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—— Abstract

Bounded-angle spanning trees of points in the plane have received considerable attention in the
context of wireless networks with directional antennas. For a point set P in the plane and an angle
a, an a-spanning tree (a-ST) is a spanning tree of the complete Euclidean graph on P with the
property that all edges incident to each point p € P lie in a wedge of angle a centered at p. The
a-minimum spanning tree (a-MST) problem asks for an a-ST of minimum total edge length. The
seminal work of Anscher and Katz (ICALP 2014) shows the NP-hardness of the -MST problem for
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In this paper we study the a-MST problem for o = Z which is also known to be NP-hard. We

present a 10-approximation algorithm for this problem. This improves the previous best known

m and presents approximation algorithms for o = .

approximation ratio of 16.
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1 Introduction

Wireless antennas in a wireless network can be modeled by disks in the plane, where the centers
of the disks represent locations of antennas and their radii represent transmission ranges of
antennas. Two antennas can communicate if they are in each other’s transmission range.
In this model antennas are assumed to be omni-directional which can transmit and receive
signals in 360 degrees. Replacing omni-directional antennas with directional antennas has
received considerable attention in recent years, see for example [1, 3, 6, 8, 9, 10, 11, 13, 14, 21].
Directional antennas can transmit and receive signals only in a circular wedge with some
bounded-angle .. As noted in [4, 21, 23] such a bounded-angle communication is more secure,
requires lower transmission range, and causes less interference. In this model two antennas
can communicate if each one is inside the other’s wedge. This model is known as symmetric
communication network [4, 5, 23].

The network connectivity is a common problem in designing networks with directional
antennas. Aschner and Katz [3] formulated this problem in terms of an a-spanning tree
(a-ST). For a point set P in the plane and an angle «, an a-ST of P is a spanning tree of
the complete Euclidean graph on P such that all edges incident to each point p € P lie in a
wedge of angle « centered at p (see Figure 1). It is known that an -ST always exists when
a> % (seee.g. [1,2, 11]) while it may not exists when o < %, for example if P consists of
the three vertices of an equilateral triangle.
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Figure 1 A Z-spanning tree.

The minimum spanning tree (MST) is the shortest connected network for omni-directional
antennas. For directional antennas, the shortest connected network is called the a-minimum
spanning tree (a~-MST) which is an a-ST of P with minimum total edge length. Although
one can compute an MST of n points in the plane optimally in O(nlogn) time, it is not clear
how to efficiently compute an a-MST. Aschner and Katz [3] proved that the a~-MST problem
is NP-hard for oo = 2?“ and a = 7. They also presented approximation algorithms with ratios
16, 6, and 2 for angles a = 5, o = %’T and a = 7, respectively. The approximation ratio 6 for
the 2°-MST has been successively improved to 5.34 [8] and to 4 [6]. Recently Tran et al. [23]
showed that the power assignment problem with directional antennas (described in Section 1.2)
of angle 7 is NP-hard, by a reduction from the Hamilton path problem on hexagonal grid
graphs. A similar reduction can be employed to show that the §-MST problem is also
NP-hard.

The above approximation ratios are obtained by considering the weight of the MST as
the lower bound (instead of the weight of an optimal a-MST). Of these approximation ratios,
the ratio 16 for § is very interesting because for any o < 5 there exists a point set for which
the ratio of the weight of any a-MST to the weight of any MST is Q(n) [5]. In other words,
a = 7 is the smallest angle for which one can obtain an a-ST of weight within some constant
factor of the MST weight. However, such a factor cannot be better than 2 because for points
uniformly distributed on a line the weight of @-MST could be arbitrary close to 2 times the

weight of MST, for any o < 7 [3, 8].

1.1  Qur contributions

We present an algorithm that finds a 5-ST of weight at most 10 times the MST weight
(Theorem 6). Thus we obtain a 10-approximation algorithm for the Z-MST problem,
improving upon the previous best known ratio of 16 due to Anscher and Katz [3]. Both our
algorithm and that of [3] take linear time after computing an MST.

Towards obtaining the approximation ratio 10 we extend another interesting result of
Aschner et al. [5] which ensures the connectivity of two sets of oriented four points that are
separated by a straight line. Our extension (which is given in Theorem 3) relaxes the linear

separability constraint. Most of the paper is devoted to proving this theorem.

1.2 Some related problems

There is a relationship between bounded-angle spanning trees and bounded-degree spanning
trees which have received a considerable attention [7, 12, 17, 19, 20, 22]. A degree-k ST is a
spanning tree in which every vertex has degree at most k. It is easily seen that any degree-k
ST is an @-ST with o = 27(1 — 1/k) because in any degree-k ST all edges that are incident
to each vertex lie in some wedge of angle 27(1 — 1/k).

The a-bottleneck spanning tree (a-BST) is a closely related problem in which the goal
is to compute an a-ST whose longest edge length is minimum. This problem has been
studied in the context of designing networks with bounded-range directional antennas, see for
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example the results of Aschner et al. [3, 5] for constructing hop-spanners for unit disk graphs,
Dobrev et al. [14, 15] and Caragiannis et al. [10] for constructing bounded-degree strongly
connected networks, and Carmi et al. [11] for constructing bounded-angle Hamiltonian paths.
Another related problem in this context is “power assignment with directional antennas”
where the objective is to assign each point p € P a wedge of angle o as well as a range r, to
obtain a connected symmetric communication network of minimum total power Zpe p(rp)?
where 8 > 1 is the distance-power gradient [3, 5, 23].

Computing bounded-angle Hamiltonian paths and cycles on points in the plane is another
related problem. For paths it is known that any set of points in the plane admits a Hamiltonian
path with turning angles at most 4 [11, 18] and this bound on the angle is tight [11, 16].
For cycles no tight bound on the angle is known. Dumitrescu et al. [16] proved that any
even-size point set admits a Hamiltonian cycle with angles at most %’T The most famous
conjecture in this context, due to Fekete and Woeginger [18], states that any even-size point
set of at least 8 elements admits a Hamiltonian cycle with angles at most 7.

1.3 Preliminaries for the algorithm

The following notations are adopted from [8]. Let w, be a wedge in the plane having its
apex at a point p. We denote the clockwise (right) boundary ray of w, by 17; and its
counterclockwise (left) boundary ray by 1<u.p. Let wg be another wedge in the plane having
its apex at a point ¢. If ¢ lies in w), then we say that p sees ¢ (or ¢ is visible from p). We say
that p and g are mutually visible, denoted by p<>¢q, if p sees ¢ and ¢ sees p. In Figure 2 p
and ¢ are mutually visible. Let P be a set of points in the plane such that some wedge is
placed at each point of P. The induced mutual visibility graph of P, denoted by G(P), is a
geometric graph with vertex set P that has a straight-line edge between two points p,q € P
if and only if p and ¢ are mutually visible. We use the term “orient” to refer to placement of
wedges at points. We denote the sum of edge lengths of a geometric graph G by w(G).

Figure 2 The points p and g are mutually visible.

We define the following notations to facilitate the description of our algorithm and its
analysis. For two points p and ¢ in the plane the slab S(p, q) is defined as the region between
two lines that are perpendicular to the segment pq at points p and ¢ (see Figure 3(a)). We
use quadruple to denote a set of four points in the plane. A quadruple @ is called admissible
if it has two points p and ¢ such that the other two points lie in S(p, ¢) and both on the same
side of pq. In this case we refer to (p, q) as an admissible pair of Q. Notice that a quadruple
could have more than one admissible pair. For a quadruple @ with a fixed admissible pair
(p, q), we define the admissible slab of @, denoted by S(Q), to be the same as the slab S(p, q);
see Figure 3(a). The following lemma (though very simple) plays an important role in our
algorithm.

» Lemma 1. Any set P of five points in the plane contains an admissible quadruple Q such
that all points of P lie in S(Q).
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Figure 3 An admissible quadruple Q = {p, q, 7, s} with admissible pair (p, ¢). Illustrations of (a)
the slab S(p, q) which is the same as the admissible slab S(Q), (b) the proof of Theorem 2, and (c)
the visibility region V(Q) which is the region visible to both p and gq.

Proof. Let p and ¢ be two points that define a diameter of P, i.e., two with maximum
distance. Of the remaining three points of P at least two of them, say r and s, lie on the
same side of S(p, ¢). Therefore {p, q,r, s} is an admissible quadruple which we denote by Q.
Since pq is a diameter of P, all points of P lie in S(p, q) and hence in S(Q). <

Our orientation of admissible quadruples in the following theorem is similar to that of
Aschner, Katz, and Morgenstern et al. [5] for arbitrary quadruples.

» Theorem 2. Given an admissible quadruple Q, one can place at each point of Q a wedge
of angle 7/2 such that the wedges cover the plane and the induced mutual visibility graph of
Q is connected.

Proof. Let Q = {p,q,r, s}. After a suitable relabeling, rotation and reflection assume that
(p, q) is an admissible pair of @, the line segment pq is horizontal, p is to the left of ¢, the
points r and s lie above pg, and 7 is to the left of s as in Figure 3(b). We place four wedges
at points of @) as in Figure 3(b). Formally, we place a wedge w, at p such that 17; passes
through ¢, place w, at ¢ such that 1Tq passes through p, place w,. at r such that ¢ lies in w,
and WZ is vertical, and place ws at s such that p lies in w, and &1—5 is vertical. These four
wedges cover the entire plane (if we think of the intersection point of 17;, and w, as the origin
of the coordinate system, then the four wedges cover the four quadrants). Moreover, the
induced mutual visibility graph is connected because p<+q, r<>q, and p<+s. |

Recall the two points p and ¢ in the proof of Theorem 2 that make () admissible. Notice
that after orientation of Theorem 2 the admissible slab of @ is uniquely defined by p and gq.
We define the visibility region of @, denoted by V(Q), as part of S(Q) that is visible to both
p and g; see Figure 3(c) for an illustration.

The following theorem, which will be proved in Section 3, plays a crucial role in the
correctness of our algorithm. Most of the paper is devoted to proving this theorem.

» Theorem 3. Let Q1 and Q2 be two admissible quadruples. Assume that wedges of angle
/2 are placed at points of each of Q1 and Q2 according to the placement in the proof of
Theorem 2. Then at least one of the following statements holds
(i) The induced mutual-visibility graph of Q1 U Q2 is connected.
(i) At any point p in S(Q1) U S(Q2) one can place a wedge of angle w/2 such that p is
mutually visible from a point ¢ € Q1 and from a point g2 € Q2. In other words the
induced mutual-visibility graph of Q1 U Q2 U {p} is connected.
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We note that there are admissible quadruples for which statement (i) does not hold, but
(ii) holds for them; see for example Figure 12. Theorem 3 extends the following result of
Aschner et al. [5] which applies only to quadruples that are separated by a line.

» Theorem 4 (Aschner, Katz, and Morgenstern [5], 2013). Let Q1 and Q2 be two quadruples.
Assume that wedges of angle /2 are placed at points of each of Q1 and Q2 according to the
placement in the proof of Theorem 2. If Q1 and Q2 are separated by a straight line, then the
induced mutual-visibility graph of Q1 U Q2 is connected.

2 The approximation algorithm

Let P be a set of n points in the plane. In this section we present our algorithm for computing
a 5-ST of P of weight at most 10 times the weight of the MST of P. In Section 2.1 we
describe the general framework of the algorithm. In Section 2.2 we provide the details of the
algorithm and its analysis.

2.1 A general framework

Our algorithm follows the same framework as previous algorithms [3, 6, 8] which is described
below. This framework was first introduced by Aschner and Katz [3].

Start by computing an MST of P. From the MST obtain a Hamiltonian path H of weight
at most 2 times the weight of MST. It is well-known that such a path can be obtained by

doubling the MST edges, computing an Euler tour, and then short-cutting repeated vertices.

The constant 2 is tight as Fekete et al. [17] showed that for any fixed € > 0 there exist point

sets for which the weight of any Hamiltonian path is at least 2 — ¢ times the weight of MST.

The next step is to partition H into 7 groups each consisting of & consecutive vertices of

H for some constant k (assuming n is divisible by k). Then orient each group independently
in such a way that (I) the vertices in each group are connected, and (II) there is an edge
between any pair of consecutive groups. Thus the induced mutual visibility graph on P is
connected. Moreover, as the vertices of the groups are connected locally (to the vertices of
the same group or a neighboring group), the mutual visibility graph contains a spanning tree
whose weight is within some constant factor of the weight of H. This constant depends only
on k.

The original algorithms of Aschner and Katz [3] partition H into groups of size k = 8 for

a =% and k =3 for a = ZF. The improved algorithms of [8] and [6] (for a« = 2T) partition

H into groups of size k = 3 and k = 2, respectively.

Our algorithm partitions H into groups of size k = 5 for a = 5. The most challenging
part in our algorithm (and in previous algorithms) is to maintain property (II); the proof
of this property often involves detailed case analysis. There is a main difference between
our algorithm and previous algorithms [3, 6, 8]. Instead of orienting all five vertices in each
group simultaneously, we first select four of them and orient only these selected vertices. The
four selected vertices form an admissible quadruple. We refer to the non-selected vertex as a
backup. We show that, except for one “special case”, there is always a connection between
two oriented admissible quadruples. For the special case we use the backup vertex to make
the connection between two quadruples.

13:5
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2.2 Details of our algorithm

In this section we provide details of our algorithm and its analysis. Recall that P is a set of
n points in the plane, and that H is a Hamiltonian path on P such that

w(H) < 2w(MST).

Let hq,...,h,—1 be the sequence of edges of H from one end to another. Partition
the edges of H into five sets H; = {h1,hg,...}, Hy = {ho,h7,...}, Hs = {hs, hg,...},
Hy = {h4, ho,...}, and Hs = {hs, hio,... }. Let Hy with k € {1,2,3,4,5} be the edge set
with the largest weight. Then

Figure 4 Illustration of the groups and sub-paths (dashed edges belong to Hy, where k = 5).

By removing all edges of Hy from H we obtain a sequence of sub-paths each containing
five vertices (except possibly the first and last sub-paths). To simplify our description we
assume for now that all sub-paths have five vertices, later in Remark 5 we will take care of
the case where the first and last sub-paths have less than five vertices. We refer to the five
vertices of each sub-path as a group. Let g1, 9o, ..., 9mn denote the sequence of the groups
that is corresponding to the sequence of sub-paths along H as in Figure 4.

From each group g; we take an admissible quadruple Q); (consisting of four vertices) as in
the proof of Lemma 1. We denote the remaining vertex of g; by b;; this is a backup vertex.
By Lemma 1, b; lies in S(Q;). We orient each admissible quadruple @; according to the
orientation in the proof of Theorem 2 which ensures the connectivity of the induced mutual
visibilty graph G(Q);). Consider any two consecutive oriented quadruples Q; and @Q;4+1. By
Theorem 3 at least one of the following statements holds:

(i) The graph G(Q; U Q;+1) is connected, i.e., there is an edge between @Q; and Q;11.
(ii) Any point p in S(Q;)US(Q;11) can be oriented so that G(Q; UQ;1U{p}) is connected.

If statement (i) holds then we orient b; towards a vertex of @; that sees b; (such a vertex
exists because the orientation of Theorem 2 covers the entire plane). If (i) does not hold but
(ii) holds then we orient b; in such a way that it connects @; and Q;41.

To this end all vertices are oriented except the backup vertex b,, of g,,. We orient b,
towards a vertex of @, that sees b,,. Thus, we obtain a connected induced mutual visibility
graph G(P).

Now we obtain a spanning tree T of G(P) as follows: First we take an arbitrary spanning
tree T; from each G(Q;). Then we connect each pair T; and T;1 either by a direct edge (if
(i) holds) or via a backup vertex (if (ii) holds). Lastly we connect any remaining backup
vertex to its corresponding quadruple by an edge. This gives a spanning tree T that we
report as the output of our algorithm. Notice that the trees T; are not necessarily minimum
spanning trees of graphs G(Q;); we will use the triangle inequality to bound the length of T.
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Analysis of the approximation ratio. To bound the weight of T', we charge the edges of H
for the edges of T as follows. By the triangle inequality, the weight of every edge (p,q) of T
is at most the weight of the unique path in H between p and q. We charge the weight of the
edges of this path for the edge (p,q). Every edge of Hj, is charged only once and that is for
connecting two consecutive trees T; and T;41 (either directly or via a backup vertex). Every
edge of H \ Hy, (i.e., every edge of each sub-path) is charged at most six times: three times
for the three edges of T;, two times for the two edges connecting T; to T;+; and to T;_1, and
once for the edge connecting the backup vertex b; to T;. Therefore

w(T) < w(Hg) + 6w(H \ Hy)

= w(H) + 5w(H \ Hy) < w(H) +5- 4wéH) = 5w(H) < 10w(MST).

Running-time analysis. After computing an MST in O(nlogn) time, the rest of the
algorithm (computing H, finding Hy, orienting admissible quadruples and backup vertices,
and obtaining T') takes O(n) time.

» Remark 5. Here we handle the case where the first sub-path, denoted by ¢, has less than
five vertices (the last sub-path will be treated analogously). This case is essentially a simple
version of Theorem 3 where fewer points are involved. We will use Theorem 3 to handle this
case, however it could also be handled directly but with some case analysis.

We will connect the vertices of § to g; (the first 5-vertex group). Let @ be g1’s admissible
quadruple. Since the oriented points in @ cover the entire plane, it might be tempting to
orient each point p of § towards the point of ) that sees p. This approach may not be
suitable when ¢ has more than one point because to maintain the ratio 10 we should not
connect @ to its proceeding group (here to ¢) by more than one edge. To remedy this, we
use our Theorem 3.

Figure 5 ab is the diameter of 6, and ¢’,d’ are fake points.

As discussed above, we may assume that 0 has 2, 3, or 4 points. Let ab be a diameter of
0 as in Figure 5. Thus, J has points a, b, and at most two other “real” points. We place a
“fake” point ¢’ in S(a,b) and very close to b such that both ¢’ and b lie on the same side of
any line through boundary rays of wedges in (). In the same fashion we place a fake point d’
very close to a, and on the same side of ab as ¢/. Let Q' = {a,b,,d'}. Our placement of ¢/
and d’ — in S(a,b) and on the same side of ab — implies that @’ is an admissible quadruple
with admissible pair (a,b). We orient Q" according to Theorem 2. By Theorem 3-part (i), a
point of Q" and a point of @ are mutually visible (our placement of ¢ and d’ together with
Property 1 from the next section imply that part (i) of Theorem 3 holds). If the visibility
is through a real point say b, then we reflect the orientation of a with respect to ab. After
reflection, @ and b remain mutually visible, and their wedges cover the entire region S(a, b).
Then we orient every other real vertex of § towards the one of @ and b that sees it. If the
visibility is through a fake point say ¢’ then the point of @, say ¢, that sees ¢’ also sees b (this
is implied by our placement of ¢’). In this case we reflect the orientation of b with respect
to ab so that b is mutually visible with ¢, and a and b together see the entire region S(a, b).
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Then we orient every other real vertex of § towards the one of a and b that sees it. In either
case we remove fake points. Therefore the mutual visibility graph on points of ¢ is connected,
and it has a connection to a point in Q) via a or b.

The following theorem summarizes our main result.

» Theorem 6. For any set of points in the plane and any angle o > 5, there is an a-spanning
tree of length at most 10 times the length of the MST. Furthermore, there is an algorithm
that finds such an a-spanning tree in linear time after construction of the MST.

3 Proof of Theorem 3

In this section we prove Theorem 3 which says: Let Q1 and Q2 be two admissible quadruples.
Assume that wedges of angle /2 are placed at points of each of Q1 and Q2 according to the
placement in the proof of Theorem 2. Then at least one of the following statements holds
(i) The induced mutual-visibility graph of Q1 U Q2 is connected.
(i) At any point p in S(Q1) U S(Q2) we can place a wedge of angle w/2 such that p is
mutually visible from a point q1 € Q1 and from a point qo € Q2. In other words the
induced mutual-visibility graph of Q1 U Q2 U {p} is connected.

Our proof is involved. For a better understanding we split our proof into smaller pieces
based on the relative position of admissible pairs of Q1 and Q3. Let Q1 = {a,b,¢,d} and
Q2 ={a’, b, ,d'}. After a suitable relabeling assume that (a, b) and (a’, ') are the admissible
pairs of Q1 and @2, respectively, that are considered in the orientation of Theorem 2. Also
assume that — after the orientation of Theorem 2 — ¢ looks towards a while d looks towards
b, and similarly ¢’ looks towards a’ while d’ looks towards 4" as in Figures 7-13. We use this
notation throughout our proof without further mentioning. Up to symmetry we have the
following four cases:

. a'l’ intersects ab.

/

. The extension of a’b’ intersects the extension of ab.

/

. The extension of a’b’ intersects ab.

. a'l’ is parallel to ab.

OnowD>»

After a suitable rotation we assume that ab is horizontal and a is to the left of b. We
denote by ¢ the line through ab and by ¢ the line through a’d’ as in Figure 7(a). For a point
x we denote by £, the line through z that is perpendicular to ¢, and denote by ¢/, the line
through z that is perpendicular to ¢. For a line [ in the plane we use the terms “above” and
“below” to refer to the two half planes on the two sides of [. If [ is vertical then “below” refers
to the left-side half plane and “above” refers to the right-side half plane. Throughout our
proof, we use the following obvious observation about mutual visibility without mentioning
it in all occurrences.

» Observation 7. Assume that wedges w, and wy of angles 5 are placed at two points p and
q. If the clockwise (resp. counterclockwise) boundary ray of w, meets the counterclockwise
(resp. clockwise) boundary ray of wy at an obtuse or a right angle then p and q are mutually
visible. See Figure 6.

Figure 6 Illustration of Observation 7.
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Some part of our proof (where Q1 and Q)5 are separated by a line) could be implied from
Theorem 4. However, for the sake of completeness we provide our own proof. We provide
the proof of the first cases, A and B-1, with more formal details. To simplify our description,
we will refer to the clockwise (resp. counterclockwise) boundary ray of the wedge that is
placed at a point p by “the clockwise (resp. counterclockwise) ray of p”.

b/
¢ | o ]
a b J
-
o a’
(a) A-1 (b) A-2: ¢’ below ¢, ¢ above ¢

Figure 7 Illustration of the proof of case A.

A. a’b’ intersects ab

We denote by « the intersection angle of ab and a’b’ that lies in V(Q1) NV (Q2). We say that

a is defined by the two vertices that lie on this angle. For example in Figure 7(a) the angle

a is defined by a and b'. Depending on the value of a we consider the following two cases.

1. a > . After a suitable relabeling we assume that « is defined by a and ¥/, as in Figure
7(a). In this case the clockwise ray of a and the counterclockwise ray of b’ meet at angle
a, and thus a and V' are mutually visible by Observation 7.

2. a < §. After a suitable relabeling we assume that « is defined by b and ', as in Figure
7(b). If ¢’ is above £ then the clockwise ray of a and the counterclockwise ray of ¢/ meet
at angle 7 — a, and thus ¢’ and a are mutually visible by Observation 7. Similarly if
c is below ¢ then ¢ and a’ are mutually visible. Assume that ¢’ is below £ and c is
above ¢ as in Figure 7(b). If d’ is to the left of £. then the clockwise ray of d’ and the
counterclockwise ray of ¢ meet at angle 5 4 «, and thus d’ and ¢ are mutually visible by
Observation 7. Similarly if d is below ¢/, then d and ¢’ are mutually visible. Assume that
d’ is to the right of 4., and d is above £.,. In this setting which is depicted in Figure 7(b),
d and d' lie in opposite cones formed by intersection of ¢, and ¢/,, and thus d and d’ are
mutually visible (observe that the clockwise ray of d and the counterclockwise ray of d’
meet at angle ™ — «).

/

B. The extension of a’b’ intersects the extension of ab

Let « be the angle at which the extensions of ab and a’b’ meet each other as in Figures 8 and
9. After a suitable reflection and relabeling we assume that a’d’ lies below ¢, their extensions
meet at a point m to the right of b, and o’ is farther from m than ¥’. Depending on the value
of a we consider two cases.

1. a > . Depending on visibility regions of @1 and Q2 we consider three sub-cases (up to
symmetry).
1. V(Qy) lies below ab and V(Q2) lies below a’d’ as in Figure 8(a). In this case the
clockwise ray of a’ and the counterclockwise ray of a meet at angle «, and hence a < a’
by Observation 7.

13:9
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2

R '
\
\ E
4 |- o )
a ZZi'/ X d
d a’
(a) B-1-1 (b) B-1-2: d' above ¢, d below £,  (c) B-1-3: d’ below ¢, d below ¢’

Figure 8 Illustration of the proof of case B-1.

. V(Q1) lies below ab and V(Q2) lies above a’b’. See Figure 8(b). If d’ is below ¢ then

the clockwise ray of d’ and the counterclockwise ray of a meet at angle o and hence
a<+d'. Assume that d’ is above £. If d is above ¢/, then the clockwise ray of d and the
counterclockwise ray of d’ meet at angle 37” — « and thus d<> d’. Assume that d is
below ¢,. In this setting which is depicted in Figure 8(b) the clockwise ray of ¢’ and
the counterclockwise ray of d meet at angle o and thus ¢’ <+ d .

. V(Q1) lies above ab and V(Q2) lies above a’b’. See Figure 8(c). If d’ is above ¢ then

a<>d'. Similarly if d is above ¢’ then a’<+d. Assume that d’ is below £ and d is below
¢'. In this setting which is depicted in Figure 8(c) the clockwise ray of d’ and the
counterclockwise ray of d meet at angle o and thus d<«d’ .

(a) B-2-1: d above £, a’ right of £4  (b) B-2-2: d’ left of {4 (c) B-2-3: b left of £,/

Figure 9 Illustration of the proof of case B-2.

2. a < §. Similar to the previous case here we also consider three sub-cases.

1.

V(Q1) lies above ab and V(Q2) lies above a'b’. See Figure 9(a). If d is below ¢/, then
d and V' are mutually visible. If a’ is to the left of ¢4 then o’ and ¢ are mutually visible.
Assume that d is above ¢/, and a’ is to the right of ¢4 as in Figure 9(a). In this setting
d and o’ are mutually visible.

. V(Q1) lies above ab and V(Q2) lies below a’b’. If d’ is to the left of £; then c+>d’ as

in Figure 9(b). Analogously if d is below ¢/, then ¢’ <+d. Therefore assume that d’ is
to right of ¢4 and d is above £/,. In this setting d<>d'.

. V(@) lies below ab and V(Q2) lies above a'b’. See Figure 9(c). Consider £,, i.e.,

the line through a’ that is perpendicular to £. If b is to the right of £, then a’ <.
Assume that b is to the left of £,/ as in Figure 9(c). Now we look at ¢,. If a is above
this line then a<»a’, otherwise a<+b'. (Notice that when a is above ¢/, then a and b’
may not be mutually visible, for example when ¥’ is very close to a’.)
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C. The extension of a’b’ intersects ab

We denote by m the intersection point of £ and ab. After a suitable reflection and relabeling
we assume that a'b’ lies below £, o’ is farther from m than ¥’, and angle Za'ma < 7,
Figure 10. Depending on visibility regions of ()1 and Q2 we consider four cases.

| d' ' Z’//
él/ ‘Eu‘l ,,<__| _______ /o C
7b Tﬁ(fl | -

as in

a' a

(a) C-1 (b) C-2: ¢ left of £, (c) C-2: ¢ below ¢

Figure 10 Illustration of the proof of cases C-1 and C-2.

1. V(Qy) lies below ab and V(Q2) lies below a’d’ as in Figure 10(a). In this case a’ <+ b.

2. V(Qy) lies above ab and V(Q2) lies above a’V’. If ¢ is to the left of £,/ then so is d, as in
Figure 10(b). In this case d sees both a’ and b’, and at least one of a’ and b’ sees d, and
thus d<sa’ or d<>1'. Assume that c is to the right of £,/. If ¢ is above ¢ then c<ad’'.
Thus, assume that c¢ is below ¢ as in Figure 10(c). Recall that d’ is in slab S(a’,b'). If d’
is above the horizontal line through c¢ then d’ <+ b, otherwise d' <> c.

\
| =
a , T b “ : \\\b, - : b
" | X SN
I a N e
[ W !
e W\ !
f W
- \.//l v
|
|
¢ \/
e
d .
(a) C-3: d' left of £, (b) C-3: d’ right of £., d below £/,

Figure 11 Illustration of the proof of case C-3.

3. V(Q1) lies above ab and V(Q2) lies below a’t’. This case is depicted in Figure 11. If ¢ is
below ¢’ then c<sa’. Assume that c is above ¢'. If d’ is to the left of £, then c<+d’ as in
Figure 11(a). Assume that d’ is to the right of £, (and hence to the right of £4). Now we
look at d with respect to ¢/,. If d is above ¢/, then d<>d’. If d is below ¢/, then it is also
below £/, and thus d<> ¢’ as in Figure 11(b).

4. V(@) lies below ab and V(Q2) lies above a’t’. This case is depicted in Figure 12. If d’
is below ¢ then d’'<+b. Assume that d’ is above £. If a is below ¢}, then a<»b'. Assume
that a is above ¢;,. If ¢ is above ¢/, then c<>d’. Assume that c is below ¢/, (which is
also below /,). Notice that ¢’ lies in the slab bounded by ¢}, and ¢/,. If ¢ is to the left

STACS 2022
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of £, then ¢/ <3 c. Assume that ¢’ is to the right of /.. Notice that d lies in the vertical
slab bounded by ¢, and £.. Let ¢; be the line through ¢’ parallel to ¢'. If d is below #;
then d<>¢’. Assume that d is above ¢;. This configuration is depicted in Figure 12 (the
caption of this figure summarizes the constraints). This is the configuration for which
statement (i) of the theorem does not hold; for all other configurations statement (i)
holds. We will show that statement (ii) holds in the current setting.

Figure 12 Illustration of case C-4: d’ is above ¢, a is above £,,, c is below £/, ¢ is to the right

of £. (and in the slab defined by ¢/, and ¢;,), and d is above ¢; (and in the slab defined by ¢, and
£c). In this figure, Q1 and Q2 are oriented according to Theorem 2 but there is no mutual visibility
between points of Q1 and points of Q2 (statement (i) in Theorem 3 does not hold here).

First, we extract a property of the current setting which is used in Remark 5. See
Figure 12 for a better understanding of this property, and notice that in the current
setting the points b, c lie on different sides of ¢},, and the points a’,d’ lie on different
sides of /.

» Property 1. If statement (i) in Theorem 3 does not hold then then the points b, c or
the points a,d of Q1 lie on different sides of a line through boundary rays of wedges of
Q2, and similarly the points b',c’ or the points a’,d’ of Q2 lie on different sides of a line
through boundary rays of wedges of Q1.

To verify that statement (ii) holds in the current setting, let p be any point in the region
S(Q1) U S(Q2). We show how to place a wedge of angle J at p so that p is mutually
visible from a point in @7 and a point in Q2. To simplify our description we partition
S(Q1) U S(Q2) into eight regions Ry, ..., Rg as in Figure 13. If p € Ry then we orient
p similar to d’, and thus p<+b and p<b'. If p € Ry then we orient p similar to a, and
thus p<+c and p<b'. If p € R3 then we orient it similar to ¢’ so that p<+c and p<>a’. If
p € R4 then we orient it similar to b so that p<+d and p<>a’. If p € R5 then we orient
it similar to o, and hence p<+ d and p<> d'. If p € Rg then we orient it similar to c,
and thus p<va and p<d'. If p € R; then we orient it similar to a’ so that p<a and
p<+c’. Finally if p € Rg then we orient it similar to d, and hence p<»b and p<>¢’. Thus
statement (ii) of the theorem holds.
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Ry

Figure 13 Partitioning S(Q1) U S(Q2) into regions Ry, ..., Rs.

D. a’t’ is parallel to ab

Assume that ab and a’b’ are horizontal, and ab lies above a'b’. Consider any horizontal line h
between ab and a’b’. One pair of points from @ (either (a,b) or (¢,d)) covers the half plane
below h. Also, one pair of points from @y (either (a’,b") or (¢, d’')) covers the half plane
above h. One can simply verify that there is an edge between these two pairs in the induced
mutual visibility graph.

This is the end of our proof of Theorem 3.

4  Conclusions

The obvious open problem is to improve our approximation ratio 10 which we think is not
the best possible ratio. The use of a Hamiltonian path is a bottleneck towards our analysis
as it forces a factor of 2 in the ratio. It might be possible to get better ratios by using the
original MST instead of the path. Perhaps the MST may not be the best lower bound either
because one may obtain a better ratio by considering the 5-MST as a lower bound.

13:13
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