502 research outputs found

    Estimator for Stochastic Channel Model without Multipath Extraction using Temporal Moments

    Get PDF

    Calibrating Stochastic Radio Channel Models:An Approximate Bayesian Computation Approach

    Get PDF

    Parameter Estimation for Stochastic Channel Models using Temporal Moments

    Get PDF

    Learning Parameters of Stochastic Radio Channel Models from Summaries

    Get PDF
    Estimating parameters of stochastic radio channel models based on new measurement data is an arduous task usually involving multiple steps such as multipath extraction and clustering. We propose two different machine learning methods, one based on approximate Bayesian computation (ABC) and the other on deep learning, for fitting stochastic channel models to data directly. The proposed methods make use of easy-to-compute summary statistics of measured data instead of relying on extracted multipath components. Moreover, the need for post-processing of the extracted multipath components is omitted. Taking the polarimetric propagation graph model as an example stochastic model, we present relevant summaries and evaluate the performance of the proposed methods on simulated and measured data. We find that the methods are able to learn the parameters of the model accurately in simulations. Applying the methods on 60 GHz indoor measurement data yields parameter estimates that generate averaged power delay profile from the model that fits the data

    Calibration of Stochastic Radio Propagation Models Using Machine Learning

    Get PDF

    Calibration of Stochastic Channel Models using Approximate Bayesian Computation

    Get PDF

    Auto-Generated Summaries for Stochastic Radio Channel Models

    Get PDF

    A General Method for Calibrating Stochastic Radio Channel Models with Kernels

    Get PDF
    Publisher Copyright: CCBYCalibrating stochastic radio channel models to new measurement data is challenging when the likelihood function is intractable. The standard approach to this problem involves sophisticated algorithms for extraction and clustering of multipath components, following which, point estimates of the model parameters can be obtained using specialized estimators. We propose a likelihood-free calibration method using approximate Bayesian computation. The method is based on the maximum mean discrepancy, which is a notion of distance between probability distributions. Our method not only by-passes the need to implement any high-resolution or clustering algorithm, but is also automatic in that it does not require any additional input or manual pre-processing from the user. It also has the advantage of returning an entire posterior distribution on the value of the parameters, rather than a simple point estimate. We evaluate the performance of the proposed method by fitting two different stochastic channel models, namely the Saleh-Valenzuela model and the propagation graph model, to both simulated and measured data. The proposed method is able to estimate the parameters of both the models accurately in simulations, as well as when applied to 60 GHz indoor measurement data.Peer reviewe

    Maximum Likelihood Calibration of Stochastic Multipath Radio Channel Models

    Get PDF
    We propose Monte Carlo maximum likelihood estimation as a novel approach in the context of calibration and selection of stochastic channel models. First, considering a Turin channel model with inhomogeneous arrival rate as a prototypical example, we explain how the general statistical methodology is adapted and refined for the specific requirements and challenges of stochastic multipath channel models. Then, we illustrate the advantages and pitfalls of the method based on simulated data. Finally, we apply our calibration method to wideband signal data from indoor channels
    • …
    corecore