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Abstract
In a range of fields including the geosciences,
molecular biology, robotics and computer vision,
one encounters problems that involve random
variables on manifolds. Currently, there is a lack
of flexible probabilistic models on manifolds that
are fast and easy to train. We define an extremely
flexible class of exponential family distributions
on manifolds such as the torus, sphere, and ro-
tation groups, and show that for these distribu-
tions the gradient of the log-likelihood can be
computed efficiently using a non-commutative
generalization of the Fast Fourier Transform
(FFT). We discuss applications to Bayesian cam-
era motion estimation (where harmonic exponen-
tial families serve as conjugate priors), and mod-
elling of the spatial distribution of earthquakes
on the surface of the earth. Our experimental re-
sults show that harmonic densities yield a signif-
icantly higher likelihood than the best competing
method, while being orders of magnitude faster
to train.

1. Introduction
Many problems in science and engineering involve ran-
dom variables on manifolds. In the geosciences, for ex-
ample, one deals with measurements such as the locations
of earthquakes and weather events on the spherical surface
of the earth. In robotics and computer vision, unobserved
Lie group transformations such as rotations and rigid-body
motions play an important role in motion understanding,
localization and alignment problems. Classical probabilis-
tic models cannot be applied to data on manifolds because
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these models do not respect the manifold topology (hav-
ing discontinuities at the value 0 ≡ 2π of a circular vari-
able, for instance), and because they are not equivariant (a
manifold-preserving transformation of the data would take
the distribution outside the model family). Among mani-
fold distributions there are currently none that are both flex-
ible and efficiently trainable.

In this paper we study a very flexible class of densities
on compact Lie groups (such as the group of rotations in
two or three dimensions) and homogeneous spaces (such
as the circle, torus, and sphere). We refer to these den-
sities as harmonic exponential families, because they are
based on a generalized form of Fourier analysis known
as non-commutative harmonic analysis (Chirikjian & Ky-
atkin, 2001). Specifically, the sufficient statistics of these
families are given by functions that are analogous to the
sinusoids on the circle.

We show that the moment map (Wainwright & Jordan,
2007) that takes the natural parameters of an exponential
family and produces the moments of the distribution can be
computed very efficiently for harmonic exponential fami-
lies using generalized Fast Fourier Transform (FFT) algo-
rithms. This leads directly to a very efficient maximum-
likelihood estimation procedure that is applicable to any
manifold for which an FFT algorithm has been developed,
and that enjoys the convexity and convergence properties
of exponential families.

We apply the harmonic exponential family of the sphere to
the problem of modeling the spatial distribution of earth-
quakes on the surface of the earth. Our model significantly
outperforms the best competing method (a mixture model),
while being orders of magnitude faster to train.

Harmonic exponential families also arise naturally as con-
jugate priors in a Bayesian framework for estimating trans-
formations from correspondence pairs. In this case the
points on the manifold (the transformations) are not ob-
served directly. Instead we see a pair of vectors x and y
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— images, point clouds, or other data — that provide in-
formation about the transformation that produced one from
the other. If we have a prior p(g) over transformations and
a likelihood p(y |x, g) that measures how likely y is to be
the g-transformed version of x, we can consider the pos-
terior over transformations p(g |x, y). Typically, the pos-
terior turns into a complicated and intractable distribution,
but we show that if the prior is a harmonic density and the
likelihood is Gaussian, the posterior distribution is again a
harmonic density whose parameters are easily obtained us-
ing the generalized FFT algorithm. Furthermore, the global
mode of this posterior (the optimal transformation) can be
computed efficiently by performing yet another FFT.

In this paper we provide both an abstract treatment of the
theory of harmonic densities that covers a fairly broad class
of manifolds in a uniform and easily understandable man-
ner, and a concrete instantiation of this theory in the case
of the rotation groups SO(2) and SO(3), and their homo-
geneous spaces, the circle S1 and sphere S2.

The rest of this paper is organized as follows. We be-
gin by discussing related work in section 2, followed by
a brief summary of non-commutative harmonic analysis
for a machine learning audience in section 3. In section
4, we define harmonic exponential families and present an
FFT-based maximum-likelihood estimation algorithm. In
section 5, we show that harmonic exponential families are
the conjugate priors in the Bayesian transformation esti-
mation problem, and present an efficient MAP inference
algorithm. Our earthquake modelling experiments are pre-
sented in section 6, followed by a discussion and conclu-
sion.

2. Related Work
The harmonic exponential families were first defined ab-
stractly (but not named) by Diaconis (1988). Despite their
long history and a significant body of literature devoted to
them (see Mardia & Jupp (1999)), this class of densities
has remained intractable until now for all but the simplest
cases.

In fact, various commonly used distributions on the cir-
cle and the sphere are harmonic densities of low degree.
Among these are the 2-parameter von-Mises distribution
on the circle and the 5-parameter Kent distribution on the
sphere. These are both exponential families, about which
Mardia & Jupp (1999) write (p. 175): “Although expo-
nential models have many pleasant inferential properties,
the need to evaluate the normalizing constant (or at least
the first derivative of its logarithm) can be a practical diffi-
culty.”

What is a practical difficulty for the unimodal distributions
with few parameters mentioned above becomes a show-

stopper for more flexible exponential families with many
parameters. The harmonic exponential family for the circle
is known as the generalized von-Mises distribution, and can
be defined for any band-limit / order / degree L. However,
no scalable maximum-likelihood estimation algorithm is
known. Gatto & Jammalamadaka (2007) (who work only
with the 4-parameter L = 2 distribution) compute the nor-
malizing constant by a truncated infinite sum, where each
term involves an expensive Bessel function evaluation.

Beran (1979) studies an exponential family that is equiva-
lent to the harmonic exponential family on the sphere, but
does not provide a scalable learning algorithm. At each
iteration, the proposed algorithm computes all O(L2) mo-
ments of the distribution by numerical integration. This
requires O(L2) samples per integration, making the per-
iteration costO(L4). Beran further suggests using a second
order optimization method, which would further increase
the per-iteration cost to O(L6).

This is clearly not feasible when L is measured in the hun-
dreds, and parameter counts in the 10’s of thousands, as is
needed in the experiments reported in section 6. The al-
gorithm described in this paper is simple, generic across
manifolds, and fast (per-iteration complexity O(L2 log2 L)
in the spherical case, for instance). It can be applied to any
manifold for which an FFT has been developed.

3. Preliminaries
The manifolds we consider in this paper are either Lie
groups or closely related manifolds called homogeneous
spaces, and the sufficient statistics that we use come from
harmonic analysis on these manifolds. Since these con-
cepts are not widely known in machine learning, we will
review them in this section. For more details, we refer
the reader to Chirikjian & Kyatkin (2001); Sugiura (1990);
Kondor (2008); Goodman & Wallach (2009).

3.1. Lie Groups

A transformation group G is a set of invertible transforma-
tions that is closed under composition and taking inverses:
for any g, h ∈ G, the composition gh is again a member of
G, and so are the inverses g−1 and h−1.

A Lie group is a group that is also a differentiable mani-
fold. For example, the group SO(3) of 3D rotations is a
Lie group. It can be represented as a set of matrices,

SO(3) = {R ∈ R3×3 |RRT = I, det(R) = 1}, (1)

so one way to think about SO(3) is as a 3-dimensional man-
ifold embedded in R3×3. For technical reasons, we will
further restrict our attention to compact Lie groups, i.e. Lie
groups that are closed and bounded.
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3.2. Harmonic analysis on compact Lie groups

The basic idea of the generalized Fourier transform on
compact Lie groups is to expand a function f : G → C
as a linear combination of carefully chosen basis functions.
These basis functions have very special properties, because
they are the matrix elements of irreducible unitary repre-
sentations (IURs) ofG. These terms will now be explained.

A representation of a group G on a vector space V is a
map R from the group to the set of invertible linear trans-
formations of V that preserves the group structure in the
following sense:

R(gh) = R(g)R(h). (2)

Note that gh denotes composition of group elements while
R(g)R(h) denotes matrix multiplication (once we choose
a basis for V , that is).

In computer vision, we encounter group representations in
the following way. An image is represented as a vector
x ∈ Rn of pixel intensities, and to be concrete, we take G
to be the group SO(2) consisting of rotations of the plane.
Then R(θ) is the matrix such that R(θ)x is the image x
rotated by angle θ.

As this example shows, many representations do not
change the norm of the vectors on which they act: ∀g ∈
G,∀x ∈ V : ‖U(g)x‖ = ‖x‖. Such representations are
called unitary. Unitary representations tend to be easier to
work with both analytically and numerically.

Given a unitary representation U and a unitary matrix
F , one can define an equivalent representation T (g) =
F−1U(g)F . In computer vision one can think of F as a
matrix containing image features in the rows. One can now
try to find F such that for every g, the matrix F−1U(g)F
is block diagonal with the same block structure. If we con-
tinue to block-diagonalize until no further diagonalization
is possible, we end up with blocks called irreducible uni-
tary representations1. The IURs of a compact group can be
indexed by a discrete index λ, and we denote the IURs as
Uλ(g).

As an example, consider the 2D rotation group SO(2).
Since SO(2) is commutative, its representation matrices
can be jointly diagonalized and so the IURs of SO(2) are
1× 1 matrices:

Uλ00(g) = eiλg. (3)

They satisfy the composition rule eiλ(g+h) = eiλgeiλh,
which is the manifestation of eq. 2 for this representation.
The standard Fourier series of a function on the circle is an
expansion in terms of these matrix elements, which shows

1Technically, we have defined the slightly easier to understand
notion of indecomposability, which in this context implies irre-
ducibility.

that standard Fourier analysis is a special case of the more
general transform to be defined shortly.

The matrix elements of IURs of SO(3) are known as
Wigner D-functions. They are defined for λ = 0, 1, 2, . . .
and −λ ≤ m,n ≤ λ, so the irreducible representations
are (2λ + 1)-dimensional. Wigner D-functions can be ex-
pressed as sums over products of sinusoids or complex ex-
ponentials (Pinchon & Hoggan, 2007), but the formulae are
somewhat unwieldy so that it is easier to think only about
their general properties.

The most important general property of the matrix elements
of IURs is that they are orthogonal:

〈Uλmn(g), Uλ
′

m′n′(g)〉 ≡
∫
G

Uλmn(g)Uλ
′

m′n′(g) dµ(g)

=
δλλ′δmm′δnn′

dimλ
.

(4)

Here µ is the normalized Haar measure, which is the natural
way to measure volumes in G (Sugiura, 1990), and dimλ
is the dimension of the representation. One can verify that
the complex exponentials eiλg are indeed orthonormal with
dµ(g) = dg

2π and dimλ = 1.

Intuitively, the matrix elements are like a “complete or-
thogonal basis” for the space L2(G) of square integrable
functions on G. That is, it can be proven that any function
f ∈ L2(G) can be written as

f(g) =
∑
λ

∑
mn

ηλmnT
λ
mn(g) ≡

[
F−1η

]
(g), (5)

where Tλmn(g) =
√

dimλUλmn(g) are the L2-normalized
matrix elements and η are the Fourier coefficients of f .

Integrating eq. 5 against a matrix element and using or-
thonormality, we find:

ηλmn =

∫
G

f(g)Tλmn(g)dµ(g). (6)

This is the (generalized) Fourier transform for compact
groups, denoted

η = Ff.

Fast and exact algorithms for the computation of Fourier
coefficients from samples of bandlimited functions on the
rotation groups SO(2) and SO(3) have been developed,
and the theory required to construct such algorithms for
general compact Lie groups is understood (Maslen &
Rockmore, 1997). The group SO(2) is isomorphic to the
circle, so for G = SO(2) equation 5 reduces to a stan-
dard Fourier series on the circle, for which the well-known
O(L logL) FFT algorithm can be used. The SO(3) FFT
has complexity O(L3 log2 L) for bandlimit L (Maslen &
Rockmore, 1997; Kostelec & Rockmore, 2008; Potts et al.,
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2009). This is a tremendous speedup compared to the naive
O(L6) algorithm, and the algorithms presented in this pa-
per would certainly not be feasible without the FFT.

In section 4 we discuss how these generalized FFT algo-
rithms can be used to efficiently compute moments, but
first we discuss the generalization of the Fourier transform
on compact Lie groups to the Fourier transform on certain
manifolds that are not groups.

3.3. Harmonic analysis on homogeneous spaces

A homogeneous space for a Lie group G is a manifold H
such that for any two points x, y ∈ H we can find a trans-
formation g ∈ G with gx = y. For example, the plane
is a homogeneous space for the translation group, and the
sphere is a homogeneous space for the 3D rotation group.
The plane is not a homogeneous space for the 2D rotation
group, because points at different radii cannot be rotated
into each other.

If we pick an origin o ∈ H , such as the north pole of the
sphere, we can identify any other point h ∈ H by spec-
ifying how to transform the origin to get there: h = go.
This identification will not be unique, though, if there is
a nontrivial subgroup K of G containing transformations
that leave the origin invariant: K = {k ∈ G | ko = o}.
This is because if h = go, then also h = gko, so both
g and gk identify h. On the sphere for example, we can
transform the north-pole into a point h by first doing an
arbitrary rotation around the north-pole axis (which leaves
the north-pole unchanged) and then rotating the result to h.

Hence, one can think of the points h = go in a homoge-
neous space H as sets gK = {gk | k ∈ K} (called cosets)
of group elements that are equivalent with respect to their
effect on an arbitrarily chosen origin o of H . It follows
that one can think of functions on a homogeneous space as
functions on the group, with the special property that they
are (right) invariant to transformations from K:

f(gk) = f(g) ∀g ∈ G, k ∈ K, (7)

because right-multiplication by k will only shuffle the ele-
ments within each coset. Finally, one can show (see sup-
plementary material) that in a suitable basis, a subset of the
matrix elements of IURs form a basis for the linear space of
square-integrable functions onG with this invariance prop-
erty, which allows us to define the Fourier transform also
for functions on H .

The exact same equations (6 and 5) that define the Fourier
and inverse Fourier transform for a compact Lie group, de-
fine these transforms for a compact homogeneous space,
but only a subset of the coefficients ηλmn will be non-zero.
For the sphere, the matrix elements Tλm0 are equal2 to the

2Various normalization and phase conventions are in use for

spherical harmonics Y λm, which form a basis for L2(S2).
Fast spherical Fourier transform algorithms were devel-
oped by Driscoll & Healy (1994).

3.4. Exponential families

An exponential family is a class of densities of the form:

p(g | η) =
1

Zη
exp (η · T (g)). (8)

It is determined by a choice of sufficient statistics T , that
take the random variable g and produce a vector of real
statistics T (g).

To learn the parameters η, one can perform gradient-based
optimization of the log-likelihood of a set of iid samples
g1, . . . , gN . The gradient is the moment discrepancy:

∇η

(
1

N

N∑
i=1

ln p(gi | η)

)
= T̄ − Ep(g|η)[T (g)], (9)

where T̄ = 1
N

∑N
i=1 T (gi) are the empirical moments.

There is generally no closed form for the analytical mo-
ments (the expectation in eq. 9), so a numerical approxi-
mation is needed.

4. Harmonic Exponential Families
We define a harmonic exponential family on a group or ho-
mogeneous space as an exponential family where the suffi-
cient statistics are given by a finite number of matrix el-
ements of IURs. This makes sense only if the function
η · T (g) is real-valued, so that it can be interpreted as an
unnormalized log-probability. The easiest way to guaran-
tee this is to take η to be real, and to use real functions
obtained as a sparse linear combination of complex ma-
trix elements T (g) as sufficient statistics. For example,
1
2 (eiλθ + e−iλθ) = cos(λθ). From here on, we take T
to be real, L2-normalized functions and F the expansion
of a real function in terms of real basis functions T .

The key observation that leads to an efficient algorithm for
computing the moments of a harmonic density is that the
moments of such a density are its Fourier coefficients:

Ep(g|η) [T (g)] =

∫
G

p(g|η)T (g) dµ(g) = F p. (10)

Hence, one can obtain all J moments at once by sampling
p on a finite grid and then computing its Fourier transform
using a fast algorithm. As explained in section 4.1, the
discretization error can be made extremely small using only
O(J) spatial samples.

the spherical harmonics, but it is enough to know that Y λ
m ∝ Tλm0.
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However, even evaluating p at a single position takes O(J)
computations when using J sufficient statistics so that the
overall complexity is still O(J2). Furthermore, in order to
evaluate p we need to know the normalizing constant Zη .

The following derivation shows that we can work with the
unnormalized density ϕ(g | η) = exp (η · T (g)) instead:

[Fp]λmn =

∫
G

p(g | η)Tλmn(g) dµ(g)

=
1

Zη

∫
G

ϕ(g | η)Tλmn(g) dµ(g)

=
[Fϕ]λmn
[Fϕ]000

,

(11)

The last step uses the fact that T 0
00(g) = 1 so that [Fϕ]000

is equal to the normalizing constant:

[Fϕ]
0
00 =

∫
G

ϕ(g | η)T 0
00(g) dµ(g) = Zη (12)

Next, observe that we can evaluate lnϕ efficiently at O(J)
spatial points using the inverse FFT:

lnϕ(g | η) = η · T (g) =
[
F−1η

]
(g) (13)

This computation is exact, because the log-density is ban-
dlimited (i.e. there are only finitely many parameters).
Element-wise exponentiation then gives us ϕ evaluated on
a grid.

So we have an efficient algorithm for computing moments:

1. Compute ϕ = exp (F−1η).

2. Compute M = F ϕ

3. Compute Ep(g|η) [T (g)] = M/M0
00.

To make this computation numerically stable for highly
peaked densities, one should apply the “log-Fourier-exp”
trick described in the supplementary material.

4.1. Approximation quality

Even though the Fourier coefficients are defined as defi-
nite integrals (eq. 6), the discrete FFT algorithms com-
pute exact Fourier coefficients, provided the function from
which the discrete samples were gathered is bandlimited.
A function is bandlimited if the coefficients ηλmn are zero
for λ greater than the band-limit L. Although the function
lnϕ(g) = η · T (g) is bandlimited, the function ϕ(g) =
exp (η · T (g)) is not, so the computed coefficients are not
exactly equal to the Fourier coefficients of ϕ.

However, the function ϕ(g) is smooth (infinitely differen-
tiable), and a standard result in Fourier analysis shows that

the spectrum of a smooth function decays to zero asymptot-
ically faster than O(1/λn) for any n. So our function will
be “effectively bandlimited”, in the sense that coefficients
for λ greater than some pseudo-bandlimit will have negli-
gible values. If L is the maximum degree of the sufficient
statistics (the bandlimit of η · T (g)), one can obtain near-
exact moments by computing the FFT up to the pseudo-
bandlimit αL for some oversampling factor α. In practice,
we use values for α ranging from 2 to 5.

5. Harmonic Densities as Conjugate Priors
In this section we discuss the Bayesian transformation in-
ference problem, where the goal is to infer a posterior over
a Lie group of transformations given only a set of corre-
spondence pairs (such as images before and after a camera
motion). It turns out that the harmonic exponential fami-
lies are the conjugate priors for this problem, and again, the
generalized FFT is key to performing efficient inference.

The observed data in the Bayesian transformation inference
problem are pairs of vectors (x, y) in RD that could rep-
resent images, space-time blocks of video, point-clouds,
optical-flow fields, fitted geometric primitives, parameters
of a function or other objects. In order to infer anything
about a latent transformation g, we must know the group
representation R(g) that acts on the observed data. If our
data is an image x : R2 → R, we get a representation on
the Hilbert space in which x lives: [R(g)x](p) = x(g−1p),
where p is a point in the plane. In the finite-dimensional
analogue, where x is a vector of pixel intensities, R(g) will
be close to a permutation matrix that takes each pixel to its
proper new position. For compact groups3 this represen-
tation is unitary, and this is what we will assume for R(g)
from now on. If the representation is not known in advance,
it can also be learned from data (Cohen & Welling, 2014).

If we assume that observation x is the g-transformed ver-
sion of y with some independent Gaussian noise with vari-
ance σ2 added, the likelihood function is given by

p(x | y, g) = N (x |R(g)y, σ2). (14)

As discussed in section 3.2, we can bring R in block-
diagonal form by a unitary change of basis: U(g) =
F−1R(g)F . The matrix U is block diagonal, and the
blocks Uλ are equal to the L2-normalized sufficient statis-
tics Tλ up to a scale factor: Tλ(g) =

√
dimλUλ(g). To

simplify the computations, we shall work with data in this
new basis: x̂ = Fx so that p(x̂ | ŷ, g) = N (x̂ |U(g)ŷ, σ2).

If we now choose as prior p(g) a member of the harmonic
exponential family on G, the posterior p(g | x̂, ŷ) is of the

3This more generally true for unimodular groups.
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same form as the prior:

p(g | x̂, ŷ) ∝ p(x̂ | ŷ, g)p(g)

∝ exp

(
− 1

2σ2
‖x̂− U(g)ŷ‖2 + η · T (g)

)
∝ exp

(
1

σ2
x̂TU(g)ŷ + η · T (g)

)
= exp

(∑
λ

(
ηλ +

x̂λ ŷ
T
λ

σ2
√

dimλ

)
· Tλ(g)

)
(15)

i.e. we have a conjugate prior. The derivation relies on the
unitarity of the representation: in expanding ‖x̂−U(g)ŷ‖2,
we find a term ‖U(g)ŷ‖2 which is equal to ‖ŷ‖2, making
the dependence on U(g) linear (as it is in the prior).

5.1. Example: Bayesian analysis of camera rotation

To make matters concrete, we show how to compute a
posterior over the rotation group SO(3) given two images
taken before and after a camera rotation. An image is mod-
eled as a function x : S2 → R on the sphere, so that a
camera rotation g ∈ SO(3) acts by rotating this function
over the sphere: [R(g)x](p) = x(g−1p). We parameterize
points p ∈ S2 as p = (ϕ, θ) for ϕ ∈ [0, 2π] and θ ∈ [0, π].
Recall from section 3.3 that we can represent p ∈ S2 by
a coset representative gp ∈ SO(3), which we parameterize
using Euler angles as gp = (ϕ, θ, 0). The transformation
gp takes the origin of the sphere to p.

It is well known4 that in this context the matrix F —
defined in the previous section as the matrix that block-
diagonalizes the representation R — is given by the spher-
ical Fourier transform F , which can be computed by an
FFT. This means that if we represent x by its Fourier co-
efficients x̂ = Fx, the coefficients of the rotated function
R(g)x(p) = x(g−1p) are given by U(g)x̂, where U(g) is a
block-diagonal matrix with irreducible representations Uλ

as blocks. As derived in the previous section, the parame-
ters of the posterior can easily be obtained in this basis by
a block-wise outer product.

Figure 1 shows the posterior p(g, |x, y) for two synthetic
spherical images x1 and x2, and their rotations y1 = x1

(no rotation) and y2 = U(0, π/3, π/2)x2. The posterior is
plotted as a 3D isocontour in the ZYZ-Euler angle param-
eter space (α, β, γ) ∈ [0, 2π] × [0, π] × [0, 2π]. Although
this plot looks like a box, the actual manifold has the topol-
ogy of a projective 3-sphere. By construction, the density
is spread through the parameter space in a way that is con-
sistent with this topology: no discontinuities arise where
wraparound in the parameter space occurs. This is desir-
able, because the wraparound is not an intrinsic property of
the manifold.

4The derivation can be found in the supplementary material.

Figure 1. Posterior distributions (top) for two correspondence
pairs (bottom).

Due to the symmetry of these figures certain rotations can-
not be distinguished from the “true” rotation, so that the
modes of the posterior distributions are supported on an
entire subgroup of SO(3). Real images will not have such
a high degree of symmetry, but it will nevertheless often be
the case that a unique optimal transformation does not ex-
ist (Ma et al., 1999). Indeed, current keypoint based trans-
formation estimation methods can easily get confused by
repeating structures in an image, such as several identical
windows on a building. Although more experimental work
is needed, our method has the theoretical advantage that be-
sides keypoints (which form a group representation), it can
make use of parts of the image that do not allow for key-
points to be reliably placed (such as edges), while always
providing a truthful impression of the degree to which a
unique transformation or subgroup can be identified form
the data.

5.2. MAP inference

As Bayesians we are done here, but for some applications
one may wish to find a single most likely transformation.
To find the optimal transformation, first perform posterior
inference (steps 1 and 2) and then maximize (step 3):

1. Compute x̂ = F x and ŷ = F y.

2. Compute η̄λ = ηλ + 1
σ2
√
dimλ

x̂λŷ
T
λ

3. Compute g∗ = arg maxi[F−1η̄](gi)

The arg max ranges over all the points in a finite grid on
G used by the FFT synthesis F−1. Optionally, one can re-
fine the optimum g∗ by performing a few steps of gradient-
based optimization on η̄ · T (g) to get sub-pixel accuracy.
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6. Experiments
6.1. Modelling the spatial distribution of earthquakes

We compare our model and MLE algorithm to a Kent Mix-
ture Model (KMM) on the problem of modelling the spatial
distribution of significant earthquakes on the surface of the
earth.

We obtained the Significant Earthquake Dataset (NGDC,
2015) from the National Geophysical Datacenter of the Na-
tional Oceanographic and Athmospheric Administration.
In total, the dataset contains 5780 earthquakes with com-
plete information on the position of their epicenter, and 53
earthquakes whose coordinates are missing (these were dis-
carded in our experiments). We did not model the severity
of the earthquake, but only the occurrence of significant
earthquakes (as defined by (NGDC, 2015)).

6.1.1. MIXTURE OF KENT DISTRIBUTIONS

The 5-parameter Kent distribution (Mardia & Jupp, 1999)
is the spherical analogue of the normal distribution with un-
constrained covariance. Being unimodal, the Kent distribu-
tion is not flexible enough to describe complicated distri-
butions such as the spatial distribution of earthquakes. The
most flexible distribution on the sphere that we have found
in the literature is the Kent Mixture Model, first described
by Peel et al. (2001). The KMM is trained using the EM
algorithm. We use the open source Python implementation
of the EM algorithm for KMMs by Höfer (2014).

Unlike the harmonic densities, the log-likelihood of this
model is not convex and contains many singularities where
a mixture component concentrates on a single data point
and decreases its variance indefinitely. For this reason,
we perform randomly initialized restarts until the algorithm
has found 10 non-degenerate solutions, of which we retain
the one with the best cross-validation log-likelihood. No
regularization was used, because for the models that could
be trained within a reasonable amount of time, no overfit-
ting was observed.

6.1.2. THE S2 HARMONIC DENSITY

The harmonic density on the 2-sphere uses spherical har-
monics as sufficient statistics. The empirical moments are
easily computed using standard spherical harmonic rou-
tines, but we found that for high orders the SciPy rou-
tines are slow and numerically unstable. The supplemen-
tary material describes a simple, fast, and stable method
for the evaluation of spherical harmonics. The computa-
tion of spherical harmonics up to band-limit L = 200 (for
a total of (L+ 1)2 = 40401 spherical harmonics) for 5780
points on the sphere took half a minute using this method
and is performed only once for a given dataset.

For regularization we use a diagonal Gaussian prior on η,
where the precision βλm corresponding to the coefficient of
Y λm is given by βλm = α dimλ = α(2λ + 1) (for some
regularization parameter α). This scheme is inspired by
the fact that dimλ is the discrete Plancherel measure (Sug-
iura, 1990), and the empirical observation that the fitted co-
efficients become approximately uniform when weighted
as ηλm

√
dimλ. Note that adding regularization does not

change the convexity of the objective function.

To find maximum a posteriori parameters η̂ for the spher-
ical harmonic density, we perform iterative gradient-based
optimization on the log-posterior. The gradients (moment
discrepancies) are computed using the FFT-based method
described in section 4. We use the spherical FFT algorithm
implemented in the NFFT library (Keiner et al., 2009; Ku-
nis & Potts, 2003). The gradients are fed to a standard im-
plementation of the L-BFGS algorithm.

6.1.3. RESULTS

Figure 2 shows the average train and test log-likelihood
over 5 cross-validation folds, for the spherical harmonic
density and the mixture of Kent distribution. The plotted
values correspond to the regularization settings that yielded
the best test log-likelihood.

The KMM reached an average test log-likelihood of −0.37
(with standard deviation of 0.03 over 5 cross-validation
folds) using 70 mixture components (5 × 70 + 69 = 419
parameters). The harmonic density reached an average test
log-likelihood of +0.3 (with standard deviation of 0.036
over 5 cross-validation folds), using bandlimit L = 140
(19880 parameters). The HD still outperforms the KMM
when given a similar number of parameters: for L = 20
(440 ≈ 419 parameters), the log-likelihood is −0.28 >
−0.37, with standard deviation 0.028, and for L = 19 (399
parameters), the log-likelihood is −0.3 with standard devi-
ation 0.03. The dataset and the learned densities are plotted
in figure 3, clearly showing the superiority of the harmonic
density.

7. Discussion and Future Work
What could explain the difference in log-likelihood be-
tween our model and the KMM? We believe two inter-
related factors are driving this difference: the expressive-
ness of the model and the ease of optimization. Leaving
technicalities aside, it is clear that both the spherical har-
monic exponential family and the KMM can approximate
any well-behaved density, given enough parameters and an
optimization oracle. However, as is clear from figure 2,
training time becomes prohibitive for the KMM for more
than 70 mixture components / 419 parameters, while the
harmonic density can efficiently be fit for tens of thousands
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Figure 2. Top: cross-validation train (dashed line) and test (solid
line) log-likelihood for the Harmonic Density (HD) and Kent
Mixture Model (KMM). Bottom: number of parameters versus
training time for both models.

of parameters.

Furthermore, the KMM training algorithm (EM) can easily
get stuck in local optima, or converge on a degenerate so-
lution. This is the main reason for the poor runtime perfor-
mance; while the KMM code could be further optimized, it
is the fact that so many restarts are required to find a good
fit that makes the algorithm slow. The log-likelihood func-
tion of the harmonic density, on the other hand, is convex,
and the L-BFGS optimizer will typically converge to the
global optimum in some 20− 100 iterations.

As can be seen in figure 3, the harmonic density produces
slight ringing artifacts that can be seen only in a log-plot
such as this. These are the result of the limited bandwidth
of the log-density, and will become progressively less pro-
nounced as the number of parameters is increased. While
they are clearly visible in log-space, the actual difference
between peaks and valleys is on the order of 10−3 for ban-
dlimit L = 100. The artifacts are not visible on a non-
logarithmic plot (and in such a plot the KMM density is
hardly visible at all when plotted on the same intensity
scale as the harmonic density, because the peaks are much
lower). The harmonic density also tends to prefer heavier
tails, which is probably accurate for many problems.

An interesting direction for future work is the extension
to non-compact groups. While the mathematical theory
becomes much more technical for such groups, (Kyatkin
& Chirikjian, 2000) have already succeeded in developing
FFT algorithms for the Euclidean motion group which is
non-compact. From there it should be relatively straight-

(a) Significant Earthquake Dataset

(b) Harmonic Density (c) Kent Mixture Model

Figure 3. Log-probability for harmonic density and Kent mixture
model, plotted using a perceptually accurate linear-lightness col-
ormap on the same intensity scale.

forward to develop harmonic densities on the Euclidean
group. Harmonic densities on the Euclidean, affine or even
projective group should find many applications in robotics
and computer vision (see e.g. (Kyatkin & Chirikjian,
1999)).

8. Conclusion
We have studied a class of exponential families on compact
Lie groups and homogeneous manifolds, which we call har-
monic exponential families. We have shown that for these
families, maximum likelihood inference, posterior infer-
ence and mode seeking can be implemented using very effi-
cient generalized Fast Fourier Transform algorithms. In the
Bayesian setting, we have shown that harmonic exponential
families appear naturally as conjugate priors in the generic
transformation inference problem. Our experiments show
that training harmonic densities is fast even for very large
numbers of parameters, and that far superior likelihood can
be achieved using these models.
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