982 research outputs found

    Low-Degree Spanning Trees of Small Weight

    Get PDF
    The degree-d spanning tree problem asks for a minimum-weight spanning tree in which the degree of each vertex is at most d. When d=2 the problem is TSP, and in this case, the well-known Christofides algorithm provides a 1.5-approximation algorithm (assuming the edge weights satisfy the triangle inequality). In 1984, Christos Papadimitriou and Umesh Vazirani posed the challenge of finding an algorithm with performance guarantee less than 2 for Euclidean graphs (points in R^n) and d > 2. This paper gives the first answer to that challenge, presenting an algorithm to compute a degree-3 spanning tree of cost at most 5/3 times the MST. For points in the plane, the ratio improves to 3/2 and the algorithm can also find a degree-4 spanning tree of cost at most 5/4 times the MST.Comment: conference version in Symposium on Theory of Computing (1994

    Bounded-Angle Minimum Spanning Trees

    Get PDF
    Motivated by the connectivity problem in wireless networks with directional antennas, we study bounded-angle spanning trees. Let P be a set of points in the plane and let ? be an angle. An ?-ST of P is a spanning tree of the complete Euclidean graph on P with the property that all edges incident to each point p ? P lie in a wedge of angle ? centered at p. We study the following closely related problems for ? = 120 degrees (however, our approximation ratios hold for any ? ? 120 degrees). 1) The ?-minimum spanning tree problem asks for an ?-ST of minimum sum of edge lengths. Among many interesting results, Aschner and Katz (ICALP 2014) proved the NP-hardness of this problem and presented a 6-approximation algorithm. Their algorithm finds an ?-ST of length at most 6 times the length of the minimum spanning tree (MST). By adopting a somewhat similar approach and using different proof techniques we improve this ratio to 16/3. 2) To examine what is possible with non-uniform wedge angles, we define an ??-ST to be a spanning tree with the property that incident edges to all points lie in wedges of average angle ?. We present an algorithm to find an ??-ST whose largest edge-length and sum of edge lengths are at most 2 and 1.5 times (respectively) those of the MST. These ratios are better than any achievable when all wedges have angle ?. Our algorithm runs in linear time after computing the MST

    A 10-Approximation of the ?/2-MST

    Get PDF
    Bounded-angle spanning trees of points in the plane have received considerable attention in the context of wireless networks with directional antennas. For a point set P in the plane and an angle ?, an ?-spanning tree (?-ST) is a spanning tree of the complete Euclidean graph on P with the property that all edges incident to each point p ? P lie in a wedge of angle ? centered at p. The ?-minimum spanning tree (?-MST) problem asks for an ?-ST of minimum total edge length. The seminal work of Anscher and Katz (ICALP 2014) shows the NP-hardness of the ?-MST problem for ? = 2?/3, ? and presents approximation algorithms for ? = ?/2, 2?/3, ?. In this paper we study the ?-MST problem for ? = ?/2 which is also known to be NP-hard. We present a 10-approximation algorithm for this problem. This improves the previous best known approximation ratio of 16

    Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints

    Full text link
    We introduce a new structure for a set of points in the plane and an angle α\alpha, which is similar in flavor to a bounded-degree MST. We name this structure α\alpha-MST. Let PP be a set of points in the plane and let 0<α≤2π0 < \alpha \le 2\pi be an angle. An α\alpha-ST of PP is a spanning tree of the complete Euclidean graph induced by PP, with the additional property that for each point p∈Pp \in P, the smallest angle around pp containing all the edges adjacent to pp is at most α\alpha. An α\alpha-MST of PP is then an α\alpha-ST of PP of minimum weight. For α<π/3\alpha < \pi/3, an α\alpha-ST does not always exist, and, for α≥π/3\alpha \ge \pi/3, it always exists. In this paper, we study the problem of computing an α\alpha-MST for several common values of α\alpha. Motivated by wireless networks, we formulate the problem in terms of directional antennas. With each point p∈Pp \in P, we associate a wedge WpW_p of angle α\alpha and apex pp. The goal is to assign an orientation and a radius rpr_p to each wedge WpW_p, such that the resulting graph is connected and its MST is an α\alpha-MST. (We draw an edge between pp and qq if p∈Wqp \in W_q, q∈Wpq \in W_p, and ∣pq∣≤rp,rq|pq| \le r_p, r_q.) Unsurprisingly, the problem of computing an α\alpha-MST is NP-hard, at least for α=π\alpha=\pi and α=2π/3\alpha=2\pi/3. We present constant-factor approximation algorithms for α=π/2,2π/3,π\alpha = \pi/2, 2\pi/3, \pi. One of our major results is a surprising theorem for α=2π/3\alpha = 2\pi/3, which, besides being interesting from a geometric point of view, has important applications. For example, the theorem guarantees that given any set PP of 3n3n points in the plane and any partitioning of the points into nn triplets, one can orient the wedges of each triplet {\em independently}, such that the graph induced by PP is connected. We apply the theorem to the {\em antenna conversion} problem
    • …
    corecore