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ABSTRACT

Computational models of collective motion have yielded many insights about

the way that groups of animals or simulated particles may move together and self-

organize. Recent literature has compared predictions of models with large datasets of

detailed observations of animal behavior, and found that there are important discrep-

ancies, leading researchers to reexamine some of the most widely used assumptions.

We introduce FlockOpt, an optimization-based, variable-speed, self-propelled particle

model of collective motion that addresses important shortcomings of earlier models.

In our model, each particle adjusts its velocity by performing a constrained optimiza-

tion of a locally-defined objective function, which is computed at each time step over

the kinematics of the particle and the relative position of neighboring particles. Our

model explains how ordered motion can arise in the absence of an explicitly prescribed

alignment term and simulations performed with our model exhibit a wide variety of

patterns of motion, including several not possible with popular constant-speed mod-

els. Our model predicts that variations in speed and heading of particles are coupled

due to costs associated with changes in relative position. We have found that a simi-

v



lar coupling effect may also be present in the flight of groups of gregarious bats. The

Mexican Free-tailed bat (Tadarida brasiliensis) is a gregarious bat that forms large

maternity colonies, containing hundreds of thousands to millions of individuals, in

the southwestern United States in the summer. We have developed a protocol for

calibrating cameras used in stereo videography and developed guidelines for data col-

lection. Our field protocol can be deployed in a single afternoon, requiring only short

video segments of light, portable calibration objects. These protocols have allowed

us to reconstruct the three-dimensional flight trajectories of hundreds of thousands

of bats in order to use their flight as a biological study system for our model.
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Chapter 1

Introduction

Aggregations of animals, such as flocks of birds and schools of fish, have been a

subject of study since the 19th century (Pryer, 1884; Breder, 1954; Hamilton, 1971)

and continue to be a very active area of research (Buhl et al., 2006; Krause et al., 2009;

Nagy et al., 2010; Bode et al., 2011; Bialek et al., 2012; Attanasi et al., 2014; Gerum

et al., 2013; Mann et al., 2013; Calovi et al., 2014; Portugal et al., 2014). During

this time, scientists have worked to understand the underlying principles of collective

motion (Vicsek et al., 1995; Bialek et al., 2012; Gerum et al., 2013; Attanasi et al.,

2014) and the evolution of collective behavior (Katz et al., 2011; Lukeman et al., 2010;

Mann et al., 2013) by developing computational models and analyzing the observed

behavior of animals and other organisms.

The goal of this work is to present a computational model of collective motion

that will govern the behavior of individuals so that the motion of groups of simulated

entities will be similar to the motion of groups of animals. Analysis of our model will

improve our understanding of the mechanisms underlying collective motion and pro-

vide scaffolding for interpreting the behavior of animals. Computational models may

be judged by richness, parsimony, and fidelity. They should be capable of reflecting a

wide variety of behaviors with only a small number of parameters. The assumptions

and predictions of the models should be consistent with observations of natural sys-

tems. As a study system, we have chosen Tadarida brasiliensis, a gregarious bat that

forms large summer maternity colonies containing hundreds of thousands to millions
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of individuals (Betke et al., 2008) in the southwestern United States in the summer.

1.1 A brief history of collective motion

Detailed study of schools of fish and flocks of birds in the 1950’s through early

1980’s (Breder, 1954; Pitcher, 1973; Radakov, 1973; Major and Dill, 1978; Partridge

et al., 1980; Partridge and Pitcher, 1980; Partridge, 1981) led to simulation model-

ing paradigms in the late 1980’s and 1990’s (Aoki, 1982; Reynolds, 1987; Huth and

Wissel, 1994; Vicsek et al., 1995; Czirók et al., 1999; Couzin et al., 2002) that are stud-

ied in many domains, including computer graphics (Reynolds, 1987), social networks

(Krause et al., 2009), optimization (Eberhart and S., 2001; Karaboga and Akay, 2009),

statistical mechanics (Bialek et al., 2012; Nagy et al., 2010; Vicsek and Zafeiris, 2012),

ecology and computational biology (Okubo, 1986; Parrish and Edelstein-Keshet, 1999;

Eriksson et al., 2010; Gautrais et al., 2012), vehicle and pedestrian simulation (Hel-

bing et al., 2001, 2005), and autonomous vehicle control (Cao et al., 2008; Gazi and

Passino, 2004; Jadbabaie et al., 2003; Reif and Wang, 1999). The details of these

models are very diverse, but they have in common that they govern the behavior

of individuals in a way so that the motion groups of individuals is similar to that

observed in natural systems.

In some of the earliest work, Breder (Breder, 1954) proposed that animal behavior

could be explained in terms of only attraction and repulsion. Partridge et al. (1980)

and Partridge and Pitcher (Partridge and Pitcher, 1980), carried out studies in groups

of schooling fish and concluded that fish also sensed and responded to the motion of

conspecifics, by determining that fish schooled differently when their lateral line,

responsible for sensing motion, was cut, and that fish were still able to school when

blinded.

Through simulation studies, the scientific community has discovered that large
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groups of entities can move coherently without leaders when group members exhibit

simple behaviors in response to the relative position and heading of other individuals

in the group (Aoki, 1982; Reynolds, 1987; Vicsek et al., 1995; Czirók et al., 1999;

Couzin et al., 2002). Researchers have used these models to understand universal

principles of collective motion by simulating groups of entities and analyzing how

properties of the behavior of the system, such as distances between neighbors, spatial

coherence, coherence of motion (polarization), are affected by the inputs to the sim-

ulation, such as the density of particles, the strengths and types of interactions, and

the amount of noise (Czirók et al., 1999; Couzin et al., 2002; Strömbom, 2011; Calovi

et al., 2014). Researchers have studied these models by simulating groups of entities

and analyzing how parameters of the simulation, such as the number and density of

the particles, the amount of noise, and the strengths of different interactions, affect

properties of the group behavior, such as distances between neighbors, spatial coher-

ence, coherence of motion (polarization), and the formations adopted by the groups

(Czirók et al., 1999; Couzin et al., 2002; Strömbom, 2011; Calovi et al., 2014). In

computational biology and behavioral ecology, researchers have worked to understand

the evolution of collective behavior by using models of collective motion to discover

the individual behaviors that lead to the observed collective behavior (Katz et al.,

2011; Buhl et al., 2006; Lukeman et al., 2010; Herbert-Read et al., 2011).

An influential simulation model (Aoki, 1982) incorporated repulsion, attraction,

and heading alignment influences applied to neighbors within different concentric

neighborhood zones. Entities moved away from neighbors that were too close (repul-

sion zone), towards neighbors that were too far away (attraction zone) and matched

headings otherwise (alignment zone) by averaging the headings of neighboring enti-

ties. This model was adopted and expanded in the computer graphics community

(Reynolds, 1987), and in the theoretical biology community (Huth and Wissel, 1992).
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Couzin et al. (2002) carried out a detailed study of the behavior of a similar model

under different parameter settings. In the Vicsek model, popular in the physics com-

munity, heading alignment is the only influence (Vicsek et al., 1995; Czirók et al.,

1999).

In Aoki’s model (Aoki, 1982), speed and direction are treated independently;

direction is computed based on entities in the local neighborhood and speed is drawn

from a gamma distribution based on the previous speed. In Reynold’s boids model

(Reynolds, 1987), the speed of entities is clamped to some desired range. In many

models, it is assumed that entities maintain a constant speed (Vicsek and Zafeiris,

2012). Mishra et al. (2012) proposed a model where the speed of motion was set as

a function of some derived property of the local neighborhood.

To encourage system stability, the motion of entities is often damped in some

way, often by performing a weighted average of the current and desired velocity, or

by simply applying a simple threshold on the maximum turning angle (Couzin et al.,

2002; Vicsek et al., 1995). The local neighborhood is frequently defined in terms

of a metric distance (Aoki, 1982; Reynolds, 1987; Vicsek et al., 1995), and recently,

other models of proximity have been developed, such as a topological distance (i.e.

“the first K nearest neighbors”) (Ballerini et al., 2008), or the first shell of a Voronoi

diagram (Gautrais et al., 2012).

In control theory (Reif and Wang, 1999; Gazi and Passino, 2004), researchers are

concerned with developing control laws to govern the behavior of robots undertaking

tasks such as social foraging, which require robots to disperse into the environment

while maintaining some desirable configuration and avoiding collisions. To accomplish

this, influences of attraction and repulsion are understood in terms of the gradients

of potential functions, inspired by physical forces.The total potential experienced by

an entity is the sum of the potentials induced by each neighbor. Performing gradient
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descent of the total potential function leads to a weighted averaging of the attraction

and repulsion influences due to each neighbor, and action is taken subject to some

step size that may either be constant or based on the magnitude of the gradient.

These models often omit a heading alignment influence and work in this area often

focuses on proving the convergence of the system to some desired state.

1.2 Recent developments in collective motion

In recent years, as it has become computationally feasible to collect larger datasets of

observations of animals, researchers have begun to make more detailed comparisons

between the predictions of behavioral models and observations of natural behavior,

including locusts (Buhl et al., 2006), starlings (Ballerini et al., 2008; Bialek et al.,

2012; Cavagna et al., 2010; Attanasi et al., 2014), surf scoters (ducks) (Lukeman

et al., 2010), mosquitofish (Herbert-Read et al., 2011), golden shiners (fish) (Katz

et al., 2011), barred flagtails (fish) (Gautrais et al., 2012), and glass prawns (Mann

et al., 2013). Based on these studies, some of the fundamental, widely used design

assumptions of models of collective motion have been called into question (Calovi

et al., 2014).

To combine the influences of multiple neighbors, typically the responses to each

neighbor are averaged (possibly with weights) (Aoki, 1982; Vicsek et al., 1995; Couzin

et al., 2002), but Katz et al. (2011) performed a detailed study of the behavior of fish

in groups of two fish and three fish and they found that the response of fish in groups

of three was not an average of the responses of fish in groups of two; there is some

unexplained residual effect. Another important issue is speed regulation. Although

there are a very small number of variable speed models in the literature (Aoki, 1982;

Reynolds, 1987; Mishra et al., 2012; Reif and Wang, 1999), the vast majority of

models assume that entities move with a constant speed (Vicsek and Zafeiris, 2012),
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and this assumption has been used in more recent literature as well (Gautrais et al.,

2012). Challenging this long-held assumption, Katz et al. (2011) and Herbert-Read

et al. (2011) studied the behavior of fish in detail and found that speed regulation is

actually a very important aspect of fish behavior.

1.3 Stereo Videography

Researchers have studied many diverse topics, including animal behavior and plant

seed dispersal, by recording and quantifying the movement of animals and plants us-

ing video (Hayashi et al., 2009; Olaniran et al., 2013; Bhandiwad et al., 2013). For

example, in 2012, seventy papers published in the Journal of Experimental Biology

reported using video to measure kinematics, representing 11% of the papers published

in the journal that year. Many of these studies used two or more cameras to measure

the 3D locations of points of interest in the scene. In order to use image observations

from multiple cameras to reconstruct three-dimensional (3D) world positions via tri-

angulation, the relative position and orientation of the cameras (extrinsic parameters)

and their focal lengths and principal points (intrinsic parameters) must be given. The

process by which these parameters are estimated is known as “camera calibration”

and typically involves matching points on a calibration object across camera views.

In the recent biology literature, the most commonly mentioned method for cal-

ibrating cameras is Direct Linear Transformation (DLT) (Abdel-Aziz and Karara,

1971). When using DLT, it is important to obtain calibration points throughout

the volume of interest; otherwise reconstruction accuracy may be reduced (Hedrick,

2008). Previous authors who have used DLT in a field setting have constructed a

large physical calibration object at the field site (Clark, 2009; Munk, 2011), limiting

the size of the calibration volume. Others have carefully measured the extrinsic pa-

rameters by hand (Cavagna et al., 2008), relying on a semi-permanent placement of
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their cameras in a sheltered location. We propose a different calibration approach

that is particularly useful for field settings where the volume of interest may be tens

of thousands of cubic meters or where cameras cannot be left in place for multiple

sessionsOur approach uses the sparse bundle adjustment (SBA) calibration algorithm

(Lourakis and Argyros, 2009) which minimizes the difference between the observed

and ideal locations of the calibration points in each camera view. Bundle adjustment

has been chosen by biologists for its 3D reconstruction accuracy (Walker et al., 2009)

but lacks wide use because of the absence of well-documented and freely available

software implementations that are directly applicable to analysis of field data.
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Chapter 2

Data Collection

Stereo videography is a powerful technique for quantifying the kinematics and be-

havior of animals, but it can be challenging to use in an outdoor field setting. We

here present a workflow and associated software for performing calibration of cam-

eras placed in a field setting and estimating the accuracy of the resulting stereoscopic

reconstructions. We demonstrate the workflow through example stereoscopic recon-

structions of bat and bird flight. We provide software tools for planning experiments

and processing the resulting calibrations that other researchers may use to calibrate

their own cameras. Our field protocol can be deployed in a single afternoon, requiring

only short video clips of light, portable calibration objects.

The protocols used in this study are consistent with the American Society of

Mammalogists (Sikes and Gannon, 2011), and were approved by Boston University’s

Animal Care and Use Committee and Texas Parks and Wildlife Department Permit

Number: SPR-0610-100.

2.1 Results and discussion

When developing our stereo videography workflow and software, we focused on accu-

racy and ease. It is important to estimate the level of calibration and reconstruction

accuracy when the goal of 3D videography is to quantify the kinematics of airborne

animals and facilitate the study of their behavior. Any uncertainty in the estimation

of their 3D position affects the uncertainty in derived calculations like velocity and
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acceleration which may be of direct biological interest. We here first describe the

results of our experiments that yielded stereoscopic reconstructions of bat and bird

flight and then discuss their accuracy and the ease in obtaining them.

Figure 2·1: 3D flight trajectories of 28 Brazilian Free-tailed Bats during a 1-s inter-
val (A), estimated from video captured with three synchronized, high-speed thermal
infrared cameras (B). The colored pyramids represent the three cameras while the
colored lines each mark the trajectory of an individual bat. The observation distance
between cameras and bats was approximately 10 m, chosen so that the nose-to-tail
span of a bat in an image was at least 10 pixels. The baseline distance between the
outermost cameras was approximately 6 m, chosen so that the expected uncertainty
in reconstructed 3D positions at the observation distance due to image quantization
and image localization ambiguity was less than 10 cm, the length of a bat. The RMS
reconstruction uncertainty for the 1,656 estimated 3D positions shown was 7.8 cm.
The trajectories were smoothed with Kalman filtering.

2.1.1 Stereoscopic reconstructions of bat field flight

We recorded video of Brazilian Free-tailed Bats during their evening emergence from

Davis Blowout Cave in Blanco County, Texas (Fig. 2·1) and used the proposed

stereo videography workflow to support the estimation of the flight paths of 28 bats

flying through a 1,400-m3 volume during a 1-s interval with a 7.8-cm root mean

squared (RMS) uncertainty in their 3D positions. We used easyWand and easySBA

to estimate the extrinsic and intrinsic camera parameters, using, from each view,

226 points manually digitized from the ends of a 1.56-m calibration wand, 2,010
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points manually digitized from hot packs thrown in the air, and 7,135 points on

the bats flying through the volume of interest, identified using automated methods

(Wu et al., 2009). Manufacturer-provided values served as as initial estimates of the

intrinsic parameters. The calibrated space was aligned to gravity by calculating the

acceleration of hot packs thrown in the volume of interest. The standard deviation

of the estimated wand length divided by its mean was 0.046 (4.6%). The respective

reprojection errors were 0.63, 0.74, and 0.59 pixels for the three views. The protocols

used in bat observation are consistent with the American Society of Mammalogists

(Sikes and Gannon, 2011), and were approved by the Institutional Animal Care and

Use Committee (IACUC) of Boston University and the Texas Parks and Wildlife

Department (Permit Number: SPR-0610-100).

2.1.2 Discussion of accuracy of results and ease of experimental setup

As our results demonstrate, the proposed field videography workflow and software

yield accurate calibration of multi-camera systems and enable accurate reconstruction

of 3D flight paths of bats and birds in field settings. The values of our two measures of

calibration inaccuracy were sufficiently small to indicate accurate calibrations without

any errors in determining corresponding calibration points.

We balanced our two conflicting observational objectives of recording sufficiently

long flight paths in a large volume of interest and recording the animals so that

they appeared sufficiently large in all camera views. The resulting camera placement

yielded a level of uncertainty in estimated 3D locations of the animals that was less

than the length of a bat and half the length of a bird. A different camera placement

may have resulted in a different level of accuracy. The Methods section below de-

scribes how researchers can determine this level in pre-experiment planning using the

proposed easyCamera software tool. In post-experiment processing, easyWand can
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be used to estimate the accuracy of the calibration.

Our recordings were part of extensive multi-day experiments. Camera placement

and calibration recordings required 45 minutes at the beginning of each daily record-

ing bout. This short setup time may be critical when the study organism or group

is on the move and must be followed, or when site location, daily weather patterns,

tides, or safety considerations dictate.

We suggest that the methods and implementations provided here will substan-

tially aid biologists seeking to make quantitative measures of animal movements and

behavior in field settings, as they have done for our own work on bat and bird flight.

While previous studies have gathered similar data, they required heroic attempts at

calibration frame construction in the field or carefully controlled field environments.

We believe that the ease of setup and accuracy of calibration afforded by our meth-

ods opens up a wide range of previously unachievable studies and plan to continue

refining the publicly available software implementations to fit a variety of needs.

2.2 Materials and methods

The proposed three-step workflow for performing stereo videography provides guid-

ance on field-experiment planning, capture, and post-processing. During planning,

appropriate camera equipment is chosen and the placement of the cameras is de-

termined so that the captured imagery will satisfy observational requirements. In

the field, a protocol is followed for moving calibration objects through the volume

of interest. During post-processing, the image locations of the calibration points are

digitized in each camera view. Then, easyWand uses corresponding points to estimate

the relative position and orientation of the cameras.
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2.2.1 Experiment planning

Camera systems

When selecting a multi-camera system, scientists should consider whether the frame

rate, spatial resolution, field-of-view, and synchronization ability of the cameras are

appropriate for the size and speed of the study organisms. Camera synchronization,

in particular, is a critical requirement for successful stereoscopy. In our field work,

we used hardware synchronization to ensure accurate temporal alignment of frames

across cameras. Multi-camera systems without precise frame synchronization could

be calibrated using these methods if wand and animal pixel motion per frame is small,

a large number of calibration points are used and some motionless background points

are visible in all cameras.

For capturing video of Brazilian Free-tailed Bats, we used three thermal infrared

cameras (FLIR SC8000, FLIR Systems, Inc., Wilsonville, OR) with variable-focus

25-mm lenses, and a pixel width of 18 µm, providing a 40.5◦ field of view. The 14-bit

per pixel video has a frame size of 1024× 1024 pixels and frame rate of 131.5 Hz.

Camera placement

When designing camera placement, scientists should consider their observational ob-

jectives, the amount of 3D reconstruction uncertainty they may tolerate, and poten-

tial additional requirements introduced by the manual or automatic post-experiment

video analysis.

Two observational objectives that commonly conflict are the size of the volume of

space in which the animals are observed and the spatial resolution at which they are

observed. When designing an experiment for such studies, we suggest to impose a

lower bound on the size of animals in the image, so that they are not recorded at sizes

that will make post-experiment analysis difficult. Based on a pinhole camera model,
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the bound xmax on the pixel-span of the animal in the image can only be guaranteed if

the observation distance between animals and each camera is at most Dmax = fX
xmaxp

,

where X is the length of the animal, f is the focal length of the camera, and p is the

physical width of a pixel. For our studies, in the interest of observing the flight paths

of the animals over a large distance, we chose to allow a small image size. A 10-pixel

nose-to-tail span of a 10-cm-long bat in an image was ensured for animals that flew

at distances smaller than Dmax=(25 mm × 10 cm)/(10 pixels × 18 µm/pixel)=13.8

m from our thermal cameras.

An inescapable source of uncertainty in the stereoscopic reconstruction of a 3D

point is the quantization of intensity measurements (light or thermal radiation) into

an array of discrete pixels. Each pixel, projected into space, defines a pyramidal

frustum expanding outward from the camera. The location of the 3D point resides

somewhere in the intersection of the frustums defined by pixels in each image. For any

camera configuration, we can estimate this uncertainty for every 3D point observed

by at least two cameras via simulation using the easyCamera software. Our procedure

first projects the 3D point onto the image plane of each camera and quantizes the

location of each projection according to the pixel grid of each camera. The discrete

pixel coordinates of the image points in each camera are then used to reconstruct a

3D position via triangulation. The reconstruction uncertainty is finally computed as

the difference between the original and reconstructed positions of the point.

Our simulation results, shown in Fig. 2·2, indicate that the size and shape of the

observation volumes and the uncertainty due to quantization within these volumes

can differ significantly depending on the number of cameras and their placement.

Ensuring that the angle between the optical axes is not wider than the field-of-view

angle of the cameras leads to ”open” intersection volumes that extend infinitely far

away from the cameras (all examples in Fig. 2·2 except C), which is desirable because
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it facilitates recording even if the animals appear in an unexpected location. The

level of uncertainty increases with the distance from the cameras because the volume

of the intersection of the pixel frustums also increases with this distance.

In addition to the reconstruction uncertainty created by quantization, we also

consider the reconstruction uncertainty arising from the difficulty in identifying the

location of an animal in an image (Fig. 2·3). The location of an animal is often thought

of as a single point, e.g., at the center of its body. Localization accuracy of this ill-

defined point depends on the resolution of the animal in the image (Fig. 2·3B). To es-

timate uncertainty in localization, we included a stochastic element to the simulation

procedure described above by adding noise to the 2D projections before quantization.

Over 100 trials, the RMS distance between the original and reconstructed scene points

gives an estimate of the reconstruction uncertainty at the original point (Fig. 2·3D).

The camera placements we selected for our bat field experiments (Fig. 2·1A), were

similar to the configuration shown in Fig. 2·2B. With our simulation, we were able to

determine, prior to any field work, that the levels of uncertainty due to quantization

and localization issues would be acceptable for us (Fig. S1).

Reconstruction error occurs when image locations corresponding to different an-

imals are mistakenly used to reconstruct 3D positions. These ”data association”

errors are commonly made by automated tracking methods, especially if the animals

appear similar and small in the images. Camera selection and placement can reduce

the potential occurrence of data association errors by imposing appropriate geomet-

ric constraints on the triangulation (Fig. 2·4). We recommend use of three or more

cameras and a non-collinear camera placement that ensures that the image planes are

not parallel (avoiding the configuration in Fig. 2·2F).
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Figure 2·2: Reconstruction uncertainty due to quantization effects is shown for
six hypothetical camera configurations. The cameras were simulated to have a pixel
width of 18 µm and field-of-view angle 40.5◦ and be positioned at a fixed height Z and
aimed at a common, equidistant fixation point F = (0, 0, Z). Horizontal cuts of the
3D view frustums of the cameras at height Z and lines at Dmax=20 m are shown from
above. Placing the cameras further apart reduces reconstruction uncertainty (A vs.
B). If the cameras are placed too far apart (C), however, the view volume is ”closed,”
and there are unobservable regions of space where the cameras will be looking past
each other. If the distance between the outermost cameras is held constant, adding
additional cameras may not decrease the uncertainty due to image quantization in
the common observable region (D vs. E). When the image planes of the cameras are
parallel (F), the common view volume is smaller and further away from the cameras
than in the other configurations. -Note that these 2D cuts of the 3D view frustrums
are at the level and elevation angle of the cameras, cuts at a different level or angle
would show slightly greater reconstruction uncertainty but similar trends.

.
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Figure 2·3: Reconstruction uncertainty due to quantization and resolution issues.
In a video frame obtained for a flight study (A), the automatically detected locations
of the animals may not be at their centers (colored dots in B). When estimating
reconstruction uncertainty (C, D), we include this effect by corrupting the image
projections of simulated world points, generated throughout the whole space, with
Gaussian noise where the standard deviation is one-sixth of the calculated apparent
size of an animal at that location (circles in B). When estimating the reconstruction
uncertainty, including image location ambiguity (D) increases the estimated uncer-
tainty more than three-fold over image quantization alone (C) (note the change in
color scale).

2.2.2 Protocol for field experiment

The protocol we recommend for field work includes two phases. In the first phase,

prior to any camera setup and recordings, a preliminary plan for the location of the

recording space and placement of the cameras is made. The easyCamera software is

then used to estimate the uncertainty in localizing the study organism in this space,

and adjustments to the plan can be made by experimenting with other hypothetical

camera configurations. In the second phase, the actual camera setup in the field

can be done easily because no field measurements of camera pose or distances to the

animals of study are needed. The only measurements required are references for scene

scale and orientation. In our experiments, the known length of a calibration wand

moved through the scene provided a scale reference, and gravitational acceleration,

estimated from the ballistic trajectories of thrown objects, provided a reference for
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Figure 2·4: An illustration of how, using three cameras, instead of two, in an
appropriate configuration, leads to reduced data association errors. A data association
error may occur with a two camera system (A) if image points i1 and i6 are used to
reconstruct ”ghost” point G1, and i2 and i5 to reconstruct ”ghost” point G2. The
correct association would be to match i1 and i5 to reconstruct P1, and i2 and i6
to reconstruct P2. If a third camera is introduced (B), this error cannot be made
because the image points i3 and i4 can only be projections of P1 and P2. A similar
three-camera configuration was used for the bat recordings. It facilitated the process
of matching corresponding image points across camera views: The ray through i3 and
P1 (yellow) and the ray through i5 and P1 (green) appear as“epipolar” lines in the
image of camera C1 (large image in panel C), which intersect in image point i1 (red).
Similarly, the projections into camera C2 of the (red) ray through i1 and P1 and the
(green) ray through i5 and P1 at image point i3 in camera C2 (yellow in panel C); the
projections into camera C3 intersect at i5 (green). These “epipolar constraints” are
only satisfied if the image points i1, i3, and i5 are matched to reconstruct the position
P1. A collinear camera placement (Fig. 2·2F) would result in parallel epipolar lines,
making the matching of corresponding image points difficult.

scene orientation.

Our calibration method generally produces more accurate results when more sets

of corresponding image points are used (Table S5, column 2). Thus, we used record-

ings of the animals, digitized automatically using a preliminary wand-only calibration,

to augment the number of calibration points and volume encompassed by them. This

augmentation is a feature of our SBA based calibration pipeline not possible with

calibration frame based DLT methods. See Table S5 for an exploration of the effects

of using animal points in the calibration. We typically recorded our study videos of

bats and birds after obtaining videos of calibration objects, but this order can be
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reversed.

2.2.3 Post-experiment camera calibration

Our easyWand calibration software bundles a modular pipeline of algorithms that can

be used to estimate the relative positions and orientations of the cameras and their

intrinsic parameters. The first, most time-consuming step of the calibration procedure

is to manually or automatically digitize the image locations of objects recorded in all

views. In our post-experiment analysis, we identified thousands of sets of matching

image points.

Using the focal lengths and principal points obtained directly from the lenses and

image sensors as preliminary estimates of the intrinsic camera parameters and the

8-point algorithm (Hartley and Zisserman, 2004), our software computes preliminary

estimates of the camera pose and 3D positions of the calibration objects. Our software

then applies the sparse bundle adjustment algorithm (Lourakis and Argyros, 2009) to

obtain refined estimates for all calibration parameters. Finally, it converts to a repre-

sentation of the camera calibration parameters in the form of the DLT coefficients in

order to easily integrate into previously existing workflows. None of the 8-point, SBA,

and DLT algorithms explicitly requires use of a wand, and other sources of matched

camera points could be used as input. Wands are convenient for their mobility and

as means to measure scene scale and conduct additional error checking.

The easyWand software tool computes three measures of calibration inaccuracy:

The ”reprojection error,” measured in pixels for each camera, is the RMS distance

between the original and reprojected image points of each calibration point, where

the ”reprojected” image points are computed using the estimated 3D position of the

calibration point and the estimated camera parameters. The second measure of inac-

curacy is the ratio of the standard deviation of wand-length estimates to their mean.
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A large ratio may indicate problems with the calibration, for example, unidentified

lens distortion. The third measure is the average uncertainty in the position of each

wand tip, estimated from the distance between the two tips. The easyCamera tool

can be used with the estimated extrinsic parameters to compute the uncertainty of

the reconstructed 3D positions of the study animals (Figs. S2 and S3).

2.3 Observations of Bats

The nightly emergences of bats from two large maternity colonies. Davis cave in

Blanco county, Texas and Bamberger Chiroptorium in Johnson City, Texas, were

imaged against vegetation and clouded sky. Thermal infrared video was recorded

at 131.5 Hz using three hardware-synchronized FLIR SC8000 cameras with 25mm

lenses. The field of view was approximately 40 degrees and the image resolution was

1024 by 1024 pixels. The apparent nose-to-tail length of the bats was between 8 and

20 pixels. We made observations on one night at Davis cave, and three nights at the

Bamberger Chiroptorium. The duration of recording one each night varied between

12 and 40 minutes.

For capturing video of Brazilian Free-tailed Bats, we used three thermal infrared

cameras (FLIR SC8000, FLIR Systems, Inc., Wilsonville, OR) with variable-focus

25-mm lenses, and a pixel width of 18 µm, providing a 40.5◦ field of view. The 14-bit

per pixel video has a frame size of 1024×1024 pixels and frame rate of 131.5 Hz. The

three cameras were spatially calibrated following the protocol described by Theriault

et al. (2014).

Image locations of bats were estimated using an image processing pipeline similar

to Betke et al. (2007). The background was modeled using a running average with

exponential decay. Foreground regions were identified using background subtraction

with empirically determined thresholds. Multiple detected objects per foreground
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region were identified using brightness peaks, defined as local maxima that were

sufficiently bright (thresholds determined heuristically) and sufficiently far away from

other local maxima (based on apparent target size). We followed the reconstruction-

tracking approach described by Wu et al. (2009); image locations of bats from each of

the three cameras were used to reconstruct three dimensional object detections, using

epipolar geometry and the DLT algorithm. Tracks were constructed using multiple

hypothesis tracking with a sliding window. Spurious tracks shorter than 100 ms in

duration or 1 meter in length were discarded. Up to 295 bats were simultaneously

observable via 3D reconstruction and tracking. Over 20 million individual data points

were obtained from over 200,000 trajectories from the dataset taken at the Davis site.

Between 2 million and 4.9 million total data points were obtained from between 44,000

and 87,000 trajectories in each of the three nights at the Bamberger site. From

70 minutes of video showing 11 bursts of activity, over 392,000 flight trajectories

with over 31,000,000 data points were reconstructed using image processing, epipolar

geometry, and multi-target tracking. The object locations in each track were filtered

with a Kalman filter to mitigate the effects of reconstruction uncertainty (Theriault

et al., 2014).

2.4 Occlusion reasoning

Since we model the bats as points, it is important for the image detection to be located

on the body as consistently as possible. Our image processing pipeline works for this

goal by localizing the brightest (warmest) part of the thorax. When bats occlude or

partially occlude each other in the original video, the image detection for one or more

of the bats may be displaced. This is a problem because an inaccurate image location

can lead to an inaccurate 3D reconstructed position. This inaccuracy can propagate

to computation of higher order moments, including velocity and acceleration. The net
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effect is that bats that are in shadow tend to have larger apparent heading variability,

speed, and acceleration magnitude than bats that are not occluded. Therefore, it is

important to identify bats that are participating in an occlusion event so that they can

be excluded from computations that aggregate information (e.g. the distribution of

bat flight speed). Some properties we compute depend on the velocities of neighboring

bats, and so if a neighbor is in shadow, then that computation should either exclude

the neighbor, or the property for the focal bat should be excluded.

The potential displacement of the image detection will be more severe when the

bats are closer together. For example, the image of two bats that partially occlude

each other because the image of their wings are touching is much less likely to result

in a displaced image detection than two bats that occlude because the wing of one

bat is covering part of the body of the other bat. The potential image detection

displacement affects both bats in the interaction. The reconstruction accuracy will

be further diminished if the bats are occluding in more than one camera. When

bats are far apart in 3D space, this doesn’t reduce the effect of occlusion on image

detection accuracy, though it does reduce the chance that the two bats will occlude

each other in more than one camera.

Occlusion occurs when two or more objects are located along the same ray from

the camera center and out into the scene. Given a representative 3D point on an

object, xi, and the camera center cc, the view vector from the camera center through

xi is given by li,c [t] = xi−cc
||xi−cc|| . The distance between some other point, xj and this line

is given by d(li,c [t] ,xj) = xi,j − (xi,j · li,c [t])li,c [t]. Given the wingspan of the bats,

dwing=30 cm (for Tadarida brasiliensis (Farney and Fleharty, 1969)), we conclude

that a bat i at time t is occluded by bat j at time t if d(li,c [t] ,xj) <
1
2
dwing for any

of the three cameras (c ∈ {1, 2, 3}), or if the sum of the distances between all of the

lines of sight
∑3

c=1 d(li,c [t] ,xj) < 3 dwing.
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Chapter 3

The FlockOpt model of collective motion

3.1 Introduction

The study of the collective behavior of animals has fascinated scientists for over 100

years, (Pryer, 1884; Breder, 1954; Hamilton, 1971) and continues to be a very active

area of research (Calovi et al., 2014; Buhl et al., 2006; Krause et al., 2009; Nagy et al.,

2010; Bode et al., 2011; Bialek et al., 2012; Attanasi et al., 2014; Gerum et al., 2013;

Mann et al., 2013; Portugal et al., 2014).

Computational models of group motion are algorithms designed to control sim-

ulated agents so that the behavior of the group will be similar to natural systems.

Computational models can be judged by fidelity, richness, and parsimony. Simula-

tions performed with computational models should have properties in common with

natural systems, and the model should be able to generated a wide variety of behaviors

by varying a small number of parameters.

Through simulation studies, the scientific community has discovered that large

groups of entities, such as simulated particles or living organisms, can move coher-

ently without leaders when group members exhibit simple behaviors in response to

the relative position and heading of neighboring individuals (Aoki, 1982; Reynolds,

1987; Vicsek et al., 1995; Czirók et al., 1999; Couzin et al., 2002). In an influential

simulation model by Aoki (1982), repulsion, attraction, and heading alignment influ-

ences are applied to neighbors within concentric zones in order to govern the behavior
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of individual particles. In models by Vicsek et al. (1995) and Czirók et al. (1999),

heading alignment is the only influence. In social potential field models, introduced

by Reif and Wang (1999), influences of attraction and repulsion are understood in

terms of the gradients of potential functions, inspired by physical forces.

The notion of similarity used to compare models and natural data has evolved

over time. Early models were judged based on emergent characteristics, such as the

formation adopted by the models (Aoki, 1982; Couzin et al., 2002). There is a growing

body of work studying the challenges of matching a model of collective motion and

associated parameters with a biological study system. Authors have observed that

many different models may lead to similar macroscopic behavior (Strömbom, 2011;

Lopez et al., 2012; Mann et al., 2013). This observation led to increased interest in

new methodologies for building models in a data-driven way (Gautrais et al., 2012;

Mann et al., 2013) and measuring the goodness of fit between a model and observed

behavior of animals (Eriksson et al., 2010; Mann, 2011; Bode et al., 2011). Mann

et al. (2013) suggested that for a model to be considered a good fit to a biological

system, it must predict aspects of the behavior at both individual and system-wide

scales.

In recent years, as it has become feasible to collect large datasets of thousands of

observations of animals, detailed studies have been carried out to study the behavior

of locusts (Buhl et al., 2006), starlings (Ballerini et al., 2008; Bialek et al., 2012;

Cavagna et al., 2010; Attanasi et al., 2014), surf scoters (ducks) (Lukeman et al.,

2010), mosquitofish (Herbert-Read et al., 2011), golden shiners (fish) (Katz et al.,

2011), barred flagtails (fish) (Gautrais et al., 2012), and glass prawns (Mann et al.,

2013). Some of these studies have provided an opportunity to reexamine some of the

widespread assumptions underpinning many models of collective motion.

Early models defined neighborhoods in terms of metric, absolute distances (Aoki,
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1982; Couzin et al., 2002). Ballerini et al. (2008) provided evidence that interactions in

flocks of starlings are dependent on a topological distance instead. In most models, the

behavioral response to a set of neighbors is computed as an average of the responses

to each neighbor individually (possibly with weights) (Aoki, 1982; Vicsek et al., 1995;

Couzin et al., 2002; Gazi and Passino, 2004). In a detailed study of golden shiners,

Katz et al. (2011) discovered that the assumption that the response of an animal to a

set of neighbors could be understood as an average of the responses to each neighbor

individually was not consistent with data.

The vast majority of existing models assume that simulated particles move with a

constant (Vicsek and Zafeiris, 2012) or random (Aoki, 1982; Huth and Wissel, 1992)

speed (exceptions include Mishra et al. (2012), Reif and Wang (1999), Reynolds

(1987), and Bode et al. (2010)) because early authors (Aoki, 1982) concluded that

the heading of animals was the most important aspect of their motion. In two detailed

studies of fish behavior, Herbert-Read et al. (2011) and Katz et al. (2011) found that

speed regulation is actually a very important aspect of interactions between fish.

In response to findings revealing the importance of speed regulation, variable speed

models have recently been introduced (Bode et al., 2010; Mishra et al., 2012). In

these models, the heading of the entities is determined in the same way as in older,

constant-speed models, and the speed is determined separately, either as a function

of a property of the local neighborhood (Mishra et al., 2012) or based on a behavioral

rule (Bode et al., 2010).

3.2 Contribution

We introduce FlockOpt, an optimization-based, variable-speed, self-propelled particle

model of collective motion where the speeds and headings of simulated particles are

determined holistically. Groups of particles simulated with our model spontaneously
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exhibit ordered motion, even though our algorithm does not explicitly prescribe head-

ing alignment. Analysis of our model explains how velocity matching follows from the

impetus of particles to maintain their relative positions, revealing that the heading

alignment influence as formulated in earlier models may be redundant for understand-

ing ordered motion in natural systems. Our model also predicts that the speed and

heading of entities should be coupled by a causal dependence on maintaining rela-

tive position. We contribute to the growing body of work comparing the predictions

of computational models with observations of animals by studying the behavior of

Tadarida brasiliensis, a gregarious bat that forms large summer maternity colonies

containing hundreds of thousands to millions of individuals in the southwestern United

States (Betke et al., 2008). By measuring how spatial relationships change over time,

we found that individual variations in speed and heading are coupled, consistent with

our model.

3.3 The FlockOpt Model

FlockOpt is a self-propelled particle model of collective motion where individual par-

ticles make decisions about how to move by performing a constrained optimization

of a local objective function, Oi, computed for each particle at each moment in time

based on the kinematics of the particle and the relative position and kinematics of

its neighbors. Repulsion and attraction occur when moving away from or closer to

neighboring particles improves the objective value that a particle experiences. Align-

ment of heading is not explicitly prescribed, but is an emergent effect (explained in

the next section).

To reinterpret the design of classic zonal models under our paradigm, we design a

continuous function that encodes the preference over the distance between two par-

ticles, Φ (Figure 3·1). To represent the range of distances that are equally desirable
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Figure 3·1: The objective function Φ is constructed based on the difference between
two translated and horizontally scaled sigmoid functions. Appropriate constants are
chosen to adjust the width of the central, flat portion, zo, (left) and the width of the
descending leg, za (right).

(zo), there is an elevated flat part in the middle. To represent the less desirable

distances that are too close (zr) and too far (za) there are flanking ascending and de-

scending legs. Consistent with the maximum sight distance imposed by many models,

the function flattens beyond the a certain distance, because all further distances are

equally bad. An appropriate shape for this neighbor distance preference function,

Φ (Figure 3·1), is given by the difference of two translated and horizontally scaled

sigmoid functions as follows

Φ(γ; θ) = φ(γ; θ1, θ2)− φ(γ; θ3, θ4), (3.1)

where the sigmoid function with slope α
4

centered at β is given by φ(γ;α, β) = (1 +

e−α(γ+β))−1 and constants, θ, are chosen to reflect the desired shape.

The state of particle i at time t consists of position, xi, and velocity, vi, (heading

and speed) and its neighbors are Ni = {pk}. Time is discretized into steps, ∆t. The

arbitrary spatial units of the simulation are denoted by ∆u instead of an absolute

unit, such as meters. The current relative position of particle i and particle k at time

t is given by xi,k = xk − xi. The current relative velocity between the two particles

is given by vi,k = vk − vi.

If, at time t, particle pi adopts a hypothetical change in velocity ∆ṽi while the

neighbor pk maintains its current velocity, then the anticipated relative velocity be-
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tween a particle and its neighbor will be v̂i,k = vi,k −∆ṽi. The anticipated relative

position, x̂i,k, between entities i and k in the future will be

x̂i,k = (xk + vk∆t)− (xi + vi∆t+ ∆ṽi∆t)
= xi,k + (vi,k −∆ṽi)∆t
= xi,k + v̂i,k∆t

. (3.2)

The desirability of the anticipated future position of a single neighbor (Figure 3·2,

left) is given by

Φ (||x̂i,k||; θ) . (3.3)

To express the desirability of the predicted future configuration of the entire local

neighborhood, given a candidate change that may be adopted, ∆ṽi, the desirability

of all of the neighbors are summed (Figure 3·2, middle)). The joint objective function

over the whole neighborhood is given by

Oi(∆ṽi; θ) =
∑
k∈Ni

Φ (||x̂i,k||; θ) . (3.4)

Flying animals must maintain sufficiently fast flight in order to avoid aerodynamic

stall, but excessively fast flight may be energetically unsustainable. Under our model,

such costs and constraints may either be folded into the objective function via penalty

terms, or expressed as a constrained optimization (Figure 3·2, right). The hypothet-

ical vector velocity of a particle due to ∆ṽi is given by v̂i = vi + ∆ṽi. We include a

preference for some particular speed s? using a penalty term, λs, leading to

Oi(∆ṽi; θ) =[∑
k∈Ni

Φ (||x̂i,k||; θ)
]
− λs(||v̂i|| − s?)2

. (3.5)

To restrict the range of allowable speeds, we define constraints on the minimum

and maximum speeds smin and smax. To encourage system stability, we also define a

constraint on the maximum change in velocity, vmax. Then, we perform the following
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Figure 3·2: The objective functionOi, which reflects the desirability of the anticipated
future neighborhood of particle i (vi in dark blue), is visualized in a 2D simulation
with one (left), two (middle), and six neighbors (right). Function values are based on
the desirability Φ(||xi,k||) of the anticipated future distance ||xi,k|| (dashed line) to
its kth neighbor (vk in light blue). In 2D, high values of Oi form rings surrounding
the anticipated positions of the neighbors (left). Regions of intersecting rings are
most desirable for particle i to move to (middle). A constrained optimization on Oi
is performed (right) to find the best change ∆v?i in the velocity of particle i (red)
that satisfies additional constraints, such as maintaining a preferred speed (light blue
annulus) or limiting its turning angle (pink annular sector).

constrained optimization (Figure 3·2, right), using sequential quadratic programming

(Nocedal and Wright, 2006)

∆v?i = arg max∆ṽi∈Rd Oi(∆ṽi; θ)

s.t.


||v̂i|| ≤ smax

||v̂i|| ≥ smin

||∆ṽi|| ≤ vmax.

. (3.6)

The FlockOpt model extends trivially to three or more dimensions with the neigh-

bor preference function and penalties we have described, since the functions are de-

fined only over the distances between points or the lengths of velocity vectors.

In order to incorporate modeling of noisy perception in the FlockOpt model,

without defining a new objective function, random noise could be added to the

predicted positions of the neighbors before evaluating the objective function, as

O =
∑

k∈Ni
Φ(||x̂i,k + N (0, σ)||). As an implementation detail, the noise added to
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the perceived neighbor position should be held constant through all iterations of the

optimization to enable convergence.

3.4 How ordered motion arises

In our paradigm, each particle always takes action to optimize the objective function.

There are two distinct sets of circumstances: when a particle can improve its objective

value, and when it cannot. Most importantly, as an emergent effect that is not

explicitly prescribed, if no improvement is possible, or if a decrease is inevitable due

to the aggregate motion of its neighbors, in order to minimize the decrease in the

objective value that a particle experiences, it must minimize the change in relative

position between it and its neighbors. This effect leads to velocity matching (below).

We use the notation as defend in Section 3.6.

The current relative position of entity i and entity k at time t is given by xi,k =

xk−xi. If, at time t, particle i adopts a hypothetical change in velocity ∆ṽi while the

neighbor, particle k, maintains its current velocity, then the predicted relative position

between entities i and k in the future will be x̂i,k = (xk+vk∆t)−(xi+vi∆t+∆ṽi∆t).

Observe that x̂i,k = xi,k+ v̂i,k, where v̂i,k = vi,k−∆ṽi represents the total relative

motion between two entities due to both the relative motion due to the current relative

velocities, vi,k = vk−vi, and the hypothetical change to be adopted, ∆ṽi. We will use

the Φ symbol from our description of our model, but the exact shape is not important

for the purpose of this explanation.

We consider an additive joint objective function over all neighbors in the local

neighborhood, such as

Oi(∆ṽi; θ) =
∑
k∈Ni

Φ (||x̂i,k||; θ) . (3.7)

Due to the motion of entities in the system, the objective value experienced by
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each entity will vary over time, as follows

∆Oi(∆ṽi; θ)

=
∑

k∈Ni
∆Φ(||x̂i,k||; θ)

=
∑

k∈Ni
Φ(||x̂i,k||; θ)− Φ(||xi,k||; θ).

(3.8)

Recalling that x̂i,k = xi,k + v̂i,k, the change in the objective value can be approx-

imated using ∆Φi(||x̂i,k||; θ) ≈ ∇Φ(||xi,k||; θ)T v̂i,k due to a first order Taylor series

expansion as follows:

∆Φ(||x̂i,k||; θ)

= {Φ(||x̂i,k||; θ)} − Φ(||xi,k||; θ)

≈
{

Φ(||xi,k||; θ) +∇Φ(||xi,k||; θ)T v̂i,k
}
− Φ(||xi,k||; θ)

= ∇Φ(||xi,k||; θ)T v̂i,k.

(3.9)

This formalism captures the intuition that, for each neighbor, the anticipated

change in the objective value due to the anticipated relative motion, v̂i,k, will be

larger when the particles move directly towards or away from each other, and smallest

when the direction of the relative velocity is perpendicular to the vector between the

two neighbors. The change in the objective value will also be larger when the slope of

Φ(||xi,k||; θ) is larger, e.g. when the current distance between the two neighbors falls

on the ascending or descending legs of the distance preference function as opposed to

a flat part of the function.

Finally, the change will be proportional to the magnitude of the anticipated rela-

tive velocity between the two particles, ||v̂i,k|| (particles moving towards each other

faster will generally experience a larger change in the objective value). This last point

is very important because in a system containing many particles, each particle will be

surrounded by neighbors, so, generally, it will not be possible for a particle to min-

imize the change in the objective value by moving perpendicularly to all neighbors
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simultaneously (exceptions may occur at the edges of the group). Minimizing the

magnitude of the anticipated relative velocity, ||v̂i,k||, between two particles is equiv-

alent to minimizing the magnitude of the change in the relative position, ||x̂i,k−xi,k||,

between two particles.

By expanding v̂i,k as
v̂i,k = vk − (vi + ∆ṽi)
v̂i,k = (vk − vi)−∆ṽi)

v̂i,k = vi,k −∆ṽi,
(3.10)

we obtain the following illustrative equation:

∆Oi(∆ṽi; θ) ≈

{∑
k∈Ni

∇Φ(||xi,k||; θ)Tvi,k

}
−

{∑
k∈Ni

∇Φ(||xi,k||; θ)T∆ṽi

}
. (3.11)

From this last equation, we can understand the change in the objective value as

composed of two parts, one due to the current relative motion of the neighbors, vi,k,

and another due to the motion that the focal entity is trying to choose, ∆ṽi.

In circumstances when an improvement in the objective value is possible due to

either or both terms, then the entity will derive the most benefit from maximizing

|∆Oi|2 and we cannot predict ∆ṽi without knowing the exact objective function to

be optimized.

On the other hand, when an entity will experience a decrease in the objective

value due to the aggregate motion of its neighbors (vi,k), and it is not possible to

completely compensate by choosing an appropriate ∆ṽi, then the entity will suffer

the least harm by minimizing |∆Oi|2 and the behavior can be predicted as follows.

Due to the chain rule,

∇Φ(||xi,k||; θ) = αi,k
xi,k
||xi,k||

, (3.12)
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where αk is the slope of Φ at ||xi,k||, given θ. Then

∆Oi(∆ṽi; θ) ≈
∑
k∈Ni

αi,k
xi,k
||xi,k||

T

v̂i,k. (3.13)

By examining each term of this expression, we can consider three ways to minimize

the harm due to ∆ṽi: 1.) if v̂i,k ⊥ xi,k, 2.) if αk are small or 3.) if ||v̂i,k||, the

magnitudes of the anticipated relative velocities, are small.

In a system with many particles, most of the particles will be surrounded by

neighbors, so there will be a variety of directions for xi,k and it will not be possible for

a particle to move perpendicularly to all of the neighbors simultaneously (exceptions

may exist on the boundary of the group).

If the distance between neighbors falls along a part of Φ with small slope, then

|αk| will be small and αi,k
xi,k

||xi,k||
T
v̂i,k will be small, even if ||v̂i,k|| is large. If |αk| are

not small, and ||v̂i,k|| is large, then any improvement in the objective value possible

due to a large value of αk for some neighbor must be at least offset by other values

of αk of opposite sign, otherwise an improvement in the objective value would be

possible, and our analysis would not apply.

In general, in a situation in a steady state system where particles are surrounded

by neighbors and the objective value cannot be improved, choosing ∆ṽi to minimize

||v̂i,k|| = ||vi,k −∆ṽi|| will lead to the smallest decrease in the objective value.

If we assume that each ∆Φ(||x̂i,k||; θ) ∝ ||vi,k−∆ṽi|| individually, then by a least

squares derivation, we see that the optimal ∆v?i is the average of the relative velocity

of the neighbors, as follows:
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∆v?i = arg min∆ṽi

∑
k∈Ni

(∆Φ(x̂i,k; θ)
2

∆v?i ∝ arg min∆ṽi

∑
k∈Ni

(||vi,k −∆ṽi)||)2

d
d∆ṽ

∑
k∈Ni

(||vi,k −∆ṽi||)2 = 0

2
∑

k∈Ni
(vi,k −∆ṽi) = 0

∆v?i = 1
|Ni|
∑

k∈Ni
vi,k.

(3.14)

It may be too strong to say that the change in the objective value due to each

neighbor individually is proportional to ||vi,k −∆ṽi||, since the changes with respect

to some neighbors might be negative while others are positive. If we instead assume

that
∑

k∈Ni
∆Φ (||x̂i,k||; θ) ∝ ||

∑
k∈Ni

(vi,k −∆ṽi)|| in the aggregate, then by setting

up the desired minimization and simply rearranging terms, we see again that ∆v?i is

the average of the relative velocity of the neighbors as follows:

∑
k∈Ni

∆Φ (||x̂i,k||; θ)

∝
∣∣∣∣∑

k∈Ni
(vi,k −∆ṽi)

∣∣∣∣
=
∣∣∣∣∑

k∈Ni
(vi,k)− |Ni|∆ṽ

∣∣∣∣
=
∣∣∣∣∣∣( 1
|Ni|
∑

k∈Ni
vi,k

)
−∆ṽi

∣∣∣∣∣∣
∆v?i = arg min∆ṽi

∣∣∣∣∣∣( 1
|Ni|
∑

k∈Ni
vi,k

)
−∆ṽi

∣∣∣∣∣∣
∆v?i = 1

|Ni|
∑

k∈Ni
(vi,k).

(3.15)

From this line of reasoning, we conclude that ordered motion can arise in groups of

entities when each individual entity is unable to improve its relationship to its neigh-

bors and instead takes actions to avoid worsening its relationship to its neighbors.

The alignment influence, prescribed as velocity averaging in earlier models, arises as

an emergent effect if the preference over relative position is expressed as we prescribe.

We can understand the evolution of a system in two stages. From an initial

configurations, entities in the system will initially work to increase their objective
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values by changing their relative position. Once the objective values of the entities

in the system saturate, and the entities are in a configuration such that most of the

entities are unable to increase their objective values, then the entities will take action

to avoid decreasing their objective value by maintaining their relative position. These

theoretical insights are borne out in our simulation studies; We found that, across a

wide range of parameters and initial conditions, the objective values experienced by

the particles quickly saturated and remained nearly saturated, despite the occurrence

of diverse patterns of motion (Figure 3·7).

In both our simulation studies and observations of bats in flight, we observed that

neighborhoods where local headings were more polarized had lower spatial variability

(Figure 3·8). In the natural data, this is not the inevitable conclusion: headings could

be aligned, but the bats could be moving at different speeds, which would allow the

relative positions to change. The natural behavior that we observe is consistent with

our model and our explanation of how ordered motion can arise in groups of moving

entities.

Our analysis predicts that particles will attempt to maintain their relative posi-

tions in order to minimize the decrease in objective values. Due to the first order

Taylor series expansion, this is not completely accurate. With an objective function

defined over the distances between particles, to maintain objective values, particles

will need to minimize the change in distances between themselves and their neighbors.

This is approximated in the first order by maintaining relative position.

Understanding that ordered motion can arise in order to preserve objective values

by maintaining distances leads to an important insight about the dominant modes of

group movement, such as translating flocks and rotational mills: euclidean transfor-

mations that maintain such distances are composed of rotations and translations.

We can also understand why some objective function shapes are more conducive
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to the emergence of stable, coherent translational motion than others. According to

our theory, there are two phenomena that can disrupt ordered motion: the extent to

which improvements are generally possible and the extent to which many positions

are equally good. Given the objective function shape we have used throughout this

paper, when zo is small, unless the motion of the entities is perfectly parallel, the

particles will constantly suffer decreases in their objective values due to the motion

of the neighbors and take action to recover, frequently causing large system-wide

destabilizations. When zo is large, then many relative positions are equally good and

the organization of the motion is much looser. We have chosen a particular shape for

the simulation studies in this paper, but many other shapes are possible. We have

used objective functions based on both Gaussian and gamma distributions, which

lead to behavior that is most like our simulations with the double-sigmoid function

with a short zo.

3.5 Patterns of motion from simulations

We generated both 2D and 3D simulations that were closed systems (no particles

entered or left during the simulation) on an open, unbounded volume. We held

zr = 1∆u and varied zo between 0 ∆u and 2.5 ∆u. and za between 0.5 ∆u and

3.5 ∆u. For each setting of zo and za, we varied λs between 0.0 and 0.1. Speed

was constrained to be less than smax = 0.4∆u/∆t. We used a topological definition

of proximity; each particle interacted with the first six nearest neighbors in 2D or

the first twelve nearest neighbors in 3D, subject to a maximum sight distance of 20

∆u. In each simulation, 50 particles were simulated for 1000 steps. In each of 12

initial conditions, positions were uniformly distributed in a square or box around the

origin with identical speeds of 0.1 ∆u and headings uniformly distributed on a circle

or sphere. At each time step t, the vector velocity of each particle was updated by



36

calculating ∆v?i to optimize the objective function by adding the vector components

of position and velocity.

We observe that the type of motion exhibited by groups of particles under our

simulation model depends most strongly on the width of the flat part of the objective

function, zo, and the speed penalty, λs. The value of zo determines the spacing and

tightness of the particles in the group (Figure 3·3). As zo increases, both the average

and variance of the distance between first nearest neighbors increases, independent

of other parameters.

In simulations with a small value for zo, such as 0.0 or 0.5 ∆u, the distances

between neighbors in a group undergoing stable translational motion will be very

regular and small perturbations in the relative position between particles may lead

to large disruptions in the overall group motion (Figure 3·4, top row). For example,

if the heading of one particle on the edge of the group is not perfectly parallel to the

other particles, that particle may move slightly closer to another particle, and this will

precipitate a wide destabilization, causing many neighboring particles to change their

heading and speed, initiating large rotational motion. With a medium value of zo, such

as 1.0 or 1.5 ∆u, even though the spacing between neighbors remains very regular,

such perturbations would lead to a smaller disruption involving fewer particles, or

merely a change in the direction of translational motion (Figure 3·4, middle row). In

groups with a large value of zo, such as 2.0 or 2.5 ∆u, there is much more variability

in the distances between neighbors, and much more heterogeneity in headings and

speeds within the group (Figure 3·4, bottom row). Even when the overall motion of

the group is translational, there will be a variety of headings and speeds, due to a

looser spatial organization with holes and gaps. Changes in the spatial relationships

between particles are common and individual interactions generally will have little

observable effect on the overall motion of the group. Simulations in 2D and 3D were
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qualitatively similar (Figure 3·6), though they were not the same as measured by

statistical tests of distributions of nearest neighbor distances, kinematics, or other

properties.

zo = 0.0∆u zo = 1.0∆u zo = 2.5∆u

Figure 3·3: Representative spatial arrangements of particles, are shown from simula-
tions where zo was varied between 0.0 ∆u and 2.5 ∆u while other parameters were
held constant (λs = 0.0∆u and za = 3.0∆u). We found that the width of the flat part
(zo) of the objective function is the primary factor affecting the spatial arrangement
among particles in a simulation, whereas the length of the descending leg (za) has
less impact. When zo is small (left, zo = 0.0∆u), the lattice is tight and the spacing
is very regular. When zo has an intermediate value (middle, zo = 1.0∆u) the spacing
between particles is still very regular, but there may be some small perturbations in
the lattice. When zo is large (right, zo = 2.5∆u), the lattice is loose with holes and
irregular spacing between particles.

The speed penalty plays an important role in the type of motion. More rotational

structures require a large difference in speeds among particles. A stronger penalty

encourages translational motion. With a large speed penalty, rotational disruptions

are less common, and events that might have precipitated a large rotational disruption

with a lower speed penalty will instead lead to a brief period of disorder. Or, if the

rotational disruption occurs, it will quickly dissipate into translational motion, rather

than remaining as a fixture of the group motion.

There are different types of rotational motion. In our simulations, when zo is short

and the lattice is tight, the most common type of motion is a translating rotational

ball (Figure 3·4, top row. Figure 3·5). The center of rotation is actually on one

side of the group, not the middle, and there is an outer shell that rotates around
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zo = 0.0∆u

zo = 1.0∆u

zo = 2.5∆u

Figure 3·4: Different types of motion arise due to the rigidity of the lattice induced by
the objective function. When zo is small (top, zo = 0.0∆u), the lattice is very tight
and small perturbations in the relative position of neighboring particles can lead to
large system-wide changes in motion, usually manifested as rotation. When zo has
an intermediate value (middle, zo = 1.0∆u), the lattice spacing remains regular,
but there is enough flexibility so that small differences in the heading of neighbor
particles diffuse across the system without causing major disruptions, leading to a
greater prevalence of purely translational motion. because the rotational motion that
occurs with the tighter lattice disrupts the local heading alignment. When zo is large
(bottom, zo = 2.5∆u), the particles are loosely held together and groups of particles
will contain a heterogeneous mix of headings.

that center very quickly. Distinct subgroups alternate as the stationary portion and

outer portion, and the overall movement of the group is much faster than s? due to

a sling-shot effect. Simulations with these parameter settings often fragment in the

middle of an alternation.

Stationary rotational mills, where the overall group remains stationary and the

center of rotation is the center of the group usually occur in simulations with an in-

termediate value of zo, and the group will transition between stationary rotation and
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Figure 3·5: A group of particles undergoing simultaneous translational and rotational
motion, where the group rolls like a ball, is shown. Red and blue are used to identify
the two distinct subgroups that have emerged during this portion of this simulation.
This behavior emerges when zo and λs take on small values. The center of rotation is
on one side of the group, not in the middle, and there is an outer shell that rotates very
quickly around the group of slower-moving particles. Distinct subgroups alternate as
the stationary portion and outer portion, and the overall movement of the group is
much faster than the preferred speed, s?, due to a sling-shot effect.

pure translation if the speed penalty is low. With a larger speed penalty, these types

of rotational mills often occur early in simulations that later converge to stable trans-

lational motion. Finally, these formations also sometimes occur in simulations with

a small zo as a transitional phase between purely translational motion and combined

translation and rotation.



40

(A) (B)
Rolling ball Stationary rotation

zo = 0.0, za = 3.0 zo = 1.0, za = 2.0
λs = 0.0 λs = 0.01

(C) (D) (E)
Ordered translation Loose translation Heterogeneous translation
zo = 1.0, za = 3 zo = 2.5, za = 3.0 zo = 2.5, za = 3.0

λs = 0.1 λs = 0.05 λs = 0.0

Figure 3·6: Examples of the diverse patterns of motion found in 2D and 3D sim-
ulations performed with our FlockOpt model resulted from five different settings of
zo, za, and λs. The dots indicate the current position of the particles, and the tails
show the previous 10 time steps of motion. Formations A, B, and E are not possible
if particles are modeled to maintain constant speed. A stronger speed penalty λs
is associated with a greater prevalence of pure translational motion (C, D). When
width zo is larger (D), the spacing between particles becomes looser. With a large zo
and a low λs (E), the headings of the particles become also somewhat heterogeneous,
even as the entire group slowly translates together. Stationary rotational mills (B)
are more common when zo is larger and za smaller, and are most often seen as a
transitional rather than stable configuration.
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3.5.1 Objective Values

In our simulation studies, we computed the objective value that each particle ex-

perienced at each time step. We found that the objective values in our simulations

quickly saturated near the maximum value and remained nearly saturated throughout

the entire simulation(Figure 3·7), even though our simulations exhibited very diverse

patterns of motion (Figure 3·6). Polarization only emerged after the objective values

had saturated. This is consistent with our theoretical result, which predicts that ve-

locity matching only arises when no improvement in the objective value is possible.

Our experimental results demonstrate that this is the most common case.
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(A) (B)
Rolling ball Stationary rotation

(C) (D) (E)
Ordered translation Loose translation Heterogeneous translation

Figure 3·7: The average local polarization computed for each frame for one set of ini-
tial conditions from five different parameter settings are shown. In our simulations,
the objective values typically saturated within 20 time steps, but it took longer for
local heading alignment to become established. Even in simulations exhibiting peri-
odic decreases in local polarization due to rotational motion (A and B), the objective
values remained nearly saturated throughout the simulations.
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3.6 Coupling among spatial variation, heading, and speed

3.6.1 Local Heading Alignment and Spatial Variation

One of the remarkable things about natural systems that has been reflected in models

of collective motion is the way that entities move together. Previous scientists have

focused on the extent to which the headings of entities in a system are aligned. To

describe the local alignment of heading vectors, we use local polarization as defined

by Mishra et al. (2012)

ξi =
1

|Ni|

∣∣∣∣∣
∣∣∣∣∣∑
k∈Ni

vk
||vk||

∣∣∣∣∣
∣∣∣∣∣ . (3.16)

Due to our analysis demonstrating that velocity matching follows from maintain-

ing relative position, we suggest also considering how relative position changes over

time. We define the scalar quantity spatial variation, which is computed over a small

time window τ

ψi =

√
1

|Ni|
∑
k∈Ni

||∆xk −∆xi||2, (3.17)

where ∆xi = (xi [t+ τ ] [t+ τ ]− xi[t]).

For our simulations, local polarization, ξi, and spatial variation, ψi, were computed

over a neighborhood of radius 2.25 ∆u, approximately twice the average distance be-

tween nearest neighbors across all of our simulations. Spatial variation was computed

over a window of τ = 1∆t. For our analysis of observations of bats, local polarization

and spatial variation were computed over a neighborhood with a radius of 2 meters,

twice the average distance between first nearest neighbors over all of our data. Spatial

variation was computed over a time window of 100 ms, approximately one wingbeat

(Norberg and Norberg, 2012).

Under our model, we are able to simulate motion patterns with a variety of local

polarization signatures. Even though the bats seem to fly in organized, highly coor-

dinated formations, the headings of the bats and the distances between neighbors are
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actually somewhat heterogeneous, and are similar to systems from our simulations

exhibiting looser formations (Figure 3·6, D and E). In our simulation study, we find

that systems with higher polarization generally exhibit less spatial variation, although

this effect is less strong when the variance of speed is larger, compared with the mean

(Figure 3·6 A – E). Similar trends are present in our observations of bats (Figure

3·6 F–J). Emergence bursts from late evening exhibit a somewhat different signature

than others (Figure 3·6, H and J).

For any particular set of headings, speed differences can either lead to increased

spatial variation, if the speeds are random, or decreased spatial variation, as in a

group of particles that are rotating. In our simulation model, we know that the speed

and heading of particles are coupled through a dependence on maintaining relative

position. In other variable-speed simulation models, heading and speed are decoupled

because they are determined by separate procedures.

To understand which mechanism might be at work in the behavior of T. brasilien-

sis, we developed a non-parametric, stochastic procedure to forcibly decouple the

speed from the heading by permuting the speeds among bats present at each mo-

ment in time while maintaining their headings. This strategy obviated the need to

choose a parametric distribution for the speed, or to consider how the parameters of

the speed distribution changed over time. We measured spatial variation in the data

as observed, ψ, and under this permutation, ψ̃. For every entity in the system, we

replaced ∆xi with ∆x̃i = ||∆xj|| ∆xi

||∆xi|| where j was chosen with uniform probability,

without replacement, from any of the entities present at time t. Then,

ψ̃i =

√
1

|Ni|
∑
k∈Ni

||∆x̃k −∆x̃i||2. (3.18)

If the speed and heading of individual particles were separable, then the spatial

variation under both conditions would be similar. To demonstrate this, we gener-
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ated sets of random particles where headings and speeds were drawn independently

from normal distributions θi ∼ N (0, σθ) and si ∼ N (0, σs). The displacement was

computed as ∆xi = si[cos(θi), sin(θi)]. We used a variety of values for σθ and σs.

Then, we computed spatial variation as initially generated, ψi, and after permuting

the speeds, ψ̃i. As anticipated, across a variety of parameter values for the variability

of heading and speed, the distributions of ψi and ψ̃i were similar (p� 0.05, measured

by Kolmogov-Smirnov (KS) tests).

In data from our simulations, where we know that headings and speeds are cou-

pled, distributions of ψ and ψ̃ were not similar across all parameter sets (p� 0.01),

and the mean of ψ̃i was over 40% larger than ψi for some patterns of motion (Figure

3·9 A). In simulations with average local polarization and speed variability (coefficient

of variation, σs/µs) similar to the bats, the increase was between 3.8% and 8.6% (e.g.

Figure 3·9, B).

In natural data of bats in flight, the distributions of ψ̃i and ψi were not similar

(p � 0.01 for all video segments). The increase in the average spatial variation

was between 3.4% and 6.0% (Figure 3·9). Based on these results, we conclude that

individual speed and heading are coupled in the motion of groups of bats.
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(A) (B)
Rolling ball Stationary rotation

σs/µs = 0.54 σs/µs = 0.40
(C) (D) (E)

Ordered translation Loose translation Heterogeneous translation

σs/µs = 0.16 σs/µs = 0.16 σs/µs = 0.62

(F) (G) (H)
Bamberger Bamberger Bamberger

July 23, 8:31 PM July 24, 8:20 PM July 26, 7:42 PM

σs/µs = 0.17 σs/µs = 0.19 σs/µs = 0.20
(I) (J)

Bamberger Davis
July 24, 8:55 PM Jul 22, 9:08 PM

σs/µs = 0.16 σs/µs = 0.18

Figure 3·8: Joint distributions of local polarization and spatial variation are shown
for five simulation parameter sets (top row) and five video segments of bat flight
(bottom row). In both simulated data and natural data, spatial variation decreases
as polarization increases. When the speeds of particles in simulation is more variable
(A and E), the distribution spatial variance conditioned on the polarization is wider.
In recordings of bats taken later in the evening (H and J), there is larger spatial
variation.
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(A) (B)
Rolling ball Stationary rotation

increase: 40.5% 17.7%
N=598,800 598,800

(C) (D) (E)
Ordered translation Loose translation Heterogeneous translation

5.5% 5.3% 26.0%
598,800 598,800 598,800

(F) (G) (H)
Bamberger Bamberger Bamberger

July 23, 8:31 PM July 24, 8:20 PM July 26, 7:42 PM

increase: 4.6% 4.5 % 4.6%
N=89,327 370,798 260,662

(I) (J)
Bamberger Davis July 24, 8:55 PM Jul 22, 9:08 PM

3.4% 3.5%
171,951 2,526,723

Figure 3·9: The distributions of spatial variation, as observed (ψ, light gray) and

after speed and heading had been forcibly decoupled (ψ̃, dark gray), are shown for five
FlockOpt simulation parameter sets leading to coherent translation (top), and for five
video segments of the flight of T. brasiliensis (bottom). In all cases, the distributions

P (ψ) and P (ψ̃) were not similar, according to Kolmogorov Smirnov tests (p� 0.01),
and the average spatial variation was larger after speed had been decoupled from
heading. In some simulations (A and E), the increase in spatial variation was very
large. The increases ∆ψ observed when decoupling the speed and heading of the bats
(3.5%–4.6%) were slightly smaller than the increases observed in simulations with
similar average local polarization and variability in speed (3.8%–8.6%).
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3.7 Comparison with earlier models

We were inspired by zonal models (Couzin et al., 2002), and our optimization-based

methodology has conceptual similarities to potential field models (Reif and Wang,

1999).

A critical distinguishing feature of our algorithm is choosing the course of action

for each particle by optimizing the objective function with respect to the anticipated

future relative position, x̂i,k. With a large step size, this is crucial for convergence of

the objective values and the emergence of ordered motion (s? and smax were set to

0.1 ∆u/∆t with zr = 1∆u for the experiments described earlier in this chapter). To

illustrate this, we carried out a simulation study without the predictive aspect. We

chose two parameter sets using the same neighbor preference parameters (zo = 1.0∆u

and za = 3.0∆u) and two speed penalties (λs = 0.0 and λs = 0.1). Under the fully

predictive model, when λs = 0.0, the simulations tended to exhibit a mixture of

rotational and translational motion, whereas when λs = 0.1, the motion was purely

translational, following the initial stabilization period.

We varied the effective step size over five orders of magnitude by reducing the

maximum speed smax and preferred speed s?. Simulations were run for 5,000 steps

by calculating ∆v?i to optimize
∑

k∈Ni
Φ(xi,k − ∆ṽ∆t) instead of

∑
k∈Ni

Φ(x̂i,k) =∑
k∈Ni

(xi,k + vi,k∆t − ∆ṽ∆t). We found that without a speed penalty, with large

step sizes, such as smax = 0.1∆u, the objective values failed to stabilize (Figure

3·10, A), which precluded the emergence of ordered motion. With small step sizes,

the objective values did eventually converge, but the terminal values were lower than

with the fully predictive model, and the polarization of particles within the simulation

remained low (Figure 3·10, B). With the damping effect of a penalty on deviation from

a preferred speed, the objective values converged slowly for all step sizes (Figure 3·10,

C), although the steady state objective values were slightly lower than with the fully
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predictive model. Even though the objective values converged and this parameter

setting was found to lead to purely translational motion in the fully predictive case,

ordered translation did not stabilize in the first 5,000 steps of the simulation, versus

less than 200 steps with a fully predictive model with a large step size (Figure 3·10,

D).

In potential field models, the potential experienced by each particle is optimized

by performing gradient descent of the potential field, which leads to averaging the

responses to each neighbor individually in order to determine the final course of

action. We made the important design decision to use hard constraints instead of

very large potentials to express undesirable behavior, and so we used constrained

optimization, implemented by sequential quadratic programming, which is somewhat

less susceptible to local maxima than gradient ascent.

Our choice has led us away from averaging the responses to each neighbor indi-

vidually and towards optimizing the joint objective function holistically. This design

decision provides an alternative to the averaging approach used by most other models.

To explore the importance of this decision, we carried out a simulation study with a

hybrid model where the objective function was optimized for each neighbor individu-

ally to obtain ∆v?i,k = arg max Φ(x̂i,k; θ), then, to determine the final course of action,

the responses to each neighbor individually were averaged as ∆v?i =
∑

k∈Ni
∆v?i,k.

Even though simulations with this hybrid model developed heading alignment, we

found that the objective values converged more slowly and the terminal values were

lower with the averaging approach (Figure 3·11). This was manifested in simulations

by less ordered spatial arrangements of particles than with our original model, given

identical parameters and initial conditions.

As we have demonstrated, speed and heading are coupled by a dependency of

relative position. Our model controls variations in speed in two ways: by using
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(A) (B)
λs = 0.0 λs = 0.0

(C) (D)
λs = 0.1 λs = 0.1

Figure 3·10: We carried out a simulation study to examine the effect of the prediction
step in our algorithm. For two parameter sets, with zo = 1.0∆u and za = 3.0∆u,
and λs = 0.0∆u, (top) and λs = 0.1 (bottom) we show the evolution of the average
objective values (left) and the local polarization (right) experienced by all particles
in simulations carried out with one set of initial conditions. We varied the effective
step size by reducing the maximum speed smax (all panels) and preferred speed s?

(C and D). Under the fully predictive FlockOpt model (red lines) the objective val-
ues quickly converge in both circumstances. In simulations without prediction, the
objective values are highest in simulations with the smallest step sizes (blue lines).
The objective values from simulations without a speed penalty (A) do not converge
when the step size is large (light gray lines); when the step size is small, the objective
values converge but it takes many more steps (dark gray and blue lines). Even when
the objective values converge, the emergence of locally aligned motion takes longer
(B and D).

penalty terms in the objective function and by defining a constrained optimization.

We have found that relying on penalties produces more Gaussian-like distributions of

speed, and that constraints can lead to edge effects at the boundaries.
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Rolling ball Ordered translation Heterogeneous translation
zo = 0.0, za = 3.0, zo = 1.0, za = 3.0, zo = 2.5, za = 3.0,

λs = 0.0 λs = 0.1 λs = 0.01

Figure 3·11: We investigated the impact of computing the responses to each neighbor
individually and averaging the results, as in many other models of collective motion.
For three different parameter sets known to lead to three different types of motion
patterns under a pure FlockOpt model, we show, for the pure model (solid lines)
and hybrid model (dashed lines), the average objective values (top) and the average
local polarization, ξ (bottom) experienced by all particles in one simulation with one
set of initial conditions. In the hybrid model (dashed lines), the objective values
converged more slowly to lower terminal values (top row) than in a pure FlockOpt
model (solid lines). Despite the lower objective values, interesting patterns of ordered
motion emerged that were different from the patterns of motion of the pure FlockOpt
model under identical parameters and initial conditions (bottom row).

3.8 Strategies for Model Selection and Parameter Fitting

In order to understand the behavior and evolution of animals through computational

modeling based on the FlockOpt paradigm, it is important to be able to choose

a parametric form for the objective function and constraints, and to estimate the

associated parameters that best predicts the behavior of real animals. In real animals,

the objective function might be computed over variables we are unable to observe,

such as neighbor visibility or aerodynamic considerations. We had mixed success

achieving a match between a simulation model and natural data of T. brasiliensis

(Section 3.8.5). Here, we discuss parameter fitting approaches that have worked in



52

our simulation studies (Section 3.8.2 and Section 3.8.3), which may point the way

towards future techniques for performing model selection and parameter estimation

based on natural data, using the FlockOpt paradigm.

3.8.1 Related Work

The fit between a model and data of animals may be considered in different ways. One

point of view is to evaluate simulations performed with a model based on emergent

characteristics, such as group cohesion and the type of motion (disordered, rotation,

translation), as compared to the emergent characteristics of the natural system. We

observe that in natural systems, such as large groups of bats, it is normal for pieces of

the group of emerging bats to break off, so maintaining perfect group cohesion is not

necessarily a prerequisite for a model that may reflect the natural behavior of animals.

A qualitative match between the behavior of particles in simulations and animals in

a group is necessary but not sufficient. It has been shown (Gautrais et al., 2012) that

many different types of models and parameter settings can lead to emergent behavior

that is similar.

A second, more detailed point of view, is to examine quantitative, aggregate prop-

erties of the simulated and natural systems, as done by Ballerini et al. (2008), Katz

et al. (2011), Lukeman et al. (2010) and Herbert-Read et al. (2011), although Mann

et al. (2013) observed that many different models and parameters may lead to similar

statistics.

As a third point of view, some authors (Eriksson et al., 2010; Mann, 2011; Mann

et al., 2013; Bode et al., 2011) have suggested that computational models should also

be able to accurately predict the detailed behavior of individual animals. Eriksson

et al. (2010) proposed using a “force matching” approach where the behavior of each

animal at each moment in time is predicted by a behavioral model, and then the
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acceleration actually experienced by each animal is compared to the acceleration

that would be required to accomplish the course of action prescribed by the model.

Using this approach, they were able to correctly discern between two models using

different proximity definitions, even though the simulated study systems had similar

aggregate statistics. Mann et al. (2013) suggested that in order to determine the

consistency of a model with data, it is necessary for the model to match in different

ways simultaneously.

3.8.2 Parameter estimation via histogram matching

We evaluated whether or not it was possible to infer simulation parameters by com-

paring distributions between simulations of first nearest neighbor distances, speed,

and local polarization. Our experiment only concerned parameter estimation, not

model selection, and so we used the parametric form of the objective function used to

generate the simulations. Using the simulation data from our study in Section 3.5, we

computed distributions of first nearest neighbor distances, speed, and local polariza-

tion. We computed the similarity between each simulation and all other simulations

by computing the Earth-mover’s distance (EMD, a measure of similarity between

histograms) between the histograms of each quantity.

We found that by comparing the distributions of the distances between first nearest

neighbors, it is generally possible to determine zo accurately (Figure 3·12, column A).

This is true even when the assumed speed penalty is incorrect (Figure 3·12, column

B), given the reasonable assumption that za is larger than zo (Figure 3·12, column

B, bottom). Without this assumption, incorrect neighbor preference parameters may

lead to a better match than the correct parameters (Figure 3·12, B, bottom, zo = 2.0

is correct, but the best match is zo = 1.5, with an incorrect speed penalty).

If the presumed speed penalty is incorrect, comparing histograms of speeds will
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not lead to the true neighborhood preference parameters, zo and za (Figure 3·12, C,

top, zo = 1.0 smallest distance, but zo = 0.5 is the correct value ). We found that

local polarization was not a useful feature for matching because a wide variety of

parameter sets that lead to coherent translation all lead to very similar distributions,

so the distances among the distributions are very small (Figure 3·12, D).

Once the parameters of the neighbor preference function, zo and za, have been

matched, the distribution of nearest neighbor distances is surprisingly discriminative

with respect to the speed penalty (Figure 3·13, left), however, there may be multiple

local minima (Figure 3·13 left, bottom). We found that some neighbor preference

parameters will encourage rotational structures, while others will not, even when λs

is the same. The distributions of speeds from simulations with rotational structures

tend to have larger variance, therefore, the distribution of speeds is not necessarily

independent of the neighborhood preferences, so a reasonably good estimate of the

neighborhood parameters is necessary before attempting to match the speed penalty.

Given correct neighbor preference parameters, inferring the speed penalty from a

distribution of the speeds is straightforward (Figure 3·13, right).

Based on our findings, we suggest that parameter estimation via histogram match-

ing might proceed effectively using an iterative approach, alternating between infer-

ring the neighborhood preference parameters and the kinematic parameters. We

suggest that evaluating the match between a study system and a bank of simulated

systems based on distributions of speed or neighbor distances will help to restrict

the parameter space to search for the best fit parameters in natural data, and pos-

sibly provide multiple starting points for optimizing parameters via a detailed fit, as

described below.
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(A) (B) (C) (D)
K=1 distances K=1 distances Speed Local Polarization

correct λs incorrect λs incorrect λs incorrect λs

Figure 3·12: For simulations performed with two sets of parameters, we show the
goodness of fit between a subset of other simulations based on the Earth-mover’s
distance between histograms of distances between nearest neighbors (columns A, B)
speed (C) and local polarization (D). Low values (dark) are desirable and high values
(bright) are undesirable. In each grid, each box depicts the Earth-mover’s distance
between the histograms derived from simulations with true parameters compared
with simulations with other parameters. Values of zo vary along the rows and values
of za vary along the columns, so that each grid is able to display the goodness of
fit between simulations with the true parameters and all other parameters with a
given speed penalty. The true values of zo and za are indicated with a dark red
box. In the top row, the true parameters are zo = 0.5∆u, za = 3.0∆u and λs =
0.1. In the bottom row, the true parameters are zo = 2.0∆u, za = 3.0∆u and
λs = 0.05. In column A, the histograms of nearest neighbor distances are compared
with other simulations with a speed penalty matching the true value. In column
B, histograms of nearest neighbor distances are conpared with simulations with a
different speed penalty. In columns C and D, the histograms of speed and local
polarization respectively are compared with other simulations using a speed penalty
that is different from the true value. When the speed penalty matches, minimizing
the Earth-mover’s distance between histograms of nearest neighbor distances will lead
to the correct values for zo and za (column A). Even if the assumed speed penalty is
incorrect (column B), it is generally possible to correctly match the value of zo, though,
it may be necessary to make reasonable assumptions about za (B, bottom row) in order
to correctly infer zo. If the neighborhood parameters are incorrect, then matching
histograms of speed will not lead to the correct values (column C). Local polarization
histograms are not a discriminative feature for inferring model parameters, since
many simulations exhibiting coherent translation lead to very similar histograms, so
the distance between histograms from parameters with different parameters is small
(D).
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K=1 distances Speed

Figure 3·13: The Earth-mover’s distance between the distributions of nearest neigh-
bor distances (left) and speed (right) derived from simulations can be used to infer the
parameters of the speed penalty λs parameter. In the top row, the true parameters
are zo = 0.5∆u, za = 3.0∆u and λs = 0.1. In the bottom row, the true parameters
are zo = 2.0∆u, za = 3.0∆u and λs = 0.05. Using the true values of zo and za,
the Earth-mover’s distance between the distributions of nearest neighbor distances
(left) and speed (right) are plotted for other simulations with the correct neighbor-
hood parameters, but different speed penalty values. If the neighborhood preference
parameters are correct, then the nearest neighbor distance histogram is informative
with respect to the correct speed penalty (left column), though there may be multiple
local minima (bottom, left). If the neighborhood parameters are correct, then infer-
ring the correct speed penalty by matching histograms of speeds is straightforward
(right column).

3.8.3 Parameter estimation and model selection via model prediction

Instead of estimating parameters by comparing histograms between simulations, a

detailed fit may be performed by using a computational model and associated param-

eters to predict the motion of individual animals. We found that the force-matching

approach espoused by Eriksson et al. (2010) contained an unnecessary level of indirec-

tion that was sensitive to the exact details of how the acceleration was computed, and
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so we adopted a position matching approach. Given a (simulated or natural) study

system and a behavioral model with associated parameters to compare, we used the

current state of the system in order to predict a change in velocity ∆v?i for each entity.

Then, the predicted position of each particle was computed as xi + vi + ∆v?i . This

prediction was compared with the actual position of the entity in the study system

at the next time step. The goodness-of-fit measure is the RMSE of the differences

between the predicted and observed positions. This approach can also be used to

evaluate the goodness of fit with other types of models, such as a constant velocity

model (Section 3.8.4). Performing the required predictions in order to evaluate this

score for one model and one set of parameters requires a similar amount of compu-

tation as that required to run a simulation. In the case of a FlockOpt model, the

behavioral model consists of the objective function and constraints.

To better understand the way the position matching goodness-of-fit measure be-

haves, as study systems, we selected 12 sets of simulated systems from our simulation

study that led to archetypal patterns of motion, using a small selection of parameter

values. Holding za = 3∆u, we varied zo between 0 and 2.5 ∆u. Holding zo = 1∆u,

we varied za between 1 and 3 ∆u. For two sets of zo and za, we varied λs between 0.0

and 0.1. For each of these simulation sets, we evaluated the goodness of fit between

the original simulation data and the same model with different parameters using the

position matching approach.

Due to the computational expense, we restricted the explored range of parameters

for comparison to the parameter space immediately surrounding the true parameters

that generated the simulation. We found that, similar to the histogram matching

approach, an incorrect value of zo has the largest impact in the prediction error, often

on the same order as the maximum allowable magnitude of the change in velocity,

vmax. A value that is too small is worse than a value that is too large, especially when
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the true value of zo is large. An incorrect value of za is less detrimental, typically on

the order of the value of the preferred speed, s?. The speed preference penalty λs has

the least impact of the three parameters, but the impact is larger when the spacing

between particles is looser due to larger values of zo.

With this method for computing a goodness-of-fit score, parameters of a model

can be estimated by repeatedly comparing the study system with a behavioral model

using different parameters. We suggest that for this approach to work well and

be computationally feasible, the initialization needs to be near the correct starting

point, with bounds to restrict the search space to some reasonable values. Because

our model is not linear, we are unable to use simple linear regression to infer the

parameters, and so we must use an iterative optimization algorithm. One possibility

is to use gradient ascent. We do not know if the error surface over the parameter

space is convex, or if there are many local minima, so if it is not possible to restrict

the search space, we favor an algorithm like simulated annealing. We have found that

sometimes evaluating a set of parameters with more than one incorrect value can

sometimes match better than a parameter set with a single incorrect value, due to

the existence of critical points in the parameter space, where the behavior of simulated

systems changes dramatically with a small change in parameters, so we suggest using

multiple starting points with any optimization algorithm.

In this chapter, we have suggested an objective function based on the difference

of two sigmoids, with appropriate constants, but other forms are possible e.g. a

Gaussian. If the assumed parametric form of the objective function does not match

the study system, then estimating the best fit parameters may not lead to useful

insights about animal behavior, and so it may be necessary to fit parameters of

multiple models in order to gain insight into animal behavior.
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3.8.4 Generic models

Since the double-sigmoid neighbor preference function is very specific, we tried to

develop a small set of more generic models that would enable us to learn basic

things about a system without trying to guess the parametric form of the objective

function or constraints. There were four generic models. 1.) a constant-velocity

model, where particles simply continued moving with their current velocity. 2.)

a velocity averaging model, where particles adopted a velocity equal to the aver-

age velocity of their neighbors. 3.) a position-maintenance model, where parti-

cles tried to minimize the change in relative position between themselves and their

neighbors, formulated in the FlockOpt framework by defining the objective function

O = −
∑

k∈Ni
(||x̂i,k − xi,k||2), and 4.) a distance-maintenance model where particles

tried to minimize the changes experienced in the distances between themselves and

their neighbors, also formulated in the FlockOpt framework by defining the objective

function O = −
∑

k∈Ni
(||x̂i,k|| − ||xi,k||)2.

We found that when zo was fairly small and the spacing between particles in

simulations was very tight, then a constant velocity model performed the worst of all

of the generic models; the RMS position matching error (as described in Section 3.8.3)

was as much as twice as large as the error associated with the position-maintenance or

distance-maintenance models. In simulations with rotational motion, the predictions

of the velocity averaging model were similar to the constant velocity model, and

much less accurate than the distance-maintenance and position-maintenance models.

In simulations with stronger tendencies towards translational motion, the position

matching error of the velocity averaging model was more similar to the position and

distance maintenance models than the constant velocity model. For values of zo and

za that led to loose spacing between particles, the RMS position matching error of

the constant velocity model was substantially lower than the error of any of the other
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generic models, which were three times larger.

When we evaluated the goodness of fit between simulated study systems and the

generic models described in this section, we used the neighborhood definition that

was used to generate the simulation. For example, simulations from our simula-

tion study performed with the FlockOpt model were carried out in 2D using the six

nearest neighbors as the neighborhood definition, so when we compared those study

systems with the velocity averaging model, we averaged the velocities of the first six

nearest neighbors. For the position-maintenance and position-maintenance models

formulated in the FlockOpt framework, we also used the same kinematic constraints

(restricting ||∆ṽ|| to 0.4 ∆u/∆t), so we do not know if any of the latter three models

would be useful for inferring the correct neighborhood definition or kinematic con-

straints, in the absence of better knowledge about the true model and associated

parameters.

3.8.5 Matching simulation parameters with natural data

To fit a behavioral model to natural data, several aspects of the system must be con-

sidered. The first thing to consider is the prediction interval. Mann (2011) observed

that when simulation data were interpolated or decimated, recovering the true pa-

rameters of the simulation became more difficult. It is not known whether to use an

interval based on the reaction time of an animal under other conditions, or how to

incorporate knowledge of an animal’s locomotion. We speculate that different types

of interactions may happen at different time scales e.g. moving away from imminent

collisions happens very quickly, but moving towards the group after drifting away

may happen more slowly.

We tried fitting models to bats by using prediction intervals of one or two wing

beats (100 ms or 200 ms). When we tried to fit a FlockOpt model to the flight of
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bats, using a double-sigmoid neighbor distance preference function, we found that

the optimization typically led to very large values of zo, indicating a large range of

equally preferable distances. The practical implication of this is that the “best fit”

models simply degenerated into constant velocity models.

Several factors may have contributed to our difficulties fitting FlockOpt model pa-

rameters to observations of bats. Most obviously, our assumed parametric form may

be a mismatch with what the bats are actually doing. More subtly, our prediction

interval may have been incorrect or our assumption that there is a single prediction

interval may be inconsistent with animal behavior. The correct neighborhood defini-

tion is unknown. The bats may pay more attention to other bats that are directly

in front of them, for example. It may also be that the column where we observed it,

very close to the entrance of the cave, is not yet in a steady state and so our assump-

tion that bats might try to maintain neighbor distances or relative positions may be

invalid. Finally, occlusion may play an important role, since bats may be reacting

to the actions of neighbors that are not observable with our image processing and

tracking pipeline.

We also tried fitting all of the generic models described above to bat behavior, and

we found that the constant velocity model was the best predictor. Of the other models,

the prediction error of the position-maintenance model was more than 25% better

than the velocity averaging model on one of our datasets. The position maintenance

model was slightly more accurate than the distance maintenance model, suggesting

that the neighbor position function for bats might be anisotropic.

3.8.6 Parameter estimation via objective values

From our simulation studies, we have come to understand that even when the behavior

of entities in the context of a system is observable, that does not necessarily give
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good insight into what the entities “want” (the circumstances that maximize their

individual objective value) or what they would do outside of that context. There is

a complex interaction among the desires of individual particles, which leads to group

behavior that may be very different from desired individual behavior.

For example, in our simulations, we used objective functions specified over neigh-

bor distances, with long flat parts in the middle, but the neighbor distributions that

we observe in the simulations generated with those objective functions are much more

concentrated than the input, having modes very close to the edge of the ascending leg

of the function and small variances. Consequently, directly comparing the shape of Φ

and the distribution of first nearest neighbors is not informative about the parameters

that drove the simulation.

Another approach that is ineffective is to select model parameters to maximize

the objective values achieved by all entities in the system. Because the distances

between nearest neighbors are generally concentrated near the edge of the ascending

leg of the Φ function, the tail of the distribution will contribute to higher objective

values when zo is large, and so objective values computed with larger values of zo will

almost always be larger than smaller values.

3.9 Discussion

We chose to use six neighbors in 2D and twelve neighbors in 3D because these are

the numbers suggested by theory of sphere packing. In other experiments, we have

found that in general, when the neighborhood definition is expanded to include more

neighbors, generally, the spacing between particles decreases, whereas when the neigh-

borhood definition is restricted to include fewer neighbors, groups of particles become

more prone to fragmentation.

In our simulations, we have chosen not to use a blind angle in the definition of
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proximity because real animals are able to move their heads in order to see things

all around them. Furthermore, even if neighboring entities cannot be seen, it may be

possible to hear them, and so the range of an animal’s perception may be larger than

that suggested by their field of view. Varied interactions between particles due to ease

of perception in different relative locations could be incorporated either by reintro-

ducing a blind angle into the neighborhood definition, thus removing imperceptible

neighbors from consideration. An alternative approach would be to define an objec-

tive function that weighted the influence of neighbors in different relative locations,

for example by constructing an objective function such as O =
∑

k∈Ni
γi,kΦ(||x̂i,k||)

where the weights, γi,k are calculated based on the viewing direction between the two

particles.

When a particle is not in a stable state, the quadratic optimization may consider

multiple equally good solutions. The solution that is ultimately chosen will depend on

the implementation of the algorithm that is used. Any criteria that makes one change

in velocity more favorable than another should be encoded with appropriate penalty

terms in the optimization. We used a penalty against the deviation of the particle’s

movement speed from a preferred speed. Another penalty could be added to penalize

the magnitude of the change in velocity, which would favor smaller changes. We

considered but did not use such a penalty because it did not alter the overall patterns

of motion and led to increased group fragmentation when particles were initialized

randomly, even with small values of λ. If particles were initialized in a different way

that was closer to a configuration where the objective values were saturated, a penalty

against ||∆ṽ|| might not have as much of an adverse effect on group cohesion.

The possibilities for implementing variations of our model are endless. In addition

to objective function terms or constraints based on kinematics of individual particles

or their neighbors, terms could be incorporated to reflect interactions in heterogeneous
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systems, goals, walls, and obstacles. To represent interactions in a heterogeneous

system, the objective function would require terms with weights based on the type of

the neighbor. Environmental obstacles, such as walls are probably best modeled as a

combination of both constraints, to prevent particles from moving through the wall,

and penalties, to encourage obstacle avoidance.

3.10 Conclusion

The FlockOpt model is rich paradigm for modeling collective motion. We have se-

lected one important, previously unexplored way that the motion observed in our

simulations is similar to the observed behavior of the bats. The purpose of this work

is to introduce a new class of model for researchers to choose from as they work to un-

derstand animal behavior, and to illustrate the insights into the fundamental nature

of collective motion that this model affords us. Simulations performed with our model

reflected a great diversity of patterns of motion, even when only three parameters (zo,

za, and λs) were varied. Our model is promising because it it addresses important

shortcomings that have been discovered in existing models, such as regulating speed

and combining the influences of neighbors.

Because our model is able to express variability in speed, simulations with our

model exhibit patterns of motion not possible with earlier, constant-speed models.

We presented evidence that our model captures a potentially important aspect of

natural behavior, the coupling between speed and heading through a tendency to

maintain relative positions, and our analysis of observations of bats confirms that a

similar behavior may exist in the flight of gregarious bats. Our explanation leads to

an important insight about the dominant modes of group movement in a variety of

natural systems, such as translating flocks and rotational mills: Euclidean transfor-

mations that maintain relative position are composed of rotations and translations.
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Rule-based models of collective motion became popular in the early 1980’s and

spawned three decades of research in diverse areas, including computer graphics,

biology, physics, robotics, and civil engineering. Just as the classic zonal models gave

rise to over 30 years of insights and countless variations that reflected different aspects

of natural behavior, we expect that the FlockOpt paradigm will provide a new avenue

for exploring collective motion which will be applicable in all of the domains where

models of collective motion are currently employed.
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Chapter 4

Analysis of behavior of bats

4.1 Introduction

We have studied the behavior of Tadarida brasiliensis in the emergence column, based

on the hundreds of thousands of trajectories that we have reconstructed, containing

millions of data points obtained by analyzing 70 minutes of video taken over four

nights at two large maternity colonies. In particular, we have focused on charac-

terizing the most frequently observed patterns of motion and confirming or refuting

assumptions typically found in models of collective motion, such as attraction and

repulsion.

We captured eleven video segments over four days at two colonies. The bats

emerged in dense columns with multiple bursts of activity separated by long periods

of quiet, consistent with the observations of Betke et al. (2008). Generally, each

video segment captured a different emergence burst. Each video segment resulted in

a dataset of reconstructed trajectories.

4.2 Bat kinematics

The object locations in each track were filtered with a Kalman filter to mitigate the

effects of reconstruction uncertainty. We observed periodic motion with a dominant

frequency of approximately 10 Hz. Since this frequency is consistent with the flapping

frequency of Tadarida brasiliensis, we further applied a box filter of 100 ms to mitigate
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this effect when computing higher moments of the tracks. A longer filter may have

damped this periodic motion more effectively, but we needed to balance the length of

our filter with the percentage of data lost due to inadequate support when computing

acceleration. The average displacement between points in the original tracks and

tracks smoothed for flapping was less than 1 cm. We used the smoothed tracks when

computing kinematics and the original tracks when computing spatial relationships.

Velocity and acceleration were computed using a window length, τ , of approxi-

mately one wing-beat, using the central differences as follows:

vi [t] =
1

τ
(xi

[
t+

τ + 1

2

]
− xi

[
t− τ − 1

2

]
), (4.1)

ai [t] =
1

τ 2
(xi [t+ τ ] + xi [t− τ ]− 2xi [t]). (4.2)

In order for the computation of the acceleration vector to be valid (computed with

appropriate support from the smoothed track) a data point at t±2τ must be present

in the track, so that the track positions used to compute the acceleration vector can

be filtered appropriately. Data points where the acceleration could not be computed

with the required support were discarded in our analysis. We used over 15 million

valid data points from the Davis site and between 1 million and 2.5 million valid data

points from each of the three nights at the Bamberger site.

4.2.1 Acceleration decomposition

We examined the motion of bats in a number of different ways. As described above,

velocity, vi and acceleration, ai, were computed using a window length, τ , of approxi-

mately one wing-beat, using central differences (Equations 4.1 and 4.2). The heading

of the bat is the velocity of the bat normalized to unit length, hi [t] = vi

||vi|| .
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The instantaneous angular change in velocity, or turning angle, was computed as

θi =
1

τ
arccos

(
xi [t]− xi [t− τ ]

||xi [t]− xi [t− τ ] ||
· xi [t+ τ ]− xi [t]

||xi [t+ τ ]− xi [t] ||

)
. (4.3)

Note that this definition conflates changes in heading to the right and left with changes

in heading up and down. We describe our remedy for this below.

The instantaneous speed change was computed as

∆si =
1

τ
(||xi [t+ τ ]− xi [t] || − ||xi [t]− xi [t− τ ] ||) . (4.4)

Note that the definitions of the turning angle and speed change given here are

centered at time t, whereas computing the change between the velocity vectors vi [t]

and vi [t− 1] would lead to a value that was delayed in time by τ
2

since they are

each computed using central differences. For notational convenience, we now drop

the t subscripts and quantities such as vi will be assumed to occur at time t unless

otherwise denoted.

As written here, the acceleration is a vector quantity, and so we decompose the

acceleration into three components. This is in the same spirit as Katz et al. (2011),

who performed a similar decomposition when studying the 2D motion of fish. We have

adapted their thinking for our 3D analysis. We use a coordinate system defined where

the X axis is parallel to the heading, the Y axis is a vector over the left wing, given

by the cross product between the heading and the unit vector opposite of gravity, ug,

and the Z axis is the cross product of the X and Y axes (similar to, but not necessarily

parallel to ug, if ug and hi are not perpendicular).

The component of the acceleration parallel to the heading is given by

a
(‖)
i = ai ·

vi
||vi||

= ai · hi. (4.5)
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Since the bats move in 3D, there are two components of the acceleration perpen-

dicular to the heading. We separate these into a turning acceleration, a
(⊥)
i , corre-

sponding to movement left and right, and a pitching acceleration, a
(`)
i , corresponding

to movement up and down. Due to the right-handed coordinate system, the turning

acceleration a
(⊥)
i is positive to the left, and negative to the right. The axis û

(Y )
i points

roughly over the left wing, and û
(Z)
i points roughly up. The two axes perpendicular

to the heading are given by

û
(Y )
i = ug×hi

||ug×hi||

û
(Z)
i =

hi×û
(Y )
i

||hi×û
(Y )
i ||

.
(4.6)

The turning acceleration and pitching acceleration are the projections of the ac-

celeration vector onto the respective axis, computed as

a
(⊥)
i = ai · û(Y )

i , (4.7)

and

a
(`)
i = ai · û(Z)

i . (4.8)

Their units are m/s2, just like the units of the full acceleration vector.

We chose to allow û
(Z)
i to deviate from gravity so that the acceleration components

would correspond to the deviations from the current heading. (If the heading of the

bat is already pointed up, continuing in exactly that direction will yield û
(Z)
i = 0.)

Katz et al. (2011) described a
(‖)
i as a “speeding force,” but this nomenclature is

slightly misleading, since this component of the acceleration may be negative if the

bat turns while maintaining a constant speed. For this reason, we generally prefer to

look directly at the speed change ∆si instead of a
(‖)
i .
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4.2.2 Analysis of bat kinematics

In order to better understand the way that bats move in the emergence column, we

computed basic statistics of all kinematics quantities, such as mean, variance, and

skew. To understand the relationships among kinematic quantities, we computed

correlation coefficients and also examined joint distributions, which allowed us to

better understand relationships that might not be captured well by simple correlation

analysis.

In summary, we found that, across all of our datasets, the mean of the magnitude

of the acceleration, ||ai|| was between 8.8 and 12.0 m/s2. A non-zero mean of the

acceleration magnitude suggests that the mean of the acceleration vectors might not

be centered at zero. We also found that the tendency to turn right or left, reflected

by the mean of the turning acceleration a
(⊥)
i , seemed to vary based on the geometry

of the cave entrance (more data would be helpful for establishing this trend). The

tendency to pitch up or down, reflected by the mean of the pitching acceleration a
(`)
i

was different on different nights, even at the same site, so more data would be needed

to establish a pattern.

By examining the joint distribution between total acceleration magnitude, ||ai||

and turning angle θi (Equation 4.3, Figure 4·1, A), we found that changes in heading

were a much more prominent aspect of the motion of bats (correlation ρ between

0.93 and 0.97) than changes in speed ∆si (Equation 4.4) (correlation ρ less than 0.25

for nine out of eleven of our video clips) (Figure 4·1 shows the distributions for one

example dataset).

Since turning angle θi represents total changes in heading and conflates turning

left and right with pitching up and down, we further investigated the way that bats

change their heading by examining the joint histograms between the acceleration

magnitude ||ai|| and turning acceleration a
(⊥)
i (Equation 4.7), which describes turns
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(A) (B)

Figure 4·1: The joint distributions between acceleration magnitude, ||ai||, and turning
angle, θi (B, middle) and speed change, ∆si (B, bottom) are shown from one of our
eleven datasets, taken in the late evening. The correlation between ||ai|| and θi is
0.94 (p � 0.01), and the correlation between ||ai|| and speed change, ∆si is 0.075
(p � 0.01), calculated using a total of 1,263,296 data points that had appropriate
support that enabled us to compute acceleration based on smoothed trajectories. For
reference, the marginal distributions of acceleration magnitude, ||ai|| (B, top), turning
angle, θi (A, middle), and speed change, ∆si (A, bottom) are shown. This finding
indicates that changes in heading are a more prominent aspect of bat motion than
changes in speed.
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left and right, and pitching acceleration a
(`)
i (Equation 4.8) which describes motion

up and down. The shapes of the joint distributions are like a fan (Figure 4·2) because

large changes in heading can be accounted for by turns in up, down, left, or right,

and the total acceleration magnitude restricts the possible range of values of both

pitching and turning acceleration. Stated another way, both the turning acceleration

and pitching acceleration are essentially lengths of the projections of the acceleration

vector, ai onto axes defining a local coordinate frame of the bat, namely û
(Y )
i and

û
(Z)
i . The length of the projection of a vector cannot be larger than the length of the

vector itself. Due to the shape of the joint distribution between acceleration mag-

nitude and turning or pitching acceleration, the relationships are not amenable to

correlation analysis. By examining the joint distributions among acceleration mag-

nitude, pitching acceleration, and turning acceleration (Figure 4·2), we found that in

this dataset, bats engage in turns to both the left and right, but pitching up is more

likely than pitching down.

We also investigated the relationship between turning and pitching acceleration

and found that there was a characteristic “lima-bean” shape to the joint distribution

(Figure 4·3), across all of our datasets, suggesting that pitching up is less likely than

pitching down to be associated with turning either left or right.

Finally, we investigated the relationship between heading changes and flight speed

(Figure 4·4). We found that turning angle, θi (Equation 4.3), was negatively corre-

lated with speed (correlation ρ between -0.13 and -0.33). From the joint distribution,

we can see that this is especially true of large turning angles (Figure 4·4, A shows an

example for one dataset). Investigating changes in heading more closely by examining

speed as related to pitching acceleration, we found that pitching up was positively

associated with faster speed (correlation ρ between 0.21 and 0.55) (Figure 4·4, B).

When examining the speed as related to turning acceleration, we observe the “lima-
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(A) (B)

Figure 4·2: The joint distributions between acceleration magnitude, ||ai||, and turning

acceleration, a
(⊥)
i (B, middle) and pitching acceleration, a

(`)
i (B, bottom) are shown

from one of our eleven datasets (the same used in Figure 4·1, consisting of 1,263,296
data points). The shape of the joint distributions is like a fan because the magnitude
of the acceleration vector constrains the maximum value of the corresponding turning
or pitching acceleration. We found that the average value of the turning acceleration,
a

(⊥)
i , which reflects a preference for turning right vs left, varied between our two

study sites, which may be due to the geometry of the cave entry. The sign of the
average value of the pitching acceleration varied on different nights, even at the same
study site. For reference, the marginal distributions of acceleration magnitude, ||ai||
(B, top), turning acceleration, a

(⊥)
i (A, middle), and pitching acceleration, a

(`)
i (A,

bottom), are shown.
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(A) (B)

Figure 4·3: The joint distribution between turning acceleration, a
(⊥)
i , and pitching

acceleration, a
(`)
i is shown (B, bottom) for the same dataset used in Figure 4·1. For

reference, the marginal distributions of a
(⊥)
i (B, top), and a

(`)
i (A, bottom) are shown.

The “lima-bean” shape observed in this distribution is typical of the distributions also
obtained from all the other datasets. By examining this distribution, it seems that
pitching up is less likely to be associated with turns to the left and right than pitching
down.

bean” shape across all of our datasets, suggesting that turns to the left and right are

more likely to be associated with slower movement speed, possibly because it may be

necessary to slow down in order to maneuver successfully. Due to the shape of the

distribution, it is not amenable to correlation analysis.

4.3 Bat spatial distributions

Understanding bat behavior by examining aggregate statistics, such as joint and

marginal distributions, can give us insights into some aspects of bat behavior, but

the behaviors of animals as a function of the relative position of their neighbors may
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(A) (B) (C)

Figure 4·4: Joint distributions between speed and turning angle, θi (A), turning

acceleration, a
(⊥)
i (B), and pitching acceleration, a

(`)
i (C), are shown. These distri-

butions are from the same dataset used in Figure 4·1, but the patterns are typical of
all of our data sets. We observe a negative relationship between speed and changes
in heading, especially large changes in heading (A). However, we observe a positive
relationship between speed and pitching up (B), so other types of changes in heading
must account for the negative relationship observed in (A). We observe a “lima-bean”
shape in the distribution between speed and turning acceleration (C), indicating that
large turns to the left or right may be associated with slower flight.

not be isotropic, and so further analysis of the spatial patterns of various kinematic

quantities is warranted.

4.3.1 Related Work

Ballerini et al. (2008) studied flocks of starlings and found that the typical arrange-

ment between birds was anisotropic – it was more likely for neighboring birds to

occur along certain directions than others, relative to the direction of flight. Earlier

work (Partridge et al., 1980) found similar effects in three species of commercially

important fish. Lukeman et al. (2010) and Katz et al. (2011) studied the spatial

arrangements of ducks and golden shiners respectively by making spatial histograms

of the relative position of neighboring animals. For each animal, they defined a local

coordinate frame, based on the animal’s heading, and computed the relative position

between it and its neighbors, rotated into that coordinate frame (described in more

detail for bats in Section 4.3.2). Then, they created a two dimensional grid, with one
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bin per squared spatial unit of some appropriate size. Then, they created the spatial

histogram by counting the number of neighboring animals that occurred in each bin

(more details to follow in Section 4.3.3).

By understanding the circumstances when animals engage in certain behaviors,

such as turning right or left, we can gain insight into how behaviors such as attraction

and repulsion are realized. By creating spatial histograms with appropriate weights,

such analysis is possible. For example, Katz et al. (2011) examined the spatial pattern

of both turning and changes in speed in order to learn that changes in speed are an

important aspect of the behavior of fish, in contrast with many models of collective

motion that assume that changes in heading are the most important factor.

4.3.2 Coordinate systems for studying bat behavior

We have examined the behavior of bats as a function of the spatial relationships

between all bats and their neighbors by computing the spatial histograms in three

different coordinate systems. Previous authors studied systems in 2D, so in order to

study the bats, we needed an extra step in order to choose an appropriate “up” vector,

needed to construct an appropriate 3D coordinate system. A global coordinate system

is a single frame of reference based on the geometry of the cameras. A column-based

coordinate system is a time-varying coordinate system, computed once for each frame,

that captures the current location and orientation of the column in space. A local

coordinate system is computed for each moment in time for each bat, and depends

on the heading of individual animals, as done by previous authors. We have tended

to favor the local coordinate system (Subsection 4.3.2), but describe all three below

for completeness.
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Global

In order to align the scene with gravity, we calculated the direction and magnitude

of gravity, g, by observing the ballistic trajectory of several hot packs thrown in the

air. A unit vector in the direction opposite of gravity, ug, was used to define the

Z axis, u(G,Z), of the world coordinate system. The X axis of the world coordinate

system, u(G,X), is defined parallel to the direction of the optical axis of the center

camera, projected onto a plane perpendicular to gravity. We place our cameras in

the field so that their view direction is roughly perpendicular to the orientation of the

bat column, so that the column progresses roughly along the Y axis. The arbitrary

origin of the system is defined by the center of the set of calibration points.

Column / Group

During emergence, the group of T. brasiliensis bats move in a column, which is a long,

undulating structure. We denote all of the bats observable at any moment in time as

B [t]. Over a short distance, such as our field of view, the shape of the column can

reasonably be modeled as an oriented elliptic cylinder whose center b [t], orientation

u(B,X) [t], and cross-section shape (size, aspect ratio, and orientation) may change

over time. To compute these quantities so that they vary smoothly throughout the

sequence, we use the position and velocity of bats from frames both before and after

the frame t.

The orientation of the column, u(B,X) [t], is defined as the unit vector in the di-

rection of the average velocity of all bats present. We define the column-relative

orthonormal coordinate system based on u(B,X) [t] and ug, a unit vector in the direc-

tion of gravity, g. The Z axis of the column coordinate system is not held parallel to

gravity because this coordinate frame is used to represent the position and orientation

of the column as an object, as opposed to representing relative direction, as in the
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local coordinate systems below:

u(B,X) [t] =
∑Nt

i=1 vi

u(B,Y ) [t] = ug × u(B,X) [t]

u(B,Z) [t] = u(B,X) [t]× u(B,Y ) [t]

U(B) [t] =


u(B,X)[i]t

||u(B,X)[i]t||
u(B,Y )[i]t

||u(B,Y )[i]t||
u(B,Z)[i]t

||u(B,Z)[i]t||

 .
(4.9)

The “location” of the column is defined with respect to the world coordinate

system. The centroid of the positions of the bats present at time t is 1
N
sumN

i=1xi,

where N is the total number of bats. To facilitate using the first column-relative

coordinate to represent the progression of a bat along the length of the column, we

stabilize the column “location,” b [t], to lie in a plane parallel to gravity, coincident

with the optical axis of the center camera by projecting the centroid of positions of

the animals along u(B,X) [t] until it intersects the plane, as follows:

b [t] =
1

N

N∑
i=1

xi + (c2,Y − x(Y )
i [t])u(B,X) [t] (4.10)

The center line of the column is defined as a line with the orientation of u(B,X) [t]

(parallel to the average velocity of all bats present at time t), passing through b [t].

The coordinates of the bats, relative to the column are obtained by subtracting the

location of the column center from the absolute position of the bats, then rotating

into the column coordinate frame by multiplying by U(B) [t], as follows:

xi,B [t] = U(B) [t] (xi − b [t]). (4.11)

Note that the X coordinate now measures the progression along the column,

whereas the Y and Z coordinates represent the position of the bat with respect to
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the column center line. To compute the orientation, aspect ratio, and length of the

elliptical column cross section, we perform principle components analysis on the Y

and Z components of the column-relative coordinates, xi,B [t] of the bats. This is

done by computing an outer product of the Y and Z components of the points, and

then computing the eigenvectors and eigenvalues of that matrix. The eigenvectors of

the covariance matrix give the orientation of the elliptical cross-section of the column

and the square root of the eigenvalues of the covariance matrix give the aspect ratio.

We use three times the square root of the eigenvalues as the length of the major and

minor axes of the column cross section, vB1 [t] and vB2 [t]. When performing subsequent

analysis of the properties of the flight of the bats, we exclude any bat whose distance

from the column center line is larger than vB1 [t].

Local

The local coordinate frame (visualized in Figure 4·5) helps to express the relative

positions of animals, capturing spatial relationships such as “behind”, “in front”, “to

the right” and “to the left.” At each moment in time, the local coordinate frame,

Ui [t], is defined based on gravity and the heading, hi of the animal. This local

coordinate frame is represented as a 3 × 3 orthonormal matrix, where the rows are

the local coordinate axes.

Since all animals are affected by gravity, we use ug as the local Z axis, u
(Z)
i [t]

for all animals. The X axis, u
(X)
i [t], is the heading vector, projected into a plane

perpendicular to ug. The Y axis, u
(Y )
i [t] is the cross product of these two vectors.

When constructing the local coordinate frames, pitching and banking are purposefully

not modeled.
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u
(X)
i [t] = u

(Y )
i [t]× ug

u
(Y )
i [t] = ug × hi

u
(Z)
i [t] = ug

Ui [t] =


u
(X)
i [t]

||u(X)
i [t]||

u
(Y )
i [t]

||u(Y )
i [t]||

u
(Z)
i [t]

||u(Z)
i [t]||


(4.12)

The relative position, xi,k of bat bk with respect to bat bi is computed by computing

the absolute relative position between the two animals, and then rotating it into the

local coordinate frame, Ui [t], as follows.

xi,k = Ui [t] (xk − xi). (4.13)

The local coordinate frame, Ui [t] may different for each bat. For a pair of animals,

i and k, the relative positions between the two animals, computed in their respective

local coordinate frames, may not be symmetric, unless their coordinate frames are

the same. In other words, xi,k 6= −xk,i, unless Ui [t] is equal to Uk [t]

4.3.3 Computing spatial histograms

To tabulate the relative positions of bats, we established a 3D grid of voxels (3D

pixels). The grid was four meters wide by 4 meters long (X and Y), and two meters

tall (Z). The length of each side of the voxels was d = 5 cm. The relative positions of

the bats were tabulated in one of the coordinate systems described above, usually the

local coordinate system (Section 4.3.2). For this section, we will denote the relative

position of two animals as xi,k, regardless of the coordinate system used. For each

voxel, we counted the number of animals whose relative position was within a d cm3

cube centered at coordinates q. Formally, given the set of all relative positions, X,
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Figure 4·5: The local coordinate system for a bat is shown. The X axis is along
the heading of the bat, the Z axis points up, and in order to make a right-handed
coordinate system, the Y axis points over the left wing.

we can define a histogram function, W, that takes as arguments the the center of

a voxel, q. It returns the number of neighboring positions, xi,k, that are contained

within that voxel, as follows

W(q; X) =
N∑
i=1

K∑
k=1

d/2∑
∆=−d/2

δ(q− xi,k + ∆), (4.14)

where K is the number of neighbors to include and δ is the Kronecker function. The

spatial histogram may be computed with the following pseudocode:

f o r a l l q :
W[ q ]=0;

f o r a l l q :
f o r a l l x i k :

i f q − d/ 2 < x i k <= q + d /2 :
W[ q]++;
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A problem with this definition is that it does not account for the size of the bats.

Bats are larger than 5 cm3 because their wingspan is approximately 30 cm and their

body length is approximately 10 cm. It would be undesirable to have voxels that

were the same size as a bat, so we use kernel density estimation in order to create

a histogram where each data point is convolved with a Gaussian, N (xi,k − q,G), so

that each single data point can be counted in multiple voxels, with a soft assignment,

based on the distance between the voxel center, q, and the point xi,k. N is the

normal distribution, and G is a diagonal matrix with diagonal values that are (1/6)2

of the wingspan of a bat. The histogram computed with kernel density estimation is

described by

W(q; X,G) =
N∑
i=1

K∑
k=1

N (q− xi,k,G). (4.15)

and computed with the following pseudocode,

f o r a l l q :
W[ q ]=0;

f o r a l l q :
f o r a l l x i k :

W[ q ] += mvnpdf ( q − x ik , G) ;

where mvnpdf(q-x ik) returns 1

(2π)
3
2 |G|

1
2
e−(q−xi,k)TG−1(q−xi,k).

In order to visualize the spatial histogram, it is necessary to examine 2D slices.

We typically take slices through the center of the histogram, from each of the three

major axes (Figure 4·6).
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Top-down Side Front

8:20 PM

8:55 PM

Figure 4·6: The spatial histogram, W (Equation 4.15), of relative position of first
nearest neighbors is shown from two of our datasets, taken on the same night at
different times, before and after sunset, which occured at 8:42 PM. In the top row,
cartoon diagrams show the pose of the bat, relative to the position of the viewer,
and in the bottom two rows, slices through the spatial histograms, based on those
viewpoints are shown. Note that the scale of the diagrams is different from the scale
of the slices through the spatial histogram. The first column depicts the overhead
view, cutting perpendicular to the Z axis. The center column shows a side view,
cutting perpendicular to the Y axis (over the left wing). The right column shows a
view from the front, cutting perpendicular to the X axis (parallel to the heading).
The gray regions depict volumes where there is no data. The lack of data in the
center of the spatial histogram is due to occlusion. The direction of this region is due
to the location of the cameras, relative to the location of the bats. The bright halo
effect occurs because most of the first nearest neighbors of the bats are within 1 meter
of each other in the dense column depicted in this video segment. If more neighbors
were included in these histograms, the halo would be less pronounced. Earlier in the
evening, the bats fly closer together.
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4.3.4 Spatial patterns of turning and pitching acceleration

In order to visualize the spatial patterns of kinematic quantities, such as turning or

pitching acceleration, we define weights associated for each data point, and compute

a weighted spatial histogram as

W(q; X,w,G) =
N∑
i=1

K∑
k=1

wiN (q− xi,k,G), (4.16)

computed with the following pseudocode:

f o r a l l q :
W[ q ]=0;

f o r a l l q :
f o r a l l x i k :

W[ q ] += w i mvnpdf ( q − x ik , G) ;

To visualize the spatial pattern of average turning or pitching acceleration, we

display W(q; X,w,G) / W(q; X,1,G). In other words, the weighted histogram

normalized by the total number of points occuring in each bin.

By examining spatial patterns of changes in motion, specifically turning accelera-

tion and pitching acceleration, we have found evidence supporting the repulsion and

attraction assumptions of many behavioral models. By examining the spatial distri-

bution of turning acceleration, (Figure 4·7, top row), we found that when the first

nearest neighbors of bats are within 0.3 and 0.75 meters directly to the right or left,

the focal bat will tend to turn to the opposite direction. Whereas at longer distances,

greater than 1 m, the bats will tend to turn towards their neighbors. Our findings

confirm that at very short distances, bats will tend to turn away from each other,

whereas when bats are far apart, they will tend to turn towards each other. This

pattern depends on the time of night when the bats are observed. Both distances are
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longer later in the evening, after sunset.

By examining the spatial distribution of pitching acceleration (Figure 4·7, bottom

row), we found that when the first nearest neighbors of bats are above their current

position, the bats will tend to pitch up, even when neighbors are as little as 0.3 meters

above. Bats will tend to pitch downwards only when their first nearest neighbors are

further away, at least 0.5 meters. This may reflect a larger global trend, namely that

as bats fly out of their caves, the entire stream of bats tends to pitch upwards. We

did not find evidence of repulsion in the spatial distribution of pitching. Turning

interactions may happen at slightly longer spatial scales than pitching because the

wingspan of T. brasiliensis is 30cm (Farney and Fleharty, 1969), whereas their body

is only a few centimeters tall.

The spatial distribution of speed changes did not reveal evidence of repulsion and

attraction. This may be because the bats prefer to resolve such conflicts through

changes in heading. It might also be the case that bats use speed to regulate their

spatial relationships with their neighbors, but the way they do it is highly variable,

so there is not a consistent spatial pattern. Finally, we observe that the mean of the

distribution of speed changes was always larger than zero, suggesting that the bats

are generally increasing their speed as they fly up and out of the cave.

4.4 Conclusion

The findings presented in this chapter give new insight into the behavior of bats

as they fly in the emergence column and engage in complex social interactions. We

conclude that the principal way that bats move within the column is by changing their

heading. Across all of our datasets, we observed that the relative position between

bats differs, depending on the time of night (Figure 4·6); early in the evening the bats



86

Davis, July 22 Bamberger, July 24

Turning

Pitching

Figure 4·7: A spatial histogram, W (Equation 4.16), depicting the motion of bats
as a function of the relative position of their neighbors is shown, where the weights
were given by the turning acceleration , a

(⊥)
i (top), and pitching acceleration, a

(`)
i

(bottom). In the top row, a dark color represents turning right, and a light color
represents turning left. In the bottom row, a dark color represents pitching down and
a light color represents pitching up. Diagrams depicting the pose of the bat relative
to the viewer are shown in the first column. We observe that bats tend to turn away
from things that are too close, and towards things that are too far away. For example,
when neighboring bats are within 0.5 meters, and directly to the left of the focal bat,
the focal bat will tend to turn to the right. However, if the first nearest neighbor is
more than 1.5 meters away on the left side, the focal bat will tend to turn to the left.
Note that the diagrams and spatial histograms have different scales.
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tend to fly closer together, whereas later in the evening, their formations are looser.

We find that there is a spatial pattern to the way bats adjust their heading (Figure

4·7), turning away from other bats that are less than half a meter away and towards

other bats when their first nearest neighbors are more than a meter away. Although

the datasets we have collected form the most comprehensive set of observations of

bats in their natural habitat that has been collected to date, even larger datasets,

collected over more nights, would enable the understanding of trends in behavior

related to wind, weather, cave entrance geometry, or even the reproductive cycle.

Katz et al. (2011) performed analysis of fish in groups of two fish and three fish,

and found that the interactions of fish in groups of three was not an average of the

responses to fish in groups of two. For our work, there are two possible lines of inquiry

that are suggested by this finding. It might be very interesting to try to repeat their

experiment by focusing on the behavior of bats only during moments in time when

only two or three bats were present (or groups of two and three bats were physically

well separated from other bats). This could lead to a better understanding of how

bat behavior changes as the number of interacting conspecifics increases.

A straightforward extension of the work presented in this chapter would be to

investigate the motion of bats by creating higher-dimensionality histograms. For

example, using a six-dimensional histogram, it would be possible to study the behavior

of bats as a function of both their first and second neighbors (as opposed to creating a

three dimensional histogram with both the first and second neighbors as data points).

The work by Katz et al. (2011) suggests that analysis of these two different ways of

aggregating the responses of bats to multiple neighbors might lead to different results.

Data-driven simulation is a possible application of detailed histograms of the be-

havior of bats. If we tabulated the 3D acceleration of the bats as a function of the
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relative position of their neighbors, it might be possible to use this information to

drive a simulation. For each particle at each moment in time, the relative position of

other simulated particles would be determined, then used to look up the motion that

bats tended to adopt in a similar situation. The particle under consideration could

then be assigned a motion “typical” of a bat. In this way, without understanding

why bats do what they do, we might be able to capture what they do well enough to

be able to generate simulations with similar properties, which might be of interest in

computer graphics.

In our data, we observed periodic motion consistent with the wingbeat frequency

of T. brasiliensis. It is remarkable that it is possible to see the bats flapping their

wings in our kinematic data, without any other information about pose from the

video. This is a very rich area for further inquiry. We could study how bats change

the way they flap their wings as they engage in certain actions, such as turning or

pitching. We could also investigate the extent to which bats synchronize their wing

beats with their neighbors, and at what distances such synchronization might occur.

Moving beyond the study of the interactions between individuals, it will also

be interesting to study the interaction between individuals and “the group.” For

example, we could study the way that the motion of bats is different as a function

of their position within the column, such as their flight speed or tendency to change

heading. We could also examine the way bats tend to change their relationship to the

column over time, investigating whether bats tend to maintain their position within

the column or whether they tend to move back and forth between the center and the

periphery. Finally, it would be interesting to study whether or not the interactions

between individuals change as a function of the position of the individuals within

the column. For example, when bats are too close together, they may do something
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different if both bats are near the top of the column, versus the right side of the

column or the center.

Unfortunately, our ability to understand interactions over very short spatial scales

is at odds with our need to disregard data points where bats may occlude each other,

leading to inaccurate reconstructions of 3D positions, and hence inaccurately esti-

mated kinematics. This problem cannot be solved with higher resolution cameras,

since the bats will remain the same physical size, and so any bats that are sufficiently

close may occlude each other regardless of the resolution of the cameras. This prob-

lem may be somewhat remedied by using more varied camera placements. It was a

coincidence that the cave entrance geometry of both colonies that we studied lent

themselves to configurations where the cameras were placed so that the bats flew

across the field of view from right to left. Finding different points of view might help

to rule out whether or not certain effects are due the actual behavior of bats, or to

occlusion effects.
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Chapter 5

Conclusion

For more than thirty years, scientists have worked to understand the underlying

principles of collective behavior by developing computational models and analyzing

the observed behavior of animals and other organisms. Through simulation studies,

the scientific community has discovered that large groups can move together without

leaders when group members exhibit simple behaviors in response to the relative

position and heading of other individuals in the group. Recently, as it has become

feasible for researchers to collect large datasets of detailed observations of animals, the

scientific community is presented with new opportunities to characterize and discover

interesting aspects of animal behavior. The contributions of this thesis are 1.) an

improved strategy for collecting data of airborne animals in a field setting 2.) a new

computational model of collective motion, and 3.) the first large-scale dataset of

3D tracks of large groups of bats in flight in their natural habitat and subsequent

analysis.

Our strategy for collecting data (Theriault et al., 2014) is an improvement over the

previous state of the art because our approach can be deployed in a single afternoon

with minimal extra equipment, and determining the relative pose of the cameras

requires only annotations of matching points across video streams, combined with the

internal parameters of the cameras. We also developed an approach for characterizing
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the anticipated reconstruction uncertainty inherent due to the camera placement and

determined that in the datasets we collected, led to reconstruction uncertainty smaller

than the size of the body of a bat. In previous work (Cavagna et al., 2008) where

3D observations of starlings were collected, the relative positions of the cameras were

meticulously measured by hand and left in place in a sheltered location and they

did not consider or quantify reconstruction uncertainty. In our experience, the toe-in

camera placement approach that we proposed enables reconstruction and tracking

algorithms to successfully localize many more bats simultaneously than a traditional

camera placement approach with parallel image planes. With this approach, we

were able to collect a substantial dataset of hundreds of thousands of trajectories,

containing millions of data points from 70 minutes of video taken over four nights.

The FlockOpt model proposed in this thesis is a rich paradigm for modeling col-

lective motion. Our model is promising because it addresses important shortcomings

that have been discovered in existing models. Because our model is better able to ex-

press variability in speed, simulations with our model exhibit patterns of motion not

possible with earlier, constant-speed models. Our model gives us an important insight

into the fundamental nature of collective motion: that ordered motion may arise in

order to preserve spatial relationships, and variations in speed may be structured to

achieve this goal, not simply random variations. Based on this insight, we examined

our data of bats and we concluded that the spatial relationships between bats are

more stable than they would be if variations in speed were random perturbations.

We also found that a generic model that predicts that bats will minimize the change

in relative position between themselves and their neighbors better predicted the indi-

vidual behavior of bats than a model that assumed that bats averaged the velocities

of their neighbors. Analysis of our model leads to a simple but powerful insight into
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natural patterns of collective motion which are composed predominantly of groups

that either rotate or translate coherently together: Euclidean transformations that

maintain relative position include rotations and translations. The FlockOpt model

espoused in this thesis can be used in any of the diverse applications where models of

collective motion have been used productively, including computer graphics, biology,

physics, robotics, and civil engineering.

With the observations of bats in flight that we collected, we were presented with

an unprecedented opportunity to study the behavior of bats in flight. We focused on

characterizing the properties of their motion, both in the aggregate and as a function

of the relative position between themselves and their neighbors. Studying the changes

in the motion of the bats as a function of the relative position of their neighbors

allowed us to examine the validity of the repulsion and attraction assumptions of

many behavioral model. We found that most of the changes in the motion of the

bats that were observed were accounted for by turning, both left/right and up/down.

Changes in speed did not display an obvious spatial pattern, but we know from our

analysis of the changes in spatial relationships over time that speed regulation must

play an important role in their behavior, so this is an opportunity for further study.

Additional opportunities for study are presented by characterizing and understanding

relationships between individual bats and the group, such as the way that bats move

within the column, and whether or not there are column-level spatial patterns in

kinematics. Although our dataset is the most comprehensive to date, it is still not

large enough to fully understand the effects of wind, weather, or the variations in

behavior over the course of a season. Collecting such a comprehensive dataset, using

the camera calibration and placement approach proposed in this thesis, would enable

the study of many different aspects of bat behavior.
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In this thesis, we contributed to the state of the art by proposing an improved

approach for data collection, formalizing a new model of collective motion that ad-

dresses shortcomings of earlier models and leads to new insights, and collecting and

analyzing the largest dataset of observations of bats in flight that has been collected

to date. Our approach for data collection promises to enable other scientists to collect

comprehensive datasets by substantially reducing the technical difficulty, relative to

previous approaches. Our computational model represents a new paradigm for mod-

eling collective motion that we suggest will open new lines of inquiry in the study of

collective animal behavior, as well as new approaches in other areas such as control

theory and computer graphics. Our analysis of the behavior of bats in the dataset

we collected provides a tantalizing glimpse into the possibilities of the understanding

that the approaches presented in this thesis will enable in the future.
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