on manifolds such as the torus, sphere, and rotation groups, and show that for these distributions the gradient of the log-likelihood can be computed efficiently using a non-commutative generalization of the Fast Fourier Transform (FFT). We discuss applications to Bayesian camera motion estimation (where harmonic exponential families serve as conjugate priors), and modelling of the spatial distribution of earthquakes on the surface of the earth. Our experimental results show that harmonic densities yield a significantly higher likelihood than the best competing method, while being orders of magnitude faster to train.Comment: fixed typ

    Homography-Based Positioning and Planar Motion Recovery

    Get PDF
    Planar motion is an important and frequently occurring situation in mobile robotics applications. This thesis concerns estimation of ego-motion and pose of a single downwards oriented camera under the assumptions of planar motion and known internal camera parameters. The so called essential matrix (or its uncalibrated counterpart, the fundamental matrix) is frequently used in computer vision applications to compute a reconstruction in 3D of the camera locations and the observed scene. However, if the observed points are expected to lie on a plane - e.g. the ground plane - this makes the determination of these matrices an ill-posed problem. Instead, methods based on homographies are better suited to this situation.One section of this thesis is concerned with the extraction of the camera pose and ego-motion from such homographies. We present both a direct SVD-based method and an iterative method, which both solve this problem. The iterative method is extended to allow simultaneous determination of the camera tilt from several homographies obeying the same planar motion model. This extension improves the robustness of the original method, and it provides consistent tilt estimates for the frames that are used for the estimation. The methods are evaluated using experiments on both real and synthetic data.Another part of the thesis deals with the problem of computing the homographies from point correspondences. By using conventional homography estimation methods for this, the resulting homography is of a too general class and is not guaranteed to be compatible with the planar motion assumption. For this reason, we enforce the planar motion model at the homography estimation stage with the help of a new homography solver using a number of polynomial constraints on the entries of the homography matrix. In addition to giving a homography of the right type, this method uses only \num{2.5} point correspondences instead of the conventional four, which is good \eg{} when used in a RANSAC framework for outlier removal

    Real Time Stereo Cameras System Calibration Tool and Attitude and Pose Computation with Low Cost Cameras

    Get PDF
    The Engineering in autonomous systems has many strands. The area in which this work falls, the artificial vision, has become one of great interest in multiple contexts and focuses on robotics. This work seeks to address and overcome some real difficulties encountered when developing technologies with artificial vision systems which are, the calibration process and pose computation of robots in real-time. Initially, it aims to perform real-time camera intrinsic (3.2.1) and extrinsic (3.3) stereo camera systems calibration needed to the main goal of this work, the real-time pose (position and orientation) computation of an active coloured target with stereo vision systems. Designed to be intuitive, easy-to-use and able to run under real-time applications, this work was developed for use either with low-cost and easy-to-acquire or more complex and high resolution stereo vision systems in order to compute all the parameters inherent to this same system such as the intrinsic values of each one of the cameras and the extrinsic matrices computation between both cameras. More oriented towards the underwater environments, which are very dynamic and computationally more complex due to its particularities such as light reflections. The available calibration information, whether generated by this tool or loaded configurations from other tools allows, in a simplistic way, to proceed to the calibration of an environment colorspace and the detection parameters of a specific target with active visual markers (4.1.1), useful within unstructured environments. With a calibrated system and environment, it is possible to detect and compute, in real time, the pose of a target of interest. The combination of position and orientation or attitude is referred as the pose of an object. For performance analysis and quality of the information obtained, this tools are compared with others already existent.A engenharia de sistemas autónomos actua em diversas vertentes. Uma delas, a visão artificial, em que este trabalho assenta, tornou-se uma das de maior interesse em múltiplos contextos e focos na robótica. Assim, este trabalho procura abordar e superar algumas dificuldades encontradas aquando do desenvolvimento de tecnologias baseadas na visão artificial. Inicialmente, propõe-se a fornecer ferramentas para realizar as calibrações necessárias de intrínsecos (3.2.1) e extrínsecos (3.3) de sistemas de visão stereo em tempo real para atingir o objectivo principal, uma ferramenta de cálculo da posição e orientação de um alvo activo e colorido através de sistemas de visão stereo. Desenhadas para serem intuitivas, fáceis de utilizar e capazes de operar em tempo real, estas ferramentas foram desenvolvidas tendo em vista a sua integração quer com camaras de baixo custo e aquisição fácil como com camaras mais complexas e de maior resolução. Propõem-se a realizar a calibração dos parâmetros inerentes ao sistema de visão stereo como os intrínsecos de cada uma das camaras e as matrizes de extrínsecos que relacionam ambas as camaras. Este trabalho foi orientado para utilização em meio subaquático onde se presenciam ambientes com elevada dinâmica visual e maior complexidade computacional devido `a suas particularidades como reflexões de luz e má visibilidade. Com a informação de calibração disponível, quer gerada pelas ferramentas fornecidas, quer obtida a partir de outras, pode ser carregada para proceder a uma calibração simplista do espaço de cor e dos parâmetros de deteção de um alvo específico com marcadores ativos coloridos (4.1.1). Estes marcadores são ´uteis em ambientes não estruturados. Para análise da performance e qualidade da informação obtida, as ferramentas de calibração e cálculo de pose (posição e orientação), serão comparadas com outras já existentes

    The space of essential matrices as a Riemannian quotient manifold

    Full text link
    The essential matrix, which encodes the epipolar constraint between points in two projective views, is a cornerstone of modern computer vision. Previous works have proposed different characterizations of the space of essential matrices as a Riemannian manifold. However, they either do not consider the symmetric role played by the two views, or do not fully take into account the geometric peculiarities of the epipolar constraint. We address these limitations with a characterization as a quotient manifold which can be easily interpreted in terms of camera poses. While our main focus in on theoretical aspects, we include applications to optimization problems in computer vision.This work was supported by grants NSF-IIP-0742304, NSF-OIA-1028009, ARL MAST-CTA W911NF-08-2-0004, and ARL RCTA W911NF-10-2-0016, NSF-DGE-0966142, and NSF-IIS-1317788

    Image Mosaicing and Super-resolution

    Full text link

    Study and Characterization of a Camera-based Distributed System for Large-Volume Dimensional Metrology Applications

    Get PDF
    Large-Volume Dimensional Metrology (LVDM) deals with dimensional inspection of large objects with dimensions in the order of tens up to hundreds of meters. Typical large volume dimensional metrology applications concern the assembly/disassembly phase of large objects, referring to industrial engineering. Based on different technologies and measurement principles, a wealth of LVDM systems have been proposed and developed in the literature, just to name a few, e.g., optical based systems such as laser tracker, laser radar, and mechanical based systems such as gantry CMM and multi-joints artificial arm CMM, and so on. Basically, the main existing LVDM systems can be divided into two categories, i.e. centralized systems and distributed systems, according to the scheme of hardware configuration. By definition, a centralized system is a stand-alone unit which works independently to provide measurements of a spatial point, while a distributed system, is defined as a system that consists of a series of sensors which work cooperatively to provide measurements of a spatial point, and usually individual sensor cannot measure the coordinates separately. Some representative distributed systems in the literature are iGPS, MScMS-II, and etc. The current trend of LVDM systems seem to orient towards distributed systems, and actually, distributed systems demonstrate many advantages that distinguish themselves from conventional centralized systems

    An optimization-based model of collective motion

    Get PDF
    Computational models of collective motion have yielded many insights about the way that groups of animals or simulated particles may move together and self-organize. Recent literature has compared predictions of models with large datasets of detailed observations of animal behavior, and found that there are important discrepancies, leading researchers to reexamine some of the most widely used assumptions. We introduce FlockOpt, an optimization-based, variable-speed, self-propelled particle model of collective motion that addresses important shortcomings of earlier models. In our model, each particle adjusts its velocity by performing a constrained optimization of a locally-defined objective function, which is computed at each time step over the kinematics of the particle and the relative position of neighboring particles. Our model explains how ordered motion can arise in the absence of an explicitly prescribed alignment term and simulations performed with our model exhibit a wide variety of patterns of motion, including several not possible with popular constant-speed models. Our model predicts that variations in speed and heading of particles are coupled due to costs associated with changes in relative position. We have found that a similar coupling effect may also be present in the flight of groups of gregarious bats. The Mexican Free-tailed bat (Tadarida brasiliensis) is a gregarious bat that forms large maternity colonies, containing hundreds of thousands to millions of individuals, in the southwestern United States in the summer. We have developed a protocol for calibrating cameras used in stereo videography and developed guidelines for data collection. Our field protocol can be deployed in a single afternoon, requiring only short video segments of light, portable calibration objects. These protocols have allowed us to reconstruct the three-dimensional flight trajectories of hundreds of thousands of bats in order to use their flight as a biological study system for our model

    Local Accuracy and Global Consistency for Efficient SLAM

    No full text
    This thesis is concerned with the problem of Simultaneous Localisation and Mapping (SLAM) using visual data only. Given the video stream of a moving camera, we wish to estimate the structure of the environment and the motion of the device most accurately and in real-time. Two effective approaches were presented in the past. Filtering methods marginalise out past poses and summarise the information gained over time with a probability distribution. Keyframe methods rely on the optimisation approach of bundle adjustment, but computationally must select only a small number of past frames to process. We perform a rigorous comparison between the two approaches for visual SLAM. Especially, we show that accuracy comes from a large number of points, while the number of intermediate frames only has a minor impact. We conclude that keyframe bundle adjustment is superior to ltering due to a smaller computational cost. Based on these experimental results, we develop an efficient framework for large-scale visual SLAM using the keyframe strategy. We demonstrate that SLAM using a single camera does not only drift in rotation and translation, but also in scale. In particular, we perform large-scale loop closure correction using a novel variant of pose-graph optimisation which also takes scale drift into account. Starting from this two stage approach which tackles local motion estimation and loop closures separately, we develop a unified framework for real-time visual SLAM. By employing a novel double window scheme, we present a constant-time approach which enables the local accuracy of bundle adjustment while ensuring global consistency. Furthermore, we suggest a new scheme for local registration using metric loop closures and present several improvements for the visual front-end of SLAM. Our contributions are evaluated exhaustively on a number of synthetic experiments and real-image data-set from single cameras and range imaging devices
    corecore