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Abstract

Stochastic models of the radio channel are widely used simulation tools
due to their simplicity and low computational cost compared to the de-
terministic approaches. Another appealing feature of stochastic channel
models is that they are versatile, i.e., they can be applied to differ-
ent radio propagation scenarios by simply calibrating their parameters.
This is easier said than done as most stochastic channel models have
intractable likelihood functions, leaving standard parameter estimation
methods inapplicable. The models are typically constructed with a focus
on the underlying phenomenon and less attention to any calibration con-
cerns. This leads to models which, despite representing the channel well,
can be difficult to calibrate using standard estimation approaches. As a
way to remedy this, engineers have mainly relied on ad-hoc methods.

Since the early days of the Turin model in the 70s, it has been cus-
tomary in the field to split the calibration problem into multiple steps.
The first step involves estimating the multipath components by imple-
menting high-resolution algorithms like CLEAN, SAGE, and RiMAX.
The extracted multipaths are then used to estimate the parameters of the
stochastic channel models. With the advent of the cluster-based Saleh-
Valenzuela (S-V) model, an additional step of clustering the multipath
components has been added to the calibration procedure. This multi-
step approach has fueled the independent development of new multipath
extraction and clustering algorithms, each having their own particular
settings. However, evaluating performance of the end-to-end calibration
method becomes infeasible, not to mention the difficulty in implement-
ing these sophisticated algorithms.

In search of a calibration method applicable to stochastic channel
models irrespective of their underlying mathematical structure, we look
towards other scientific fields where calibrating models with intractable
likelihoods is commonplace. One such field is population genetics, where
a likelihood-free calibration method called approximate Bayesian com-
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putation (ABC) has been developed in the past couple of decades. Suited
for models that are easy to simulate from, ABC yields samples from the
approximate posterior of the parameters by comparing summary statis-
tics of the measured and simulated data in some distance metric.

In this work, we develop likelihood-free methods, primarily based on
ABC, to calibrate stochastic radio channel models without multipath
extraction and clustering. Our methods utilize the temporal moments,
which are frequently used statistics for characterizing the radio channel.
We show that the temporal moments are informative about the param-
eters of stochastic channel models, and hence, can be used to calibrate
them. Taking the Turin, the S-V, and the propagation graph (PG) model
as examples, we propose calibration methods that accurately estimate
their parameters in simulations. We also validate the proposed methods
by applying them to real channel measurements.

Considering the usefulness of the temporal moments, we empirically
investigate their distribution using a wide range of measurements. We
find them to be well-modeled by a multivariate log-normal distribution
in different propagation scenarios and frequencies. The proposed model
is simple to use, and can simulate channel characteristics such as mean
delay and rms delay spread jointly.

Our main contribution is the development of a general ABC method
that can calibrate stochastic channel models with different mathematical
structures using the exact same procedure and settings. The end-to-end
calibration method is unlike any available in the literature, and it enables
model comparison studies that was not possible before. Exemplified by
the S-V and the PG model, the method circumvents the need for spe-
cialization of summaries, and instead, relies on comparing distributions
of the temporal moments.



Resumé

Stokastiske modeller af radiokanalen er meget anvendte simuleringsværk-
tøjer på grund af deres enkelhed og lave beregningsomkostninger sam-
menlignet med de såkaldte deterministiske metoder. En styrke ved
stokastiske modeller er, at de er alsidige, dvs. de kan anvendes til forskel-
lige radiomiljøer ved blot at kalibrere deres parametre. Dette er dog
lettere sagt end gjort, da de fleste stokastiske modeller for radio miljøer
med multiple udebredelsesveje har uhåndterlige eller utilgængelige like-
lihoodfunktioner, hvorfor estimeringsmetoder som maximum likelihood
eller de fleste Bayesianske metoder ikke kan anvendes. Modellerne er
typisk konstrueret med fokus på det underliggende radioudbredelses-
fænomen (fx flervejsudbredelsen) og ringe opmærksomhed på mulighe-
den for kalibrering. Dette fører til modeller, der, selv om de repræsen-
terer radiokanalen godt, kan være vanskelige at kalibrere ved hjælp af
standard estimatorer. I stedet har ingeniører hovedsagelig benyttet sig
af metoder konstrueret ad-hoc til den enkelte model.

Siden Turins arbejde med stokastiske flervejsmodeller i 1970’erne har
det været almindelig praksis at dele kalibreringsproblemet op i flere min-
dre trin. Det første trin involverer ekstrahering af flervejskomponenter
(multipaths) ved hjælp af algoritmer som CLEAN, SAGE og RiMAX.
De ekstraherede mulitpaths bruges derefter til at estimere parametrene
for de stokastiske kanalmodeller. Med tilføjelsen af den clusterbaserede
Saleh-Valenzuela (S-V) -model er der tilføjet et yderligere trin til kali-
breringsprocessing, nemlig gruppering (clustering) af multipath kompo-
nenter. Opdeling af estimeringsproblemet i flere trin har ansporet en
del arbejder med at udvikle nye algoritmer til multipath ekstraktion og
clustering. Hver især har disse algoritmer har særlige parametervalg
og antallet af kombinationsmuligheder er mange. Dette gør det til en
vanskelig opgave at evaluere og lave end-to-end sammenligninger mellem
for skellige kalibreringsmetoder.

I jagten efter en kalibreringsmetode, der kan anvendes på stokastiske
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kanalmodeller uanset deres underliggende matematiske struktur, søges
fra andre fagområder, hvor kalibrering af modeller med utilgængelige
likelihood funktioner er almindelig. Et sådant område er population-
sgenetik, hvor en likelihood-fri kalibreringsmetode kaldet Approximate
Bayesian Computation (ABC) er blevet udviklet i løbet af de sidste par
årtier. ABC er velegnet til modeller, der let kan simuleres fra, og tillader
sampling fra den approksimerede a posteriori fordeling ved at sammen-
ligne statistikker for målte og simulerede data i en vis afstandsmetrik.

I dette arbejde udvikles likelihood-fri metoder, primært baseret på
ABC, til at kalibrere stokastiske multipath radiokanalmodeller. Derved
undgås trinene med multipath ekstraktion og clustering. Vores metoder
anvender de letberegnelige tids-momenter, som ofte bruges som statis-
tikker til karakterisering af radiokanaler. Vi viser, at tidsmomenterne
er informative om parametrene for stokastiske kanalmodeller og derfor
kan bruges til kalibrering. De udviklede ABC metoder er generelle i
den forstand at nøjagtig den samme algoritme kan anvendes til kali-
brering forskellige modeller, fx Turin’s model, S-V modellen og mod-
ellering med udbredelsesgrafer (PG-modellen). De udviklede metoder
afprøves i simuleringer og på måledata.

Da tidsmomenterne findes nyttige som statistikker undersøges deres
fordeling empirisk for en række forskellige datasæt fra forskellige radio-
miljøer. Vi finder at fordelingen af tidsmomenter er godt modeleret ved
en multivariat log-normalfordeling. Log-normal modellen er enkel at
bruge i simuleringer.

Afhandlingens hovedbidrag er en generel ABC-metode, til end-to-
end kalibrering af stokastiske kanalmodeller med forskellige matema-
tiske strukturer ved hjælp af nøjagtig samme procedure og indstillinger.
Dette gør det praktisk muligt at sammenligne at sammenligne forskellige
modeller på de samme data.
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Introduction

Wireless or radio communications is ubiquitous in the modern world and
their applications are increasing day-by-day. Wireless systems enable
communication between devices over a wide range of distances, from
a few metres between the WiFi router and our phones to millions of
kilometres between Earth and the Perseverance rover on Mars. With
the advent of self-driving cars, internet-of-things, and automation of
industries, the reliance on radio communications is going to increase
even more in the near future.

Radio communication pertains to the use of electromagnetic waves
for sending and receiving information between two devices. A communi-
cation system primarily consists of three components — a transmitter,
a receiver, and the environment in which the communication is taking
place, termed the radio channel. The transmitter, equipped with one or
more antennas, transmits an electromagnetic wave which has some in-
formation embedded in it. The wave, or the signal, propagates through
the environment, interacting with surrounding objects and surfaces, and
thus gets distorted and modified according to the radio channel. This
modified signal is then sensed at one or more antennas of the receiver.
The task of the receiver is now to extract the initial embedded infor-
mation from the received signal, which is now contaminated with noise
and possibly interference. To do that, the communication system needs
to account for the effect of the radio channel on the transmitted sig-
nal. The radio systems of the modern era rely on understanding the
behavior of the radio channel for better and more efficient recovery of
the information. Hence, knowledge about the channel is imperative for
the design, analysis, and testing of communication systems.
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1 Radio Channel Modeling

Radio channel modeling is the craft of creating mathematical descrip-
tions of the radio channel [1]. Typically, the radio channel is modeled
as a linear system with the transmitted signal, x(t), being the input
and the received signal, y(t), being its output. In many cases the chan-
nel is time-variant; however, we will assume throughout this thesis that
the channel is time-invariant. A time-invariant system is agnostic to
time-shifts in the input signal, and simply shifts the output signal cor-
respondingly. This would correspond to a radio channel which does not
change over time, i.e. when the transmitter, the receiver, and the en-
vironment is static, e.g. in an indoor scenario. The output of a linear,
time-invariant system can be written in complex-baseband notation [2]
using the convolution operator as (ignoring noise)

y(t) = {h ∗ x}(t) (1)

=
∫
h(τ)x(t− τ)dτ (2)

where h is referred to as the impulse response of the radio channel [3].
The impulse response, as the name suggests, is the response of the system
when the Dirac delta, or an impulse, is applied as input. The time-
domain functions can be transformed into the frequency-domain using
the Fourier transform, F1, and (1) can be alternatively expressed as

Y (f) = F{h(t)}F{x(t)} (3)
= H(f)X(f). (4)

Here, Y (f) = F{y(t)}, and the quantity H(f) is called the transfer
function. The radio channel is fully characterized by its impulse response
or transfer function, and therefore h(t) or H(f) are the quantities of
interest for radio channel modeling experts.

Radio channel modeling can be roughly classified into determinis-
tic modeling, stochastic modeling, a combination of the two termed as
geometric-stochastic modeling [4], and statistical modeling, each having
their own purpose. Deterministic channel models aim to mimic the exact
propagation conditions and phenomenon for a given propagation envi-
ronment. They therefore rely on the geometry, wave theory, geometric

1The Fourier transform of a function g(t) is defined as F{g(t)} = G(f) =∫∞
−∞ g(t) exp (−j2πft)dt.
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Input
x(t)

Radio Channel
h(t)

Output
y(t)

x(t− τ) y(t− τ)

a1x1(t) + a2x2(t) a1y1(t) + a2y2(t)

Time-invariance

Linearity

Fig. 1: A communication system with one transmitter and one receiver. The trans-
mitted signal, x(t), is transformed by a linear, time-invariant radio channel, h(t),
to produce the received signal, y(t). Here τ ∈ R+ is a time shift in the signal and
a1, a2 ∈ R are constants.

optics and the uniform theory of diffraction [5] to simulate the interac-
tions of the electromagnetic wave with the objects in the surroundings.
They require detailed descriptions of the surrounding objects and their
material properties, along with their precise locations. Deterministic
models such as the ray tracer are therefore computationally expensive,
but are considered to be quite accurate in settings where the environment
and electromagnetic material properties are known with great accuracy.

Stochastic channel models, on the other hand, are agnostic to the
minute details of the propagation environment and positions of the ob-
jects. They assume that the received signal is a realization from an
unknown distribution which is the true state of nature. They then aim
to construct a probabilistic model of the channel that approximates the
description of the received signal based on the propagation phenomenon.
The stochastic channel models are governed by a set of parameters, pri-
marily the parameters of the proposed probability distributions. Since
they are designed with no specific propagation environment in mind,
they can be applied to different scenarios by adjusting their parameters.
Their computational cost is low, and hence, they can be used for Monte
Carlo methods where a large number of channel realizations are needed.
They are also simpler to use for analysis and design of radio systems.

The geometric-stochastic models basically combine some aspects of
both the deterministic and the stochastic models. For example, they
may take into account the geometry of the scenario and the position of
the objects in the environment, while the interactions of the signal with
the environment are considered random.

Finally, the statistical models describe the output or the data, dis-
regarding any internal workings of the system. Statistical models are
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often used for modeling the path loss of the signal, i.e. the reduction in
the power of an electromagnetic signal as it propagates through space.
In this work, we focus on the radio channel models of stochastic nature.

2 Calibrating Stochastic Models

In order to use a model for simulation purposes, its parameters need
to be either set based on physical considerations, e.g. knowledge of
environment and material constants, or estimated according to some
data. This procedure of setting parameters of a model is termed as
calibration. A typical example in the field of signal processing would
be the modeling of thermal noise in various measurement equipment
with a zero-mean Gaussian distribution. Calibration from data then
involves fitting noisy measurements from the equipment to the zero-
mean Gaussian distribution and estimating its variance value. Using
the estimated variance value, noise can be simulated from the model.
Alternatively, this variance might be calibrated from a thermal noise
model on knowledge of the temperature. In this thesis, we limit our
discussion to calibration of models using data, also known as parameter
estimation.

The aim of calibration is to find the parameter value that yields sim-
ulated data from the model that best fits the data. Thus, calibrating a
model from data is essentially an inference or a model fitting problem.
The data used for calibration, which we will refer to as measured or
observed data throughout this thesis, is usually collected through mea-
surement campaigns.

In the case of radio propagation, measurement campaigns are expen-
sive to carry out and require significant time and effort. Hence, carrying
them out for every propagation scenario or setting is infeasible. How-
ever, similar impulse response data can be simulated from a stochastic
channel model if its parameters are calibrated using the measured data.
Of course, the accuracy of a model’s predictions depends on both the
model and the calibration process. A calibration method can only pro-
vide an optimal fit of the model to the data in some metric, but cannot
guarantee accurate model predictions or remedy the inadequacies of a
model. The calibration problem can be framed as:
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Calibration problem: Consider a stochastic model whose output is
treated as random realizations out of a family of distributions, Pθ, pa-
rameterized by the vector θ. The observed data, y, is a collection of
possibly multiple realizations out of some unknown distribution, say Q.
The calibration problem can then be framed as: estimate θ given y such
that Pθ is “close to” Q.

An important component for calibrating stochastic models is the
likelihood function, denoted fθ(y) or f(y|θ). The likelihood function is
defined as the probability density of the data y viewed as a function of
the parameter θ. It measures the support provided by the data for each
possible value of the parameter. For a given data y, if the value of the
likelihood function at two parameter points, θ1 and θ2 is L1 and L2,
respectively, such that L1 > L2, then it is more likely that y is observed
for θ = θ1 than θ = θ2.

There are two approaches for tackling such a calibration problem,
namely the frequentist and the Bayesian approach. We now describe
how the likelihood function enters in both the frequentist and Bayesian
approach for calibration.

Frequentist Inference In this calibration framework, the parameter
vector θ is considered to be a deterministic quantity belonging
to some parameter space Θ. We denote the likelihood function
as fθ(y). Maximizing the likelihood function with respect to the
parameters θ results in the maximum likelihood estimate, θ̂ML,
that is

θ̂ML = argmin
θ∈Θ

fθ(y). (5)

The above minimization problem can be solved either analytically,
or using standard optimization toolboxes that search the parame-
ter space to obtain a point estimate of θ.

Bayesian Inference In the Bayesian approach, the parameter θ is con-
sidered as a random vector out of some distribution p(θ), called
the prior distribution. Hence, the likelihood function is denoted
as a conditional density of the data given the parameter, f(y|θ).
The aim is then to characterize the distribution of the parameters
given the observed data, p(θ|y), called the posterior distribution.
The prior, the likelihood, and the posterior are related to each
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other per the Bayes’ theorem that reads,

p(θ|y) = f(y|θ)p(θ)∫
f(y|θ)p(θ)dθ . (6)

Point estimates of the parameter can then be obtained either by
maximizing the posterior, leading to the maximum a priori (MAP)
estimate,

θ̂MAP = argmax
θ

p(θ|y), (7)

or by taking its mean, leading to the minimum mean squared error
estimate (MMSE),

θ̂MMSE = E[p(θ|y)]. (8)

The denominator in Eq. 6 contains the marginal density of the
observations and is termed as the evidence. This constant term
solely depends on the data, and is usually not known due to the
unavailability of the distribution of y for most practical cases. In
those cases, the posterior distribution is known up to a normaliza-
tion constant and it cannot be characterized fully. However, it can
approximated if we get enough samples out of the posterior. Sam-
pling from the unnormalized posterior can be achieved via Markov
chain Monte Carlo [6] or sequential Monte Carlo methods [7].
An important aspect of Bayesian inference is the choice of the
prior distribution. The prior signifies our initial beliefs about the
parameter, which gets updated based on the observed data. As-
signing equal probabilities over the entire parameter space leads
to frequentist inference, where θ̂MAP = θ̂ML.

Note that for all practical purposes, fθ(y) and f(y|θ) are the same, with
most engineering textbooks using the latter notation. Here, we make
the distinction in notation to highlight the difference between the two
inference approaches, see [8] for more details.

2.1 Intractability of Likelihood

Irrespective of the approach, it is evident that the likelihood function
plays an important role in model calibration. However, for some complex
stochastic models the likelihood becomes intractable. Intractablity of
likelihood refers to the inability to numerically evaluate the likelihood
function for an arbitrary θ, and can occur in the following cases:



3. Measuring the Radio Channel 9

I1 The model is simply too complex, in which case it is either impossi-
ble or impractical to write down a closed-form expression for the
likelihood function.

I2 Variables that are important for model description are unobserved,
in which case the likelihood manifests in the form of a computa-
tionally intractable integral.

I3 The likelihood function has not been derived yet for a newly con-
structed model.

With the likelihood unavailable, maximizing it with respect to the pa-
rameters is infeasible, as is Bayesian inference since the posterior dis-
tribution is proportional to the likelihood. Thus, calibration of such
models using the aforementioned standard techniques is not possible.
As it turns out, stochastic radio channel models suffer from both I1 and
I2, and often also from I3. They are therefore calibrated using ad-hoc
methods, as we will see in the next chapter.

3 Measuring the Radio Channel

The data used for calibrating a stochastic radio channel model is usually
obtained by conducting channel measurement campaigns, called chan-
nel sounding [9]. The campaign involves placing the the transmit and
the receive antennas at a certain distance from each other in some in-
door or outdoor environment. A known signal is then transmitted from
the transmit antennas and recorded at the receive antennas using, e.g.,
a vector network analyzer (VNA) which is a measurement equipment
used to measure two ports. By viewing the radio channel as a two-port
system, we can use a VNA to measure it, as depicted in Fig. 2. Virtual
multi-input, multi-output measurements are formed by repeating mea-
surements for multiple positions of transmit and receive antennas. The
received signal at the receive antennas depends upon the signal trans-
mitted and the radio channel, and is contaminated with thermal noise
from the measuring equipment. The measurement data is then obtained
by accounting for the effect of the known transmitted signal.
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Fig. 2: Principle diagram for measurement of a radio channel using a vector network
analyzer (VNA).

4 Thesis Structure

The rest of the thesis is organized as follows:

Chapter 2 introduces the problem being considered in this thesis. We
present the calibration methods adopted for some of the common
stochastic radio channel models and their drawbacks.

Chapter 3 presents the background on the calibration methods adopted
in this thesis. We provide an overview of the likelihood-free cali-
bration methods available in the literature.

Chapter 4 lists all the research questions to be answered and outlines
the research methodology adopted.

Chapter 5 provides the main contributions of the thesis in terms of an
overview and summary of Papers A–I.

Chapter 6 provides the conclusions of the thesis and the future out-
look.



Calibration of Stochastic
Radio Channel Models

In this chapter, we give three examples of stochastic radio channel mod-
els, namely the Turin model, the Saleh-Valenzuela model, and the prop-
agation graph model, for the purpose of elevating the discussion on their
calibration procedures. These models are used as examples throughout
the thesis.

5 Stochastic Multipath Models

Consider the scenario where a radio signal x(t) is transmitted in an
environment as sketched in Fig. 3. The signal, being transmitted in
multiple directions by the transmit antenna, bounces off of the objects
in the environment before being sensed at the receiver. The phenomenon
of multiple copies of x(t) arriving at the receiver is termed as multipath
propagation.

The time delay and the complex gain of each of those copies depends
upon their exact propagation trajectory. For example, the line-of-sight
path, which is the direct unobstructed path between the transmit and
the receive antenna, has the minimum delay and the maximum gain out
of all the possible paths. The lth path has the delay τl and the gain αl
associated with it, called the multipath components. The received signal,
y(t), is hence a superposition of such multipath components, each having
their own delay and gain, and can be written as

y(t) = (h ∗ x)(t) + w(t) (9)
=
∑
l

αlx(t− τl) + w(t) (10)

11
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Transmitter
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x(t)
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Fig. 3: Multipath propagation phenomenon. The objects reflecting the transmitted
signal could be e.g. walls or ceiling in an in-room scenario or nearby building or trees
in case of outdoor propagation.

where h(t) is the channel impulse response and w(t) denotes the complex
additive white Gaussian noise.

A stochastic multipath radio channel model considers the delays and
the gains as a marked point process, Z = {(τl, αl)}, where {τl} are the
points and {αl} are their associated marks. Equivalently, Z may be
viewed as a higher dimensional point process as done in [10]. In contrast,
Z in the case of deterministic multipath models is computed from the
given environment. Defining a stochastic multipath model then amounts
to defining the marked point process Z, having parameters θ. The model
is therefore a stochastic mechanism that outputs such a marked point
process. In the following, we discuss two seminal stochastic multipath
models for the radio channel, one proposed by Turin et al. in 1972 and
the other by Saleh & Valenzuela in 1987.

5.1 Calibrating the Turin model

The model for multipath channel proposed by Turin et al. in 1972 [11]
was a pioneering work in the field.
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Example 5.1 (Turin model)
Turin defined the impulse response, h(t), as

h(t) =
∑
l

αlδ(t− τl), (11)

where δ(·) is the Dirac delta function. The delays, {τl}, are modeled
as a Poisson point process with arrival rate λ(t). Assuming a constant
arrival rate, say λ(t) = λ0, yields the homogeneous Turin model. The
gains conditioned on the delays, i,e, αl|τl, are assumed as indepen-
dent and identically distributed (iid), with their magnitude modeled
using a log-normal distribution, and their phase uniformly distributed
over (0, 2π]. The parameters of λ(t) and that of the αl|τl distribution
constitute the parameter vector of this model.

The Turin model suffers from intractability issue I2, with the under-
lying point process realization being the unobserved or hidden variables.
Let y be a realization of the channel measurement, and z be the corre-
sponding point process realization. Assuming that z is known, the joint
likelihood of y and z can be written as

fθ(y, z) = p(y|z; θ)p(z; θ). (12)

The desired likelihood function fθ(y) can be obtained by marginalizing
fθ(y, z) with respect to z as

fθ(y) =
∑
k

P(|z| = k)
∫
p(y|z; θ)p(z| |z| = k; θ)dz, (13)

where |z| denotes the number of points in z or its cardinality, and P(|z| =
k) is the probability that the cardinality of z is k. The likelihood is
therefore computationally intractable as it is a sum of possibly infinite
integrals since z is unobserved.

To calibrate their model to a set of measurement data collected in
outdoor scenarios, Turin et al. reduced the dimension of the measured
data by recording the peaks in the data along with their magnitudes.
These served as estimates of the delays and the gains of the multipaths.
The parameters of the model, such as the arrival rate of the Poisson
process, were then estimated in a non-parametric manner based on the
recorded multipath components. This calibration process is outlined in
Fig. 4.
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Fig. 4: Methodology for calibration of Turin model. First, the multipath components
are extracted from the channel measurements, which are then used to estimate the
model parameters.

Although the data-reduction procedure employed by Turin et al. was
due to the limitations of the measurement equipment and data process-
ing available at the time, their calibration methodology has been adopted
by researchers till date. As a result, advanced high-resolution algorithms
have been developed in the past couple of decades for extracting the mul-
tipath components from the channel response measurements. Examples
of such high-resolution algorithms include CLEAN [12], SAGE [13], Ri-
MAX [14], MUSIC, and ESPRIT, among others, see [15, Ch. 5] for an
overview.

5.2 Calibrating the Saleh-Valenzuela model

In the seminal model proposed by Saleh and Valenzuela (S-V) in 1987
[16], which can be considered as a further advancement of Turin’s model,
the multipath components are modeled to arrive in clusters.

Example 5.2 (Saleh-Valenzuela model)
The impulse response can be stated as

h(t) =
∑
l

∑
k

αklδ(t− Tl − τkl), (14)

where Tl, l = 0, 1, . . . , is the delay of the lth cluster, while τkl and
αkl, k = 0, 1, . . . , are the delay and complex gain of the kth ray within
the lth cluster, respectively. The delay of the first cluster and the first
ray within the lth cluster is set to zero, i.e. T0 = 0 and τ0l = 0. The
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Fig. 5: Methodology for calibration of cluster-based models such as the one by
Saleh-Valenzuela. The channel measurements are subjected to multipath extraction,
followed by clustering. The parameters of the model are then estimated based on the
extracted and clustered multipath components.

cluster delays, {Tl}, and the ray delays within each cluster, {τkl}, are
modeled as homogeneous Poisson point processes with arrival rates Λ
and λ, respectively. Conditioned on {Tl} and {τkl}, the gains, {αkl},
are assumed iid zero-mean complex Gaussian random variables with
conditional variance

E
[
|αkl|2|Tl, τkl

]
= Q exp (−Tl/Γ) exp (−τkl/γ) . (15)

Here, Q is the average power of the first arriving multipath component,
and Γ, γ > 0 are the cluster and ray decay constants. Thus, the
parameter vector that needs to be calibrated for the S-V model is
θ = [Q,Λ, λ,Γ, γ]>.

The S-V model has intractable likelihood due to I2, and possibly
I1. The calibration procedure of the S-V model is similar to that of the
Turin model with the added step involving clustering of the multipath
components, see Fig. 5. First, the multipath components such as the
delays and the gains are extracted from channel responses using high-
resolution algorithms. Then, the multipath components that are “close”
to each other are assigned the same cluster. Finally, the S-V model
parameters are estimated from the clustered multipath components via,
e.g., least-squares fitting or maximum likelihood estimation.

The S-V model has formed the basis for many models such as the
IEEE 802.15.3a [17], IEEE 802.15.4a [18], METIS [19], WINNER [20],
and COST 2100 [21] models, among others. It has also been extended to
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include the spatial properties of the radio channel in [22] and [23]. The
multi-step calibration methodology of Fig. 5 has been followed to cali-
brate these models [17–27]. The clustering of the multipath components
in [16], along with other early works [22, 26, 27], was done manually
through visual inspection. However, the popularity of the clustering
idea, coupled with the increasing size of data-sets, necessitated the need
for automated clustering algorithms [28–30]. Development of clustering
algorithms, e.g. for time-variant channel models [31–33], is still an active
area of research.

6 Propagation graph model

Our third example model is the propagation graph (PG) model where
the radio propagation mechanism has been modeled using graphs [34].
The PG model can account for propagation channels in multi-input,
multi-output (MIMO) systems with Nt and Nr antenna ports at the
transmitter and the receiver, respectively. In the PG framework, the
propagation channel is represented as a directed graph where the ver-
tices represent the transmitter, the receivers, and the objects in the
environment called scatterers. The edges in the graph model the prop-
agation conditions between the vertices.

Example 6.1 (Polarized propagation graph model)
Consider the directed graph G = (V, E) where the vertex set V = Vt ∪
Vr∪Vs is a union of a set Vt of Nt transmitters, a set Vr of Nr receivers,
and a set Vs of Ns scatterers in the environment, as shown in Fig. 6.
The edge set E = Ed∪Et∪Es∪Er is a union of a set of direct edges, Ed, a
set of transmitter to scatterer edges, Et, a set of scatterer to scatterer
edges, Es, and a set of scatterer to receiver edges, Er. A position
vector rv ∈ R3 is associated with each vertex v. Thus, the length of
an edge (v, w) is ||rv − rw||, where c is the speed of light in vacuum
and ‖ · ‖ is the Euclidean norm. The propagation delay from v to w is
therefore τe = ‖(rw − rv)‖/c. The direction of propagation is specified
by a unit vector Ωe associated with edge e. Note that the transmit
vertices and receive vertices can only have outgoing and incoming
edges, respectively. In the following, we describe the extension of the
propagation graph model that accounts for dual-polarized channels
[35–37].
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Fig. 6: A propagation graph with Nt = 4 transmit, Nr = 3 receive, and Ns = 6
scatterer vertices.

The transfer function matrix at a particular frequency, H(f) ∈
CNr×Nt , of the polarimetric PG model is given as

H(f) = D(f) + R(f)[I−B(f)]−1T(f), (16)

where D(f) ∈ CNr×Nt is the transmitter to receiver, T(f) ∈ C2Ns×Nt

is the transmitter to scatterer, R(f) ∈ CNr×2Ns is the scatterer to
receiver, and B(f) ∈ C2Ns×2Ns is the scatterer to scatterer edge trans-
fer function sub-matrix having spectral radius less than unity. The
transfer function sub-matrices are given as:

D(f) = X Tt (Ωe)Xr(Ωe)Ge(f), e ∈ Ed

T(f) = X Tt (Ωe)MΓ(Ωe)Ge(f), e ∈ Et

B(f) = MΓ(Ωe)Ge(f), e ∈ Es

R(f) = Xr(Ωe)Ge(f), e ∈ Er

Here, Xt(Ωe) and Xr(Ωe) are the 2×1 transmit and receive polarimetric
antenna array response vectors, respectively, and Γ(Ωe) is the 2 × 2
rotation matrix. The coupling between the two polarization states is
represented by the 2 × 2 scattering matrix, M. Assuming the same
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scattering matrix for all the scatterers, M reads

M = 1
1 + γ

[
1 γ
γ 1

]
, (17)

where γ ∈ (0, 1) is the polarization ratio. The scalar Ge(f) captures
the polarization-independent propagation characteristics, and is ex-
pressed as

Ge(f) = ge(f) exp[j(ψe − 2πτef)], (18)

where ψe is the phase. The edge gain, ge(f) is calculated as:

ge(f) =



1
(4πfτe) ; e ∈ Ed

1√
4πτ2

e fµ(Et)S(Et)
; e ∈ Et

g
odi(e) ; e ∈ Es

1√
4πτ2

e fµ(Er)S(Er)
; e ∈ Er

(19)

Here, g ∈ (0, 1) is the reflection gain, odi(e) denotes the number of
outgoing edges from the nth scatterer, and

µ(Ea) = 1
|Ea|

∑
e⊂Ea

τe, S(Ea) =
∑
e⊂Ea

τ−2
e , Ea ⊂ E ,

with |A| denoting the cardinality of set A.
The propagation graph model can be used to simulate the the

behavior of the radio channel in a given propagation environment.
The transmitter and receiver locations are either fixed or can be drawn
randomly in a given room or building, while the number of scatterers
in the environment, Ns, needs to be set. An edge between Vt and Vr
is drawn with probability Pdir, which is equal to one for an edge in Ed,
and zero in non-line-of-sight case. The edges between Vt and Vs, Vs
and Vs, or Vs and Vr are drawn with the probability of visibility, Pvis.
The phases ψe are drawn independently from a uniform distribution
on [0, 2π). The other parameters of the model include the reflection
gain, g, and, in case of the polarimetric PG model, the polarization
ratio, γ, resulting in the parameter vector θ = [g,Ns, Pvis, γ]>.
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The likelihood function of the PG model has not been derived in
the literature (I3), and so it could potentially be intractable due to I1
or I2 or both. First proposed in 2007, the PG model has since been
modified and applied to several propagation scenarios such as outdoor-
to-indoor [38], indoor-to-indoor [39, 40], high-speed railway [41, 42], and
office [43], and corridor [44]. In spite of the growing popularity of the
PG model, not a lot of research has gone into developing calibration
methods for it. Most of the studies utilizing the PG model make use
of a map of the environment to calibrate its parameters. A method of
moments approach was proposed in [35] to calibrate the polarimetric
PG model to measurements. The method involved fitting estimates of
the second moments of the power delay spectrum and cross-polarization
ratio to their derived expressions.

7 Observations on Calibration Methods

From the state-of-the-art calibration procedures of the aforementioned
stochastic channel models, it is evident that there is no general method-
ology for calibrating the models. Even though the quantity modeled by
each of the models is the same, their calibration approach seems to be
specific to the model structure. As a result, every time a new stochastic
channel model is proposed or the previous models are modified, their
calibration techniques need amendment as well. This is also the case
with the method of moments approach of the polarized PG model as
any modification in the model means re-deriving the moment equations.
The lack of a clear and established calibration method means that re-
searchers often employ ad-hoc and heuristic techniques to calibrate the
models.

Besides the lack of generality, the current calibration methods also
suffer from the following issues:

Unknown performance The multi-step approach of combining the
multipath extraction and clustering algorithms makes it challeng-
ing to assess the performance of the calibration methods. As
a result, it is common practice to report the point estimates of
the model parameters without uncertainty quantification or state-
ments of confidence.

Implementation choices The individual steps themselves require the
implementation of sophisticated high-resolution and clustering al-
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gorithms which can be taxing. Moreover, certain choices need to
be made in order to implement these algorithms such as the num-
ber of multipaths to resolve and the number of clusters in the
data. The accuracy of these methods rely on these choices, thus
compounding matters even further.

Errors in each step The multipath extraction and clustering meth-
ods themselves are prone to errors such as censoring effects [45],
and the effect of faulty estimation in the intermediate steps is dif-
ficult to quantify in the final parameter estimates. Moreover, such
errors are largely ignored in subsequent steps.

Identifiability In the case of the PG model, the method of moments
approach of [35] suffers from identifiability issues, and hence re-
quires manually fixing one of the parameters. The S-V model
suffers from a similar issue if only the power delay spectrum is
used for calibration.

An important observation to make here is that none of the stochastic
channel models are in fact calibrated using standard estimation tech-
niques such as maximum likelihood or Bayesian inference. This is owing
to the likelihood function being intractable for the stochastic channel
models. For the stochastic multipath models, the intractability of the
likelihood manifests as the points of the underlying point process are
unobservable, as demonstrated for the Turin model.

The problem of having models with intractable likelihoods is not
unique to the field of radio channel modeling. In fact, such models are
used in various science and engineering fields. This begs the question
of how such models are calibrated in other fields? And whether those
methods can be adapted and applied to address the calibration issues
faced by the stochastic radio channel models? In the next chapter, we
will explore the available literature on likelihood-free inference methods.



Calibrating Models with
Intractable Likelihoods

In this chapter, we look at some of the more widely used likelihood-free
inference methods present in the literature, with the aim of choosing a
method that best fits our purpose of having a general calibration method
for stochastic radio channel models.

8 Likelihood-free Calibration Methods

Researchers across various fields are now moving towards using complex
models to fit data, thanks to the rising computational power of afford-
able computers and advanced statistical methods. Such models act as a
simulator, defining a stochastic procedure that directly generates data.
Naturally, these models are used in fields such as climate and weather,
population genetics, ecology, and astrophysics, where the mechanistic
understanding of the real-world phenomenon can be used to directly
create a data simulator, as is the case for stochastic channel models
in the field of radio propagation. These simulator-type, or generative,
models are flexible enough to replicate complicated data-sets and are
easy to simulate realizations from given any value of the parameters.
However, they do not have a tractable likelihood function, making it an
arduous task to infer their parameters from data using standard tech-
niques such as maximum likelihood and Bayesian statistics. Overcoming
this limitation therefore becomes crucial in order to use such models for
simulation purposes. Unsurprisingly, a host of likelihood-free inference
methods have been developed to calibrate the simulator-type models in
those fields.

Needless to say, the likelihood-free inference methods are utilized
in cases where the likelihood function of the model is intractable, thus

21
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rendering maximization of the likelihood or Bayesian inference unreal-
izable. Some of the popular methods used for calibrating such models
are described in the following. For a recent survey of such methods and
future directions, see [46].

8.1 Method of Moments

This is a fairly well-known method of estimation used across a multitude
of fields [47] including signal processing [8]. It begins by expressing
the moments of the data, say M(·), as a function of the parameters
of interest. Those analytical expressions are then fit to the moments
obtained from the data, i.e., M(θ) = M̂(y), with M̂(·) estimated from
the data by replacing the expectation E[·] by averaging. Provided that
M(·) is invertible, the parameters can be estimated as

θ̂ = M−1(M̂(y)). (20)

The number of moment expressions therefore needs to be equal to the
number of parameters of the model. This method has the advantage
of being fairly simple to implement with negligible computational load,
although the resulting estimators can often be biased. There can be
identifiability issues in case M(·) is not invertible. This can be resolved
by considering more moment conditions than parameters and solving the
overdetermined system of equations in a generalized method of moments
approach [47].

For most generative models, deriving moment expressions is not fea-
sible, hence the application of this method is fairly limited. However, in
the context of radio channel models, method of moments has been used
to calibrate the polarized PG model in [35], and the S-V model in [48],
albeit with approximations.

8.2 Approximate Bayesian Computation

Approximate Bayesian computation (ABC) [49, 50] is a likelihood-free
inference method that permits sampling from the approximate posterior
of a generative model, see Fig. 7. Although methods with similar flavor
had been proposed in 1984 by Rubin [51], ABC was first introduced in
population genetics in the late 1990s by Tavare et al. [52] and Pritchard
et al. [53].

As the name suggests, ABC falls under the Bayesian paradigm and
hence assumes a prior distribution on the parameters of the model. ABC
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relies on repeated model evaluations using parameter values sampled
from the prior. Simulated data from the model is then compared to the
observed data in some distance metric ρ(·, ·). Parameter samples that
yield simulated data “close” to the observed data are taken as samples
from the approximate posterior distribution. The closeness here is de-
termined by the tolerance threshold ε. Given a model with parameters θ
and data y, the most basic form of ABC, called rejection-ABC, proceeds
as follows:

1. Draw θ∗ from the prior distribution p(θ)

2. Simulate y∗ from the model using θ∗

3. Accept θ∗ if ρ(y, y∗) < ε

Repeating the above steps till N parameter values are accepted results
in the sample (θ1, . . . , θN ) from the approximate posterior p(θ|ρ(y, y∗) <
ε) ≈ p(θ|y). Here, the approximation accuracy is controlled by ε. Taking
ε very small leads to better posterior approximation but high rejection
rates, while taking it too big gives low rejection rates but makes the
approximate posterior look like the prior.

The rejection ABC method outlined above runs into issues when the
data is high-dimensional, as is the case with impulse response measure-
ments. Since the distances between points increase exponentially with
the dimensions of the space, it is common practice to compute the dis-
tances between summary statistics of the data. The rejection criterion in
the ABC algorithm is then replaced by ρ(S(y), S(y∗)) < ε, where S(·) is
the summarizing function that maps the data y into a low-dimensional
vector of its statistics s. Unless sufficient statistics are available, this
summarization step leads to some loss of information, thereby adding to
the approximation of the posterior.

Implementing an ABC method requires the choice of the three in-
gredients — the distance metric ρ, the summary statistics S(·), and the
tolerance ε. The distance metric is typically taken to be the Euclidean
distance in case informative summary statistics are available. Other
alternative is to take ρ to be a distance defined on (empirical) proba-
bility distributions, such as the maximum mean discrepancy [54] in [55]
or the Wasserstein distance [56] in [57]. Statistical methods exist in the
ABC literature to obtain optimal summaries using projection techniques,
see [58] for a review. In [59], it was shown that the posterior mean is the
optimal summary statistic for a quadratic loss function. Such optimal
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Fig. 7: Overview of ABC methods.

statistics were estimated using linear [59] and non-linear regression [60].
However, domain knowledge is crucial for designing relevant statistics
to be used for fitting the model.

Several developments have been made in the ABC literature with
regards to exploring the parameter space more efficiently than simply
sampling independently from the prior as in rejection-ABC. An alter-
native method of embedding a Markov chain Monte Carlo sampler in
the ABC framework was proposed in [61]. Another class of ABC meth-
ods are based on the sequential Monte Carlo techniques [62, 63], where
the estimated posterior is successively refined by resampling from the
obtained parameter values.
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8.3 Minimum Distance Estimators

The minimum distance (or divergence) estimators are a class of esti-
mators that minimize some notion of distance between an empirical
distribution obtained from the data and the model Pθ [64]. Consider-
ing the observed data (y1, . . . , yN ) that yields an empirical distribution2

QN = 1
N

∑N
i=1 δyi , where δyi denotes a Kronecker delta with mass one

at yi, such an estimator can be written as

θ̂D = argmin D
(
Pθ||QN

)
. (21)

Note that taking D to be the Kullback-Leibler divergence results in the
maximum likelihood estimation of θ. Solving Eq. 21 analytically is not
possible in most practical cases, hence employment of gradient-based
optimization techniques is common practice.

In the context of models with intractable likelihoods, minimum dis-
tance estimators have been proposed based on the maximum mean dis-
crepancy in [65]. Minimum distance estimators are closely related to
the method of simulated moments [66], where some norm of certain
moments of the observed and simulated data are minimized for the pa-
rameter values. Note that this idea is similar to the summary-free ABC
methods [55] where synthetic data-sets simulated from the model are
compared to the observed data in some distance metric. Hence, the
minimum distance estimators can be considered as the frequentist ver-
sion of the ABC methods.

8.4 Surrogate Modeling

This is a classical approach where an approximate model, or surrogate,
is used as a substitute for the data-generating process, especially when
gathering data is expensive [67]. In the context of calibration, the idea is
to replace the generative model by a tractable surrogate model, following
which, frequentist or Bayesian inference can proceed as if the likelihood
was tractable. An example is [68], where a model of the likelihood was
created by estimating the distribution of simulated data with kernel
density estimation. Block diagram depicting calibration using surrogate
models is shown in Fig. 8.

The application of such methods has been limited as they do not scale
well to high-dimensional data. However, the advent of the powerful and

2Equivalently, the probability density function for QN reads 1
N

∑N

i=1 δ(yi − y),
where δ is the Dirac delta.



26

Proposal

Model

Train
surrogate

Approximate
likelihood

Inference DataPrior

Posterior

θ

y∗

y
θ

Fig. 8: Overview of calibration methods using surrogate modeling..

versatile machine learning tools such as the deep neural networks have
made the task of density estimation feasible in high dimensions. As a
result, neural networks are being used as surrogates for the generative
model in many different scenarios, including for summaries of stochastic
channel models [69]. The density estimation can be carried out both in
a supervised or unsupervised manner. One of the major advantages of
such methods is that after an upfront simulation and training phase, the
surrogates can be used to evaluate new data points efficiently. A detailed
survey and classification of various surrogate modeling techniques can
be found in [46].
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8.5 Synthetic likelihood

This is another popular likelihood-free inference method introduced in
the field of ecology in 2010 [70]. Synthetic likelihood assumes that some
summary statistics of the data, s = S(y), which are informative about
the model parameters θ, can be well-modeled, or approximated, by a
multivariate Gaussian distribution, i.e. s ∼ N (µ,Σ). Simulations from
the model are then used to estimate the mean vector µ and the co-
variance matrix Σ, thus approximating the likelihood function with the
multivariate Gaussian density. This approximate likelihood can either
be maximized to estimate the parameters in a frequentist manner, or
used in a Bayesian setting to sample from the approximate posterior
distribution [71]. The synthetic likelihood methods can be considered
as a form of surrogate modeling on the summary statistics of the data.
Since synthetic likelihood methods are limited by the normality assump-
tion of the summary statistics, more flexible surrogate likelihoods for
summaries have been proposed in [72–74].

9 Summaries for Radio Channel Measurements

Summary statistics, e.g. moments of the data, play an integral part in a
large majority of likelihood-free inference methods. Therefore, we need
to select or design summary statistics for radio channel measurements
that are informative about the parameters of stochastic channel models
in order to implement such methods. As alluded to before, there are
statistical techniques developed in the ABC literature in particular to
design optimal summaries. However, domain-specific summaries facili-
tate interpretability and knowing exactly what aspect of the channel is
used for fitting the models.

The underlying marked point process Z forms the sufficient statistic
for channel impulse response measurements. If Z is known, then the
likelihood function takes the form of a complex Gaussian density due to
the noise being the only random entity. However, we do not know how
many multipath components are present in the data. Moreover, these
need to be estimated using high-resolution algorithms. Alternatively,
the channel could be summarized into other easy-to-compute statistics
that are informative about the model parameters.

Some of the most widely used summaries for characterizing the radio
channel are the received power, mean delay, and root mean square (rms)
delay spread [75], see Fig. 9 for their interpretation. They are frequently
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mean delay

rms delay

Fig. 9: Example of the power of a radio channel measurement y(t) as a function of
time delay. Mean delay is the ‘centre of gravity’ of the multipath components, while
the rms delay quantifies their spread.

used in the design and analysis of communication and localization sys-
tems as they summarize important aspects of the radio channel and the
multipath effect. Furthermore, cumulative distribution functions plots
of these summaries are often used as means to report channel measure-
ments.

The received power P0, mean delay τ̄ and rms delay spread τrms are
derived from transformations of the temporal moments of the channel
measurement y(t) according to

P0 = m0, τ̄ = m1
m0

, and τrms =

√
m2
m0
−
(
m1
m0

)2
, (22)

where the kth temporal moment is defined as

mk =
∫
tk|y(t)|2dt, k = 0, 1, 2, . . . (23)

The temporal moments can be seen as an expansion of |y(t)|2 into the
basis of monomials, which forms a complete basis for finite energy time-
limited signals [76]. Their computation can be carried out by simply
using a numerical integration for the integral in (23). Moreover, they
are easy to interpret as it is evident what aspects of the channel is being
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Table 1: The main choices and requirements for implementing the likelihood-free
calibration methods described in Sec. 8.

Method Choice Requirement

Method of moments Moment equations Should be invertible
ABC Summary statistics, Distance metric Informative summaries
Minimum distance estimators Distance metric Solving Eq. 21
Surrogate modeling Surrogate Training the surrogate
Synthetic likelihood Summary statistics Estimating µ and Σ

used to fit the model. The mean of the temporal moments is informative
about the power delay spectrum, P (t), of the channel, that is

E[mk] =
∫
tkE[|y(t)|2]dt =

∫
tkP (t)dt, (24)

while their covariance has been shown to be informative about the
second-order intensity function of stochastic multipath models [77]. In
addition, temporal moments are widespread in the field of channel mod-
eling. For these reasons, the temporal moments appear to be a reason-
able choice for the summary of the channel measurements to be used in
calibration of stochastic radio channel models.

10 Choice of Method for Stochastic Channel
Models

Now that we have reviewed some of the popular methods available in the
literature for calibrating models with intractable likelihoods, see Table 1
for an overview, our task is to choose a method to be used for calibration
of stochastic radio channel models. The aforementioned likelihood-free
inference techniques can be broadly separated into two categories —
the ones that use the model itself during inference, like ABC, and the
methods which construct a surrogate model and use that for inference.
The latter methods have the advantage that inference on new data-
sets can be obtained almost instantaneously once the surrogate model
has been trained. However, our focus is on developing a calibration
method which is general in the sense that it can be applied to stochastic
channel models having different mathematical structure and parameters.
With this aim of having a general calibration approach, it makes sense
to include the model in the inference method. Hence, ABC methods
seem to be an ideal choice in that case, considering the availability of
informative summary statistics such as the temporal moments.
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Design of Study

This chapter outlines the research questions being investigated in this
thesis and the research methodology adopted to tackle those questions.

11 Research Hypothesis and Questions

As discussed in Chapter 2, the calibration procedure for stochastic radio
channel models is specific to their mathematical structure, and there
does not exist a standardized method to calibrate such models. In
Chapter 3, we have identified ABC methods as a potential candidate
to achieve our goal. Therefore, the research hypothesis being tested in
this thesis can be summarized as:

Stochastic radio channel models can be calibrated in a general man-
ner using approximate Bayesian computation methods.

The hypothesis motivates a number of research questions as outlined
below. The research questions being answered in this thesis can be
broadly categorized as follows:

• Can stochastic multipath models, such as the Turin and the S-V
model, be calibrated without multipath extraction? Can likelihood-
free inference methods be used to calibrate these models?
Given the widespread use of high-resolution algorithms for cali-
bration, the first question that we need to answer is whether it
is even possible to calibrate stochastic multipath models without
them. Answering this question entails calibrating such models
using a different method, thus answering the other sub-question.
Even though these questions are answered in all the papers in this
thesis where we have proposed a new calibration procedure, this
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has been one of the primary conclusions of the work in Papers
A–C.

• Can ABC methods be used to calibrate different stochastic radio
channel models? If so, which summary statistics of the temporal
moments are needed to implement such ABC methods? Can such
statistics be automatically generated?
Before arriving at a general ABC method for stochastic models, we
need to see if informative summary statistics can be designed to
calibrate such models using ABC. As indicated in Chapter 3, the
temporal moments could be a viable starting point for designing
such statistics. In Paper D and E, we get an answer to these
questions in the context of S-V and PG model, respectively. Paper
F answers the sub-question related to the automatic generation of
summary statistics.

• How are the temporal moments of the radio channel distributed in
different propagation scenarios? How can they be modeled jointly?
Since the temporal moments are widely used summaries for char-
acterizing the radio channel and are found useful for calibration, it
is straightforward to ask how can they be modeled jointly. Paper
G and H provide an answer to this question.

• Can different stochastic channel models be calibrated using the
same ABC method? Can the distance metric in the ABC method
be adapted in order to circumvent the need for summarization?
Finally, we arrive at the questions that directly deals with our
stated hypothesis. These questions are answered in Paper I.

12 Research Methodology

We now outline the research methodology adopted while developing the
calibration methods presented in this thesis. A summary of the method-
ology is presented in Alg. 1. Note that the following discussion is not
pertinent to the modeling works of Paper G and H.

Before developing any calibration method, there are a couple of
choices to make, namely the model being calibrated, and the assump-
tions regarding the parameters. The choice of the model readily impacts
the calibration method. In this thesis, the three models described in
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Chapter 2 serve as examples for the calibration methods. We begin by
considering the most basic stochastic channel model available, i.e. the
Turin model with simplifying assumptions of no noise. Once we develop
a calibration method for such a simple model, we gradually ease the
assumptions and move on to more complicated S-V and PG models.
This approach brings clarity to the development process of calibration
methods, as we can keep track of the challenges brought forth by each
added level of complexity.

The other choice is between a frequentist or a Bayesian approach
for estimating the parameters, which basically manifests in terms of
choosing either a parameter space or a prior distribution. In this the-
sis, this choice is determined by the inference method being considered.
Nevertheless, we have tried to rely solely on the data even in case of
Bayesian inference, and hence selected uninformative, or flat, priors for
the parameters in all of the papers barring Paper A.

Having selected the example model and defined the parameter space
or prior range, we begin the process of developing calibration algorithms.
We start by fixing a “true” value for the parameters, which we use
to simulate a data-set from the model. We use this data-set as our
pseudo-observed data, i.e. the data on which the model is being fitted.
Use of simulated data enables us to evaluate the performance of the
calibration method by measuring how accurately we are able to recover
the true parameter values. The development of the calibration method
is therefore an iterative process where the method is modified in each
iteration based on the simulation results. Once peak performance of the
calibration method is achieved, the loop is terminated and the method
is deemed “ready”.

We then validate the developed calibration method by applying the
method on a set of real measurements and comparing the model’s pre-
diction with that of the measurements. Since no true parameters are
available in the case of real data, we input the estimated parameter val-
ues into the model and make a qualitative comparison of the simulated
and measured data in terms of certain relevant statistics. This serves
as a reasonable way to qualify the estimated parameters, although in
principle, the model’s predictions should be compared to a separate set
of validation data that was not used in the calibration procedure. Col-
lecting data by conducting measurement campaigns is considered out
of the scope of this thesis. We instead use the channel measurements
collected at Lund University [23] by Prof. Fredrik Tufvesson’s group to



34

Algorithm 1 Methodology for developing calibration algorithms
Input: Observed data, model, parameter space or prior distribution
Assumption: Data is informative about the model parameters

Set true parameter values
Generate pseudo-observed data using the model and the true parameters

while true parameters are not recovered accurately do
Propose a calibration method
Evaluate performance of the method on simulated data

end while
Apply the calibration method on observed data
Compare model prediction with observed data for validation

Output: Calibration method

validate our proposed methods.
We remark that applying the method on measured data is not essen-

tial for developing calibration methods. If the method is able to recover
the true parameters accurately in simulation, that implies that the cal-
ibration method is working for that particular model. However, this
additional step can be quite useful in pointing out any differences be-
tween the model assumptions and the measurement procedure. That is,
if the calibration method works on simulated data but not on real data,
it could very well mean that the model assumptions are conflicting with
the data measurement process. If that is indeed found to be the case,
then the model is adjusted accordingly and the simulation experiments
are repeated again. Alternatively, this could be accounted for in the
calibration method itself instead of adjusting the model. Validating the
calibration method on real data also gives confidence to the readers re-
garding its applicability. Note that validation of the calibration method
should not be mistaken for model validation. A poor fit of the model
on real data could be due to the model not being right for the data at
hand, instead of the calibration method being faulty.



Thesis Contributions

In this chapter, a summary and key contributions of all the papers in-
cluded in this thesis are presented. The order of the papers reflects the
gradual progression of research during the period of the study. A short
summary of the key components of each paper related to calibration is
provided in Table 2.

Paper A In this paper, we begin our investigation into likelihood-free
calibration methods for stochastic channel models by considering
the most basic homogeneous Turin model as our example. More-
over, we make simplifying assumptions of no additive noise and
large bandwidth that yields an expression of the temporal moments
in terms of the multipath components. We then use a synthetic
likelihood approach and model the first three temporal moments
as a multivariate Gaussian distribution. The expression for the
mean vector and the covariance matrix are then derived in terms
of the model parameters. With a closed form expression for the
approximate likelihood of the temporal moments, sampling from
the posterior distribution is carried out by assuming priors on the
parameters. We find that the temporal moments are informative
about the parameters of the Turin model, and that it can be cali-
brated without multipath extraction.

Paper B In this paper, we again consider the homogeneous Turin model
as our example, but without the no noise and large bandwidth
assumptions. This results in an additional parameter to be es-
timated, namely the noise variance. We then derive closed form
expressions for the means of the first three temporal moments and
the variance of the zeroth temporal moment. With four parameters
to be estimated and four expressions, we use a method of moments
approach to derive the estimator. Simulation experiments indicate
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Table 2: Overview of Papers A–F and Paper I.

Paper Method Example Approach

A Synthetic likelihood Turin Bayesian
B Method of Moments Turin Frequentist
C Maximum likelihood Turin Frequentist
D ABC S-V Bayesian
E ABC and Surrogate modeling PG Both
F ABC PG Bayesian
I ABC S-V and PG Bayesian

accurate recovery of the true parameters. The calibration method
applied on measured data provides good fit to the averaged power
delay spectrum. The proposed estimator is therefore found to cali-
brate the homogeneous Turin model without multipath extraction
using temporal moments. Moreover, the method is able to esti-
mate the noise, thus eliminating any need to truncate the channel
response to estimate the noise floor.

Paper C In this paper, we take a maximum likelihood estimation ap-
proach for calibrating the Turin model with both homogeneous
and inhomogeneous arrival rate. The method relies on approx-
imating the likelihood ratio using a Markov chain Monte Carlo
sampler from the conditional distribution of the multipath com-
ponents given the data. In addition to calibrating the model, we
show that the likelihood ratio computation can be used for model
selection. The method is tested on simulated as well as measured
data. We conclude that in the case of the Turin model, calibra-
tion can be achieved via the well-established method of maximum
likelihood estimation without resorting to multipath extraction.

Paper D The derivations of the moment equations and the likelihood
function may become infeasible as we look at more complicated
models such as the S-V model. Therefore, in this paper we look at a
summary-based ABC solution to the calibration problem, with the
Euclidean distance as our comparison metric. Taking the cluster-
based S-V model as an example, we design summary statistics
based on the temporal moments and the power delay profile of the
channel. We use these summaries in a sequential Monte Carlo ABC
framework, called population Monte Carlo (PMC) ABC, wherein
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we iteratively converge towards the desired approximate posterior.
A regression adjustment step is also employed at each iteration to
improve the posterior approximation. The resulting algorithm,
named PMC-ABC with regression adjustment, will also be uti-
lized in rest of the papers dealing with ABC. From the simulation
experiments, we find that the method is able to recover all the
parameters of the S-V model fairly accurately except the cluster
arrival rate. However, the cluster arrival estimate can be improved
via an additional round of the ABC method. Similar results are
obtained on applying the method to real measurements. We con-
clude that the S-V model can be calibrated without the need for
multipath extraction and clustering, and that the designed sum-
maries are informative about the model parameters.

Paper E In this paper, we apply the proposed PMC-ABC algorithm
with regression adjustment on the polarized PG model by hand-
crafting summaries using the temporal moments. A methodology
for qualifying the summaries is also provided. Additionally, we
also propose a frequentist calibration method based on surrogate
modeling for the polarized PG model. We use a deep neural net-
work model as a surrogate for the same handcrafted summaries
as used in the ABC method. The neural network is trained in a
supervised manner with the handcrafted summaries as input and
the parameters as output labels. The two methods are shown to
estimate the parameters accurately in simulations, and provide a
good fit to the averaged power delay profile when applied to mea-
sured data. The proposed methods also perform better than the
state-of-the-art calibration method for the polarized PG model.
We conclude that the summaries designed using the temporal mo-
ments are informative about the parameters of the polarized PG
model. By calibrating the PG model using the same ABC method
as the S-V model, we show that stochastic channel models can be
calibrated using the same procedure as long as relevant summaries
are available.

Paper F Applying the ABC method of Papers D and E to calibrate
stochastic channel model requires handcrafting summary statistics
that are informative about all the model parameters, which is a
time-consuming task and may be non-trivial. Hence, in this paper,
we propose a method to automatically generate summary statistics
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using an autoencoder, which is a combination of two neural net-
works, namely the encoder and the decoder. The encoder projects
the input data into a low-dimensional vector of features, and the
decoder replicates the input data by decoding those features. We
train the autoencoder with the first three temporal moments as
input, and use the encoded feature vector as summary statistics
in the PMC-ABC with regression adjustment algorithm. The pro-
posed method is used to calibrate the PG model in simulations as
well as on measured data. Although the performance of the auto-
generated summaries is not as accurate as the handcrafted ones
as in Paper E, we do get reasonably accurate results with fairly
limited effort of training the autoencoder. Hence, the method is
more generally applicable to different stochastic channel models,
provided the autoencoder is trained properly.

Papers G & H With the temporal moments being informative sum-
maries of the radio channel and useful for calibrating the stochastic
channel models, it is natural to inquire about their joint behavior
and how to characterize them. In these two papers, we investigate
the joint distribution of the first three temporal moments based
on empirical evidence. We propose to model them jointly using
a multivariate log-normal distribution, and show that this model
is able to fit the temporal moments data collected from different
environments and measurement settings. Modeling the temporal
moments as a log-normal random vector consequently provides a
straightforward method to simulate the widely used moments of
the channel such as the mean delay and the rms delay spread. We
compare the proposed model with other competing model choices
in the literature both qualitatively and quantitatively. We find
that these moments are correlated random variables, and hence,
should be simulated jointly. We conclude that joint modeling of
the temporal moments, and thereby the received power, mean de-
lay and rms delay spread, provides more accurate models in a wide
range of scenarios as compared to independent modeling, which is
prevalent in the literature. The proposed model of multivariate
log-normal distribution is simple, easy to simulate from, and pro-
vides a reasonable fit in both indoor and outdoor settings.

Paper I In this paper, we propose a general ABC method that is able
to calibrate different stochastic channel models using the same pro-
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cedure. We use the MMD, which is a similarity measure between
distributions or data-sets, as the distance metric in the PMC-ABC
algorithm. Thus, our ABC rejection criteria involves comparing
the joint distribution of the simulated temporal moments with the
observed temporal moments using the MMD. Since the tempo-
ral moments are general purpose summaries of the radio channel,
we are able to calibrate both the S-V and the PG model using
this procedure, even though they have very distinct mathematical
structures. This approach circumvents the need to design appro-
priate summaries or train an autoencoder when faced with a new
channel model, thus imparting generality to the method. More-
over, the proposed method is able to detect and account for model
misspecification, wherein the model is unable to replicate the ob-
served data for any value of the parameters. Using the first four
temporal moments, the proposed method gives accurate results
for both simulated as well as measured data. Furthermore, the
method is automatic in that no pre- or post-processing of the data
or estimates is required from the user.
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Conclusions and Outlook

This thesis concerns with the development of calibration methods for
stochastic radio channel models, primarily using approximate Bayesian
computation (ABC) methods. Based on the contributions of the thesis,
we draw the following main conclusions:

• The stochastic radio channel models can be calibrated without
extraction and clustering of multipath components, as is the norm
in the literature, thus avoiding the need for implementing high-
resolution and clustering algorithms.

• Likelihood-free inference methods, especially those based on ABC,
are a feasible alternative to the state-of-the-art calibration meth-
ods. The temporal moments are informative summaries of the
radio channel that are useful for implementation of these ABC
methods. Summaries can either be handcrafted, as was the case
in Paper D and Paper E for S-V and PG model, respectively, or
can be automatically generated as shown in Paper F.

• The temporal moments are correlated random variables that can
be well-modeled using a multivariate log-normal distribution. This
provides a simple and straightforward method for jointly simulat-
ing the received power, mean delay and rms delay spread.

• We show that ABC methods enable the calibration of different
stochastic channel models using the same general method in a
statistically sound manner. This was achieved by using a distance
metric on the data-sets, namely the maximum mean discrepancy
(MMD), instead of specializing summaries as shown in Paper I.

The progressive development of calibration methods for stochastic chan-
nel models over the duration of this study has resulted in Paper I be-
ing the culmination of the conducted research. Hence, the calibration
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method in Paper I retains the advantages of the previously proposed
methods over the state-of-the-art, and at the same time overcomes their
drawbacks or shortcomings. These advantages are summarized as fol-
lows:

1. Performance of the proposed calibration methods is straightfor-
ward to assess as information on the posterior distribution is ob-
tained. The end-to-end performance evaluation of the state-of-
the-art calibration methods is infeasible due to the multi-step ap-
proach that leads to a point estimate of the parameters without
any uncertainty quantification.

2. As the proposed methods estimate the noise level in the measure-
ments accurately, any pre-processing of the measurements to re-
move the effect of the noise before calibration is unnecessary.

3. Compared to the state-of-the-art approaches, the method proposed
in Paper I has limited number of choices or settings.

4. The generality of the proposed method in Paper I, exemplified by
the S-V and the PG model, enables comparison of the fit of dif-
ferent stochastic channel models to a particular data-set, as these
models can be calibrated using the same method.

5. Compared to the other ABC methods, the method in Paper I
achieves better approximation to the posterior distribution as it
does not require summarization of the temporal moments.

6. The ability of the proposed method to detect model misspecifica-
tion can be utilized by channel modeling experts to assess adequacy
of a model before performing tedious analytical derivations of its
likelihood function.

The bottle-neck in the computational cost of the proposed ABC methods
is the repeated sampling from the model, which was not significant for
the models considered in this thesis. This may not be the case for a
computationally expensive model, making their calibration infeasible in
reasonable time. Another limiting factor of the proposed method could
be if the model has a large set of parameters to be calibrated, thus
invoking the curse of dimensionality. These issues can potentially be
addressed by employing Bayesian optimization in the ABC framework
as done in [78].
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As shown in Paper H, the temporal moments are very correlated
random variables, indicating redundancies in the information contained
in them. Potentially, the magnitude squared of the channel can be
expanded using an orthogonal basis, which may lead to better efficiency
of the proposed methods.

An obvious extension of this work is to develop calibration methods
for directional channel models where the dispersion is in delay as well as
direction. That would entail the use of certain “directional moments”,
analogous to the temporal moments, that are informative about the
parameters governing the directional spread. Another research avenue
to explore would be the use of signature moments [79, 80] in the proposed
ABC methods.

Finally, the application of ABC and other methods described in this
thesis are not constrained to radio propagation models, as generative
models with intractable likelihoods possibly appear in other sub-fields
of wireless communications. Similarly, the use of MMD as a similarity
measure can potentially be utilized in other problems in communication
or localization where there is a need to compare different distributions
or data-sets. We hope that researchers in the field would be inspired to
apply these methods and techniques on their problems.
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Abstract
This paper proposes a method to infer on the parameters of a stochastic channel
model from observations of temporal moments without multipath extraction.
The distribution of the temporal moments is approximated to be Gaussian, and
sampling is carried out from the approximate posterior. The temporal moments
are found to be informative about the model parameters, as the parameters can
be recovered from the samples.

1 Introduction

Parameters of stochastic multipath models, since the early works in [1] and [2],
have predominantly been estimated by first extracting multipath parameters
(delays, gains, etc.) and then estimating model parameters in a second step.
Multipath extraction requires sophisticated algorithms which can be cumber-
some to use and prone to errors [3]. In statistical terms, the multipath param-
eters are used as summary statistics for estimating model parameters. Other
summaries, e.g. the well-known temporal moments of the received signal, can
potentially be used, thereby avoiding multipath extraction altogether. Here, we
propose a sampling method to estimate parameters of a stochastic multipath
model based on temporal moments.

2 Signal Model
Ignoring additive noise, the received signal in a multipath channel can be writ-
ten in complex baseband notation as

y(t) =
∑
l

αls(t− τl), (A.1)

where s(t) is the transmitted signal, αl and τl are the complex gain and time-
delay of the lth multipath component, respectively. The kth temporal moment
of y(t) is defined as

mk =
∫
tk|y(t)|2dt, k = 0, 1, 2, . . . (A.2)

Under the large bandwidth approximation, |s(t)|2 → δ(t), and the temporal
moment reads

mk =
∑
l

|αl|2τkl , k = 0, 1, 2, . . . (A.3)

Here we consider a variant of Turin’s model [1] where delays and gains form
a homogeneous Poisson point process with arrival rate λ0. The mark density
p(α|τ) is circular complex Gaussian with variance σ2

α(τ). For this model the
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Fig. A.1: Scatter plots and histograms of synthetic data of m0, m1, and m2. Pa-
rameter settings: g = 0.6, G0 = 10−8, λ0 = 109 s−1, N = 300, V = 36 m3, S = 66 m2,
c = 3× 108 ms−1, and τmax = 200 ns. Red ellipses are 95% probability contours of a
Gaussian with parameters given by (A.5).

power delay spectrum reads P (τ) = λ0σ
2
α(τ), see [4]. For in-room scenarios,

the power delay spectrum is well modelled by the reverberation model as [5]

P (τ) =
{
G0 exp(− τ

T ), τ > 0
0 otherwise, (A.4)

where G0 is the reverberant power at delay zero, and T = −4V/cS ln(g) is the
reverberation time, V is the volume, S is the surface area, c is the speed of
light, and g is the reflection coefficient of the room. Fig. A.1 shows an example
realisation drawn from the model.

The mean vector, µ, and the covariance matrix, Σ, of the first three tem-
poral moments i.e. m0, m1, and m2, can be found by invoking Campbell’s
theorem,

µ = G0

 T
T 2

2T 3

 , and Σ = G2
0

λ0

 T T 2

2
T 3

2
T 2

2
T 3

2
3T 4

4
T 3

2
3T 4

4
3T 5

2

 . (A.5)

3 Estimation Method

Let mk be the N -dimensional vector of the kth temporal moment, where
k = 0, 1, 2. Samples from the posterior, p(Θ|mk), can be used to infer on the
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Fig. A.2: Histogram of the approximate posterior samples obtained from the data
in Fig. A.1. A zoomed version of the histogram of g is inserted in the same plot. Red
line: true value, dashed green line: MMSE estimate. Inset plot in blue represents the
prior distribution, of g.

model parameters, Θ = [g,G0, λ0]T . Since the posterior and the likelihood,
p(mk|Θ), are numerically unavailable, sampling is not possible. However, in-
spired by Fig. A.1, we approximate the likelihood as a Gaussian p̃(mk|Θ) with
mean and covariance as in (A.5). Then we sample from the approximate poste-
rior, p̃(Θ|mk) = p̃(mk|Θ)p(Θ)/p(mk), by using standard sampling techniques.
Point estimates can then be obtained, e.g. averaging the posterior samples
yield the minimum mean squared error (MMSE) estimate.

4 Simulation and Results

We run the default sampler in [6] on synthetic data from Fig. A.1 using a
Beta prior for g and flat priors for G0 and λ0 to obtain 2000 samples from the
approximate posterior. As shown in Fig. A.2, samples from all three posteriors
are concentrated around their respective "true" values, resulting in very small
estimation errors for MMSE estimator.

Root mean square errors (RMSE) of the estimator is computed using Monte
Carlo experiment as follows. In each Monte Carlo run, N realisations of tem-
poral moments are generated with the settings in Fig. A.1, and the MMSE
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Table A.1: RMSE of the parameter estimates for different N with 500 Monte-Carlo
runs each.

N RMSE (RMSE/True Value)

ĝ[10−3] Ĝ0[10−10] λ̂0[MHz]

10 9 (1.5%) 10 (10%) 373 (37.3%)
50 4.6 (0.77%) 5.5 (5.5%) 140 (14%)
100 3.6 (0.6%) 4.3 (4.3%) 97 (9.7%)
300 2.4 (0.4%) 3.1 (3.1%) 56 (5.6%)
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Fig. A.3: Measured averaged power delay profile (black) [3] for N = 625 and the
power delay spectrum predicted from the parameter estimates (red).

estimate is computed. The RMSE, reported in Table A.1, decreases with in-
crease in the size of the data. As expected from the relative widths of the
posteriors in Fig. A.2, the RMSE of ĝ is the smallest, followed by Ĝ0 and λ̂0.
Note that even with a data size of N = 10, the RMSE is reasonably small.

To test the applicability of the estimator, we apply it to measured data
from [3]. The estimated parameters are then used to predict the power delay
spectrum. The result is compared with the averaged power delay profile from
the measured data in Fig. A.3. Despite the employed assumptions of high
bandwidth and no noise, the fit seems reasonable, indicating that the Gaussian
approximation is sufficient.
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5 Conclusion
We find that the parameters of the considered stochastic multipath model can
be estimated by using temporal moments as summary statistics without the
need for multipath extraction. Thus, temporal moments of the received sig-
nal are informative for estimating the parameters of the considered multipath
model, i.e. arrival rate, reverberation gain and absorption coefficient. The pro-
posed method is reasonably accurate despite the approximations involved (it
ignores measurement noise, bandwidth limitations, and relies on a Gaussian
approximation of the likelihood). Further work is needed to account for finite
measurement bandwidth and noisy data.
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Abstract
Stochastic channel models are usually calibrated after extracting the parameters
of the multipath components from measurements. This paper proposes a method
to infer on the underlying parameters of a stochastic multipath model, in par-
ticular the Turin model, without resolving the multipath components. Channel
measurements are summarised into temporal moments instead of the multipath
parameters. The parameters of the stochastic model are then estimated from the
observations of temporal moments using a method of moments approach. The
estimator is tested on real data obtained from in-room channel measurements.
It is concluded that calibration of stochastic models can be done without multi-
path extraction, and that temporal moments are informative summary statistics
about the model parameters.

1 Introduction
Realistic modelling of the radio channel is imperative to the design and analysis
of any wireless communication system. Stochastic multipath models charac-
terizing many different radio environments have been reported in the litera-
ture [1–4]. These models can be used to generate realizations of the channel
in simulations, and to analyse the behaviour of communication systems. For a
model to be useful for simulation, it should be calibrated, i.e. its parameters
should be estimated such that the model fits to the measurement data.

Since the early works [1] and [2], parameters of a stochastic multipath
channel model have usually been estimated in a two-step process as shown in
Fig. B.1(a). First, the multipath parameters, for example the delays and their
respective gains, are estimated from the channel measurements, followed by es-
timation of the model parameters, e.g. [4–7]. Resolving multipath components
using high-resolution algorithms such as CLEAN [8], SAGE [9] or RIMAX [10]
is not usually trivial, and the overall estimation accuracy of the model param-
eters relies on how accurately the multipath parameters are obtained. One
particular problem which has been considered only recently [11] is the effect
that some multipath components are undetected due to noise or bandwidth
constraints. This censoring effect causes significant calibration errors.

The error introduced by this intermediate multipath extraction step can
potentially be eliminated by methods that bypass this step and estimate the
model parameters from other summaries, as depicted in Fig. B.1(b). Other
summary statistics, apart from the multipath parameters, that can be found in
the literature include power delay profile, root mean square delay spread, an-
gular dispersion, temporal moments, and delay-Doppler function, among oth-
ers [12]. Potentially these summaries are informative about the underlying
model parameters and could thus be valuable for their estimation.

The choice of summary statistics is guided by a number of concerns. First,
summary statistics should be informative about the model parameters. Ideally,
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(a)

(b)
Fig. B.1: Calibration procedures involving (a) multipath extraction, and (b) general
summaries.

a sufficient statistic should be chosen, but in most practical situations, this is
not feasible or possible. In fact, the multipath parameters form a sufficient
statistic for the underlying point process, provided that all multipath compo-
nents are actually resolved without error, which is unlikely the case. More-
over, the summary should be easily computable. One such choice of summary
statistics, that does not introduce significant computational overhead, are the
temporal moments. These have been widely used in wireless communication
literature since the 1970s, see e.g [13], but have, to the best of our knowledge
hitherto not been considered for calibration of multipath models apart from
the sampling approach proposed by the authors in [14].

In this contribution, we propose a method of moments parameter estimator
for the Turin model [1] without multipath extraction. This model has recently
attracted attention due to its simplicity, see e.g. [4, 20]. We compute the tem-
poral moments from the transfer function measurements, without transforming
it to time domain. Expressions for the means and covariances of the tempo-
ral moments are derived. Inserting sample means and covariances from the
measurements to these expressions yield the parameter estimates. The perfor-
mance of the proposed estimator is evaluated by a simulation experiment and
validated using measurement data.

2 Signal Model
Consider a single-input, single-output (SISO) multipath propagation scenario
where the received signal is measured using a transmit and a receive antenna
at a certain frequency bandwidth, B. The received signal, Yk, is modelled in
the frequency domain as

Yk = Hk +Nk, k = 0, 1, . . . , (Ns − 1), (B.1)

where k is the frequency index, Hk is the transfer function, Nk is the noise
contribution, and Ns is the total number of sample points. The major source
of noise in such measurements is noise from the measurement equipment it-
self, which can be assumed independent and identically distributed (iid) at
each measurement point. Here the noise is modelled as iid complex Gaussian
variables, Nk ∼ CN (0, σ2

N ), k = 0, 1, . . . , Ns − 1.
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The temporal moments can be computed in the frequency domain as fol-
lows. Discrete-frequency, continuous-time inverse Fourier transform of Yk gives
the signal in the time domain, y(t)

y(t) = 1
Ns

Ns−1∑
k=0

Yk exp (j2πk∆ft) , (B.2)

where ∆f is the frequency separation between two samples. The time domain
signal is periodic with period

tmax = 1
∆f = (Ns − 1)

B
. (B.3)

Define the ith temporal moment of y(t) as

mi =
∫ tmax

0
ti|y(t)|2dt, i = 0, 1, 2, . . . (B.4)

Consequently, in the frequency-domain, we have

mi = 1
N2
s

∑
k

∑
k′

YkY
∗
k′ai(k − k′), (B.5)

with the definition

ai(k − k′) =
∫ tmax

0
ti exp (j2π∆f(k − k′)t) dt. (B.6)

A number of properties can be shown for this function. Since mi ≥ 0 for all
Yk, ai(k − k′) is a positive semidefinite function. Also, ai(k) = a∗i (−k). Note
that ai(0) = ti+1

max / (i + 1). The magnitude of ai(k − k′) decreases rapidly
as |k − k′| increases. In particular, a0(k − k′) = 0 for k 6= k′. Therefore,
the diagonal terms in (B.5) are the most relevant for computing the temporal
moments.

The frequency domain method in (B.5) is preferred over (B.4) here since
we work with frequency domain measurements and it leads to low complexity
of the estimator derived in Section 3. It should be noted that no attempt has
been made to remove noise and effects of finite measurement bandwidth. Thus,
we avoid the employment of heuristics to set the noise floor and truncate the
time domain signal at an arbitrary point. This is advantageous here, since
the derived estimator and its performance does not depend on such arbitrary
choices, and the results are more easily reproduced.

The temporal momentsmi, i = 0, 1, 2, . . . , are random variables with means

E[mi] = 1
N2
s

∑
k

∑
k′

E [YkY ∗k′ ] ai(k − k′), (B.7)
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and covariances

Cov(mi,mj) =
1
N4
s

∑
k,k′,n,n′

Cov(YkY ∗k′ , YnY ∗n′)ai(k − k′)aj(n− n′). (B.8)

It should be noted that the first and the second moment of the temporal mo-
ments depend upon the second and fourth moment of the received signal, re-
spectively.

Employing the uncorrelated scattering assumption [15], the second moment
of Yk can be written as

E [YkY ∗k′ ] =
∫
Py(t) exp (−j2π∆ft(k − k′)) dt + σ2

Nδ(k − k′), (B.9)

where δ(·) is the Kronecker delta function, and Py(t) is the power delay spec-
trum of the received signal1. The power delay spectrum reads from (B.2) as

Py(t) = 1
N2
s

∑
k

∑
k′

E [YkY ∗k′ ] exp (j2π∆f(k − k′)t) . (B.10)

Considering high bandwidths, Py(t) can be approximated as

Py(t) ≈ EsPh(t) + σ2
N/Ns, (B.11)

where Es is the energy of the transmitted signal, and Ph(t) is the power delay
spectrum of the channel. With the transmitted signal in frequency domain
being the rectangular window of unit magnitude over the bandwidth, that
gives Es = B.

3 Method of Moments Estimator for Turin’s
Model

3.1 Channel model description
As an example of how the temporal moments can be utilized to calibrate
stochastic channel models, we derive a method of moments estimator for the

1With s(t) as the transmitted signal, Py(t) is defined as in the noise free case:

Py(t) = E[|y(t)|2] =
∫
Ph(τ)|s(t− τ)|2dτ,

where Ph(t) may be informally interpreted as Ph(t) = E[|h(t)|2], where |h(t)|2 is the
(instantaneous) power delay profile of the channel. [16]
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seminal model by Turin [1], applied to an in-room setting. For a multipath
channel, the transfer function, Hk, reads

Hk =
∑
l

αl exp (−j2π∆fkτl) , (B.12)

where αl and τl are the complex gain and time-delay of the lth multipath com-
ponent, respectively. The delays form a homogeneous Poisson point process
with arrival rate λ(t) = λ0. The gains, conditioned on the delays, are mod-
elled as independent circular complex Gaussian variables with variance σ2

α(t).
Therefore, {(τl, αl)} forms a marked Poisson point process of intensity λ0, with
points {τl} and marks {αl}. For this type of model, Ph(t) = λ(t)σ2

α(t), see [16].
Typically for in-room channel measurements, the power delay spectrum

has an exponentially decaying behaviour, and can be approximated using the
reverberation model in [17] as

Ph(t) =
{
G0 exp(− t

T ), t > t0
0 otherwise, (B.13)

where G0 is the power at delay zero called reverberation gain, T is the rever-
beration time, and t0 is the delay of the first multipath component. The arrival
rate, however, does not enter in (B.13). Substituting this model in (B.9) and
carrying out the integration gives the autocorrelation function of Y as

RY (k, k′) = E [YkY ∗k′ ]

= G0TBe
−t0( 1

T +j2π∆f(k−k′))
1 + j2π∆fT (k − k′) + σ2

Nδ(k − k′). (B.14)

As to be expected, Y is a wide-sense stationary process in the frequency domain.

3.2 Estimator derivation
We follow a method of moments approach to estimate the four parameters, G0,
T , σ2

N , and λ0, from N observations of the summary statistic consisting of three
temporal moments (m0,m1,m2). Out of the four minimum equations required
to solve for the parameters, three of them are taken to be the equations for the
mean. Using (B.14) in (B.7) gives the three mean equations as:

µ0 = G0TB

N2
s

β0(T ) + σ2
N

B
, (B.15)

µ1 = G0TB

N2
s

β1(T ) + σ2
N t

2
max

2Ns
, (B.16)

µ2 = G0TB

N2
s

β2(T ) + σ2
N t

3
max

3Ns
, (B.17)
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where µi = E[mi], and βi(T ) is defined as

βi(T ) =
Ns−1∑

k̃=−Ns+1

(Ns − |k̃|)e−t0(
1
T +j2π∆fk̃)ai(k̃)

1 + j2π∆fT k̃
, (B.18)

with k̃ = k − k′ and i = 0, 1, 2. Substituting σ2
N from (B.15) into (B.16) and

(B.17), and then dividing the two equations gives(
µ̂1 −

µ̂0

2∆f

)(
B

N2
s

β2(T )− e−
t0
T

3∆f2

)

−
(
µ̂2 −

µ̂0

3∆f2

)(
B

N2
s

β1(T )− e−
t0
T

2∆f

)
= 0. (B.19)

Here, µ̂i are the estimates of µi for i = {0, 1, 2}, found by taking the sample
mean of the temporal moments. Solving (B.19) numerically for T (which is
easily done using standard numerical solvers) gives the estimate for the rever-
beration time, T̂ . The estimate for the reverberation gain, Ĝ0, is then

Ĝ0 = N2
s (2∆fµ̂1 − µ̂0)

2∆fBβ1(T̂ )−N2
s e
− t0
T̂

. (B.20)

The noise variance is then estimated by inserting Ĝ0, T̂ and µ̂0 in (B.15).
The arrival rate, λ0, does not appear in the mean equations (B.15)-(B.17),

but in the covariances derived in Appendix. Any of the covariance equations
can be used. The simplest is the equation for the variance of m0:

var(m0) = G2
0Te

− 2t0
T

λ0
+ t2max

N4
s

Ns−1∑
p=−Ns+1

(Ns − |p|) |RY (p)|2︸ ︷︷ ︸
γ

, (B.21)

where RY (p) is the autocorrelation function of Y at lag p. Estimating γ requires
the estimation of RY (p), which is done by using Ĝ0, T̂ , and σ̂2

N in (B.14). The
arrival rate is then estimated as

λ̂0 = Ĝ2
0T̂ e

− 2t0
T̂

v̂ar(m0)− γ̂ , (B.22)

where v̂ar(m0) is the sample variance of the zeroth temporal moment and γ̂ is
the estimate of γ.

3.3 Estimation procedure

Let the measurements of a SISO channel be stored in a matrix Y ∈ CN×Ns ,
where N is the number of realizations of the received signal. The first three
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Algorithm 2 Method of moments estimator
Input: Y, t0
1: Compute D from Y using (B.5)
2: Compute the sample means of {m0,m1,m2}, and the sample variance of

m0
3: Solve (B.19) numerically to find T̂
4: Use T̂ in (B.20) to find Ĝ0
5: Obtain σ̂2

N using Ĝ0 and T̂ in (B.15)
6: Estimate RY (p) from (B.14) using Ĝ0, T̂ , σ̂2

N , and then compute γ̂
7: Obtain λ̂0 from (B.22) using Ĝ0, T̂ and γ̂
Output: T̂ , Ĝ0, σ̂2

N , λ̂0

temporal moments can then be computed for each realization, resulting in a
data matrix D = [m0,m1,m2], where mi ∈ RN for i = 0, 1, 2. The algorithm
for estimating the parameters using method of moments is given in Alg. 2.
Note that t0 is considered as an input to the estimator. This could either
be obtained as side information from the measurement set-up or estimated by
finding the first peak in the data. No further assumptions, such as the number
of multipath components to extract, are required here.

4 Performance Evaluation

4.1 Numerical experiment
To evaluate the accuracy of the estimator, we perform Monte Carlo simulations
for different values of SNR, defined as SNR = G0TB/σ

2
N , and number of

realizations, N , using synthetic data generated from the model. The root-mean-
squared error (RMSE) of the different parameter estimates are normalized by
their "true" values and shown in Fig. B.2.

It can be seen from Fig. B.2 that the RMSE of the estimates decrease as the
number of realizations (and hence the number of data points of each temporal
moment) increase. This illustrates that the method of moments estimate is
consistent. The normalized RMSE is fairly small in all four cases with the
arrival rate estimator showing the largest error. This is expected since λ̂ is
obtained as a combination of a variance estimate and the three other estimates.
The estimation accuracy also improves with SNR. However, the improvement
is less pronounced for reverberation gain due to the high bandwidth. Further
analysis of the simulation data (not shown here) shows that the parameter
estimates are unbiased.
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Fig. B.2: Normalized RMSE of the different parameter estimates as a function of
number of channel realizations, plotted for different SNR values. Parameter settings:
G0 = 10−8, T = 10 ns, λ0 = 1 ns−1, t0 = 5 ns, B = 4 GHz, Ns = 801, Number of
Monte Carlo runs = 500. Note that the RMSE of noise variance is in log-scale.

4.2 Application to measured data
To test the estimator’s applicability, we now apply it to a set of measure-
ment data described in [11]. The dataset consists of channel transfer func-
tions obtained using a vector network analyser (VNA) in a room of dimensions
3×4×3 m3. The set-up is SISO, with a virtual planar array of 25×25, resulting
in N = 625 realizations of the channel. The bandwidth of the measured signal
is 4 GHz, with Ns = 801 samples in each channel measurement, resulting
in ∆f = 5 MHz and tmax = 200 ns. The delay of the first peak is t0 = 6 ns,
found through visual inspection of the data. The estimator was not observed
to be sensitive to variations in t0 of the order of 1/B. For this dataset, our
implementation of Alg. 2, programmed in R version 3.4.3, took around 8 s
when run on a notebook with a dual-core Intel i7 processor and 24 GB RAM.

To further demonstrate the soundness of the proposed method, we now
use the obtained estimates to estimate the power delay spectrum using (B.10).
This is then compared with the averaged power delay profile (PDP) of the mea-
surement data as shown in Fig. B.3. The averaged PDP of simulated signals,
i.e. the simulated power delay spectrum from the model using the estimates,
is also shown. Both the theoretical and simulated power delay spectrum ob-
tained from the estimates seem to fit the averaged PDP of the measurements,
although there is a slight discrepancy between the estimated noise floor and the
noise floor observed in the measurements. This demonstrates that the estima-
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Fig. B.3: Figure showing the averaged PDP of N = 625 realizations of the measure-
ment data (black) and the simulated data (grey) versus the delay. The estimated Py(t)
computed from (B.10) is shown in red. The estimates obtained are: Ĝ0 = −83.9 dB,
T̂ = 7.8 ns, σ̂2

N = 2.8 × 10−10, and λ̂0 = 10.0 ns−1. The estimated noise floor is
σ̂2
N/Ns = −124.5 dB.

tor is able to extract the model parameters accurately from real measurements
without the need for multipath extraction.

5 Conclusion
The proposed method of moments estimator can be used to calibrate the Turin
model with a constant arrival rate without multipath extraction. The per-
formance evaluation shows that the parameters of the considered stochastic
multipath channel model can be estimated with good accuracy. The tempo-
ral moments, used in the estimation procedure, are easy-to-compute summary
statistics of the measurement data. Moreover, they are informative about the
parameters of the considered model, i.e. reverberation gain, reverberation time,
arrival rate and noise variance. This estimation procedure bypasses the need
to truncate the measured impulse response via some heuristics to estimate the
decay of the power delay spectrum.

Comparison with performance bounds, such as the Cramer-Rao bound,
is hindered by the lack of a likelihood function. Furthermore, comparison
with calibration procedures involving multipath extraction with a number of
heuristic choices is non-trivial. These considerations are left for future work.
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Appendix
The characteristic function for the received signal evaluated at an arbitrary
point v is defined as

C(v) = E
[
exp

(
j<vHY

)]
, (B.23)

where < denotes the real part. The joint moment of four frequencies are
obtained by letting v = [ν1, ν2, ν3, ν4]T and Y = [Yk1 , Yk2 , Yk3 , Yk4 ]T . Since
marked point process {(τl, αl)} forms a two-dimensional Poisson point pro-
cess with rate p(α|τ)λ(τ) [18], we obtain by Campbell’s theorem the cumulant
generating function (log characteristic function) as

K(v) =
∫ Cα|τ

 4∑
j=1

νj exp (−j2π∆fkjτ)

− 1

λ(τ)dτ, (B.24)

where Cα|τ (·) is the characteristic function for the circular symmetric complex
Gaussian p(α|τ) [20].

The covariance of the temporal moments is related to the fourth moment
of the received signal, Yk, which in turn can be written in terms of the fourth
cumulant of the signal [19, Eq. (2.118)] as

Cov(YkY ∗k′ , YnY ∗n′) = Cum(YkY ∗k′YnY ∗n′) + E[YkY ∗n′ ]E[YnY ∗k′ ]. (B.25)

The fourth cumulant of Y is found by complex differentiation of the cumulant
generating function [19]

Cum(YkY ∗k′YnY ∗n′) = 24

j4 .
∂4K(v)

∂ν1∂ν∗2∂ν3∂ν∗4

∣∣∣∣
ν1,ν2,ν3,ν4=0

= 2
∫
σ4
α(t)λ(t)e−j2π∆f(k1−k2+k3−k4)tdt. (B.26)

With λ(t) = λ01(t > t0), we get

Cum(YkY ∗k′YnY ∗n′) = 2G2
0B

2

λ0

∫ ∞
t0

e−
2t
T e−j2π∆f(k−k′+n−n′)tdt

=
2G2

0TB
2ψ(k−k′+n−n′)

λ0 [2 + j2π∆f(k − k′ + n− n′)T ] , (B.27)

where ψ(k−k′+n−n′) = e−t0(2/T+j2π∆f(k−k′+n−n′)). Now, let Cov(mi,mj) =
%ij1 + %ij2 . Then %ij1 , being the quadruple sum over the cumulant expression,
can be expressed in the form of a double sum as

%ij1 =G
2
0TB

2

λ0N4
s

Ns−1∑
k̃,ñ=−Ns+1

(
Ns − |k̃|

)
(Ns − |ñ|)ψ(k̃+ñ)ai(k̃)aj(ñ)

1 + jπ∆f(k̃ + ñ)T
. (B.28)
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Since E[YkY ∗n′ ] = RY (k − n′), %ij2 can be written as

%ij2 = 1
N4
s

∑
k,k′,n,n′

E [YkY ∗n′ ]E [YnY ∗k′ ] ai(k − k′)aj(n− n′)

= 1
N4
s

∑
k,k′,n,n′

RY (k − n′)RY (n− k′)ai(k − k′)aj(n− n′)

= 1
N4
s

Ns−1∑
p=−Ns+1

(Ns − |p|) (aj ∗RY )[p] (ai ∗RY ) [−p], (B.29)

where the convolution defined as

(f ∗ g)[n] :=
∑
l

f [l]g∗[n− l].

Noticing that a0(k − k′) = tmaxδ(k − k′), var(m0) is given as in (B.21).
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Abstract
We propose Monte Carlo maximum likelihood estimation as a novel approach
in the context of calibration and selection of stochastic channel models. First,
considering a Turin channel model with inhomogeneous arrival rate as a proto-
typical example, we explain how the general statistical methodology is adapted
and refined for the specific requirements and challenges of stochastic multipath
channel models. Then, we illustrate the advantages and pitfalls of the method
on the basis of simulated data. Finally, we apply our calibration method to
wideband signal data from indoor channels.

1 Introduction
Stochastic multipath models are indispensable for simulating and analyzing
radio systems for communication and localization. In a stochastic multipath
model, the received signal is modeled as a superposition of attenuated and
delayed signal components, each corresponding to one propagation path [1].
Such a model can be described by a marked point process where a marked
point represents a delay and its associated path gain. Provided that the model
is calibrated, i.e. its parameters have been estimated from measurement data,
realizations of the channel can then be simulated from the model and used in
system design or performance analysis, thus alleviating the need for further
measurements. Calibration of stochastic multipath models is a non-trivial task
for several reasons. In particular, due to the finite measurement bandwidth
and the presence of additive noise, the marked point process is not observed
directly, but should be considered as a hidden variable. Not least in the context
of point processes, estimating parameters in models with hidden variables is
often a highly involved endeavor [2].

The calibration approach most widely used in the literature is a two-step
procedure dating back to Turin [3], outlined in Fig. C.1. First, the measurement
data is reduced to a set of multipath components, such as delays and path gains.
Then, the parameters of the underlying point process are estimated from the
obtained multipath components. Although this data reduction step was em-
ployed chiefly due to technical limitations of the measurement equipment and
data processing used by Turin at that time, many works have since adopted
and expanded upon this calibration method [4–10]. The estimation of the mul-
tipath components from measurement data involves high-resolution multipath
extraction methods such as CLEAN [11], SAGE [12], and RiMAX [13]. De-
pending on whether the stochastic model is cluster-based or not, an additional
step of clustering the multipath components may also be employed. Cluster-
ing is either done manually, e.g. in [4, 5, 14, 15], leading to subjective and
non-reproducible results, or using automated algorithms such as [16–18], that
further increase the complexity of the calibration process. Implementation of
these multipath extraction and clustering algorithms is typically non-trivial,
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Fig. C.1: Calibration procedure usually followed where estimates of multipath com-
ponents are used as summaries.

and requires a number of arbitrary choices to be made. Moreover, various ad
hoc methods are utilized for obtaining the model parameters after multipath
extraction. Another potential weakness of such two-step procedures is that the
resulting parameter estimates are highly sensitive to the estimation accuracy of
the particular set of extracted multipath components. Calibration techniques
that do not require multipath extraction but rely on summarizing the data into
a set of statistics have been introduced recently in the literature [19–23]. How-
ever, these methods call for definition of appropriate summary statistics that
are informative regarding the model parameters. Moreover, the approximation
arising due to summarizing the data maybe difficult to quantify.

In this paper, we propose to use the principled and recognized statistical
methodology of maximum likelihood estimation (MLE) to calibrate stochastic
channel models with inhomogeneous intensity function. Thus, our parameter
estimates are the parameter values maximizing the probability density of the
received signals given the transmitted signals. However, we face a missing data
problem where it is not possible to evaluate the likelihood function by analyt-
ical marginalization with respect to the hidden quantities. We therefore use
importance sampling to compute an approximation of the likelihood function
using a large Markov Chain Monte Carlo (MCMC) sample from the conditional
distribution of the multipath components given the observed data [24]. Thus,
in contrast to the previously mentioned methods, our method does not rely on
the validity of just one particular set of multipath components. We believe this
will reduce bias and variance of the resulting parameter estimates. Moreover,
approximated likelihoods for different models can be used in a natural way
for model selection. Considering a parametric Turin model for simulated and
real data, we demonstrate the feasibility of Markov Chain Monte Carlo maxi-
mum likelihood estimation (MCMC MLE) for model calibration. The MCMC
method can also be adapted in a straightforward manner to sample from the
posterior distribution of the parameters in case informative priors are available
for the parameters.

The rest of the paper is organized as follows. Section 2 introduces the
inhomogeneous Turin model as the stochastic multipath model studied in this
paper. Next, in Section 3, we describe our proposed procedure for approximate
MLE using MCMC.We also explain what properties of the stochastic multipath
model require us to develop problem-specific adaptations to standard MCMC
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and optimization methods. Section 4 illustrates our calibration procedure using
simulated datasets. While this already provides an intuition on the strengths
and peculiarities of the calibration procedure, they become even more apparent
in Section 5, where we analyze a real dataset of indoor channel measurements
originally considered in [25]. Finally, Section 6 concludes the paper with a
discussion and indications to avenues of future research.

2 Stochastic Multipath Model

2.1 Signal model
Consider frequency domain measurements of a single-input single-output lin-
ear, time-invariant radio channel in the band [−B/2, B/2] obtained by a vector
network analyzer [26]. In each measurement run, the transfer function is sam-
pled at K equispaced frequencies. The measurement data is modeled as a
random vector Y = (Y1, . . . , YK) with entries

Yk = Hk +Nk, k = 1, . . . ,K, (C.1)

where Hk is the transfer function sampled at the kth frequency and Nk denotes
the measurement noise. The noise samples (N1, . . . , NK) are assumed to be
independent and identically distributed circular symmetric Gaussian random
variables each with variance σ2. We denote a realization of the measurement
vector Y by y = (y1, . . . , yK). Repeating the measurements M times yields
the sequence of independent realizations y(1), . . . ,y(M).

Taking the discrete-frequency, continuous-time inverse Fourier transform of
the measurement vector gives the time domain measurement (with a misuse of
notation)

Y (t) = 1
K

∑
k≤K

Yk exp(i2πk∆ft), (C.2)

where ∆f = B/(K − 1) is the frequency spacing between two measurement
points, giving the period of the time domain signal as τmax = 1/∆f . We denote
the imaginary unit by i. The power delay spectrum of Y (t) is defined as

Py(t) = E
[
|Y (t)|2

]
= (Ph ∗ |s|2)(t), (C.3)

where s(t) denotes the transmitted signal in the time domain1. The power
delay spectrum Ph(t) may be informally interpreted as Ph(t) = E

[
|H(t)|2

]
,

with |H(t)|2 being the instantaneous power delay profile of the channel, see
e.g. [27] or [28].

1In the case considered here, s(t) is the inverse discrete Fourier transform of the
rectangular frequency window applied in the measurements.
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2.2 Stochastic multipath model
The channel transfer function of a multipath model is of the form

Hk =
∑
τ∈Z

ατ exp(−i2π∆fkτ), k = 1, . . . ,K (C.4)

where Z is a point process on the positive real line R+ containing the prop-
agation time delays τ . A complex-valued gain ατ is associated to each delay
τ ∈ Z. Thereby the process Zm = {(τ, ατ )}τ∈Z constitutes a marked point
process on R+ × C. Hence, we refer to a pair (τ, ατ ) as a marked point. The
support of the point process Z is the interval I = [τ0, τmax], where τ0 is the
delay of the line-of-sight (LOS) path.

Particular stochastic multipath models are obtained upon specifying the
marked point process Zm. A multitude of such models have been proposed in
the literature. Here, we follow the approach by Turin [3], and let Zm be an
independently marked Poisson process. This model is completely specified by
the intensity function (arrival rate) and its mark density.

The power delay spectrum is connected to the arrival rate and mark den-
sity. Assuming the complex gains to be uncorrelated given the delay variables,
(corresponding to the familiar uncorrelated scattering assumption), the power
delay spectrum factorizes as [28]

Ph(τ) = λ(τ)E[|ατ |2|τ ] (C.5)

where λ(·) denotes the intensity function (or arrival rate) for the delays Z.
The power delay spectrum is well studied as it is easy to measure and model.
For in-room environments, the power delay spectrum is well modeled by an
exponential decaying function,

Ph(t) =
{
G0 exp(−t/T ), t > 0
0, t ≤ 0,

(C.6)

where T is the reverberation time and the gain factor G0 is a positive constant.
See [28, 29] and references therein. We first define the arrival rate and thereafter
specify the mark density so that its second moment fulfills (C.5) and (C.6).

While in his original work, Turin determined the arrival rate empirically
in a non-parametric manner, a number of parametric models have occurred in
the literature [28]. We consider here the flexible two-parameter model for the
arrival rate proposed in [28]

λ(t) = ctκ1 , t ≥ 0 (C.7)

with c > 0 and κ1 ∈ R. This model class includes both the constant rate model
λ(t) = c, t ≥ 0, which is widely used in the literature due to its simplicity [4, 6],
and the quadratic rate model λ(t) = ct2 obtained by mirror source analysis of
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an empty rectangular room.2 The quadratic rate model is able to represent
the experimentally observed specular-to-diffuse transition [28, 30–32]. In the
present study, we use the model (C.7). For computational convenience, we
reparametrize the model as

λ(t) = exp(κ0 + κ1 log(t)) (C.8)

where κ0 = log(c).
Given Z, the path gains ατ for τ ∈ Z are modeled as independent zero-mean

complex Gaussian random variables. Therefore, conditioned on the delays, the
magnitude, |ατ |, is Rayleigh distributed, with the corresponding phase being
modeled as a uniform distribution on [0, 2π). To satisfy (C.5), (C.6) and (C.8),
we set the second conditional moment of the magnitude as

E[|ατ |2|τ ] =G0 exp(−κ0) exp[−τ/T − κ1 log(τ)]
= exp[γ0 + γ1τ − κ1 log(τ)]

where we have introduced the reparametrization γ0 = log(G0) − κ0 and γ1 =
−1/T . Note that G0, T, κ1, κ0 can be recovered uniquely from γ0, γ1, κ0, κ1
and vice-versa. In other words, conditional on τ , the real and imaginary parts
of ατ are independent zero-mean normal, each with variance exp[γ0 + γ1t −
κ1 log(t)]/2.

The reparametrization using κ0, γ0 and γ1 is not of critical importance
but leads to somewhat nicer expressions for derivatives when using Newton-
Raphson updates later on, see Section 3.3.

2.3 Estimation Problem and Likelihood Function

To calibrate the channel model, the parameter vector θ = [κ, γ, σ2]> with
the shorthand notations κ = (κ0, κ1) and γ = (γ0, γ1) should be estimated
from the data y(1), . . . ,y(M). Following the maximum likelihood principle, the
estimate is obtained as

θ̂ = arg max
θ

M∏
m=1

L(θ; y(m)) (C.9)

where L(θ; y(m)) = p(y(m); θ) is the likelihood based on one realization y(m).
Denote by Z

(m)
m the point process associated to the measurement vector

Y(m). Suppose for a moment that in addition to the measurement data y(m)

also the corresponding point process realization z
(m)
m is observed. Then the

likelihood function based on (y(m), z
(m)
m ) is

L(θ; y(m), z(m)
m ) = p(y|z(m)

m ;σ2)p(z(m)
m ;κ, γ) (C.10)

2 [27] alternatively derived the intensity function for a propagation graph model for
the in-room scenario with diffusely reflecting walls. This gives rise to a two-parameter
exponential rate model λ(t) = c exp(κ1t).
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where p(y(m)|z(m)
m ;σ2) is the complex Gaussian density

p(y(m)|z(m)
m ;σ2) =

(2πσ2)−K exp
(
− 1

2

K∑
k=1

(
|y(m)
k −H(fk)|/σ

)2)
and p(z(m)

m ;κ, γ) is the point process density of Z(m)
m . The notion of a point

density is non-standard as the number of points varies from realization to real-
ization. Technically speaking, the density of the delays is a density with respect
to a unit-intensity Poisson process distribution, [2, Section 6.1]. Specifically,
the point process density of Z(m)

m can be written [2, Section 3.3] as

p(z(m)
m ;κ, γ) =

∏
τ∈z(m)

f(ατ ; γ)

× exp
(
−
∫
I

exp(κ0 + κ1 log(t))dt
)

×
∏

τ∈z(m)

exp(κ0 + κ1 log(τ)).

The first factor is the product of the complex Gaussian densities f(ατ ; γ) for
the marks ατ and the product of the last two factors is the Poisson point density
for the delays τ ∈ z(m).

In practice, z(m)
m is not available and the likelihood is obtained by marginal-

izing with respect to Z(m)
m . More precisely, according to the law of total prob-

ability,
L(θ; y(m)) = Eθ[p(y(m)|Z(m)

m , σ2)]. (C.11)

The likelihood function (C.11) is unfortunately not available in closed form
because it is an expectation of a conditional probability that depends on Z(m)

m

in a complicated way and Z
(m)
m moreover does not have a fixed dimension.

Consequently, the MLE cannot be obtained in a straightforward manner.
The estimation problem is complicated due to the missing data: the max-

imization of the likelihood would be straightforward if only the point process
Zm could be be observed. Thus it is tempting to resort to a two-step proce-
dure by first estimating Zm using well known high-resolution path extraction
techniques and thereafter to estimate the model parameters. However, such
two-step procedures are problematic. Commonly, such high-resolution estima-
tors work under the assumption that the number of points in Zm is known.
This number is particularly challenging to estimate when the arrival rate is
high compared to the inverse of the measurement signal bandwidth. In the
light of the arrival rate model (C.7) this situation is very relevant in our study.
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3 MCMC MLE
To obtain the MLE, we propose an MCMC approach to obtain the maximum
likelihood estimate of θ. Our approach is inspired by the method proposed
in [2]. Thus, we rely on the observation that maximization of the likelihood
function is equivalent to maximization of the likelihood ratio L(θ; y)/L(θ0; y)
for a fixed reference parameter value θ0. This ratio can, as discussed in Sec. 3.1,
be evaluated using conditional samples of Zm given y. Furthermore, these
samples can be generated using an MCMC algorithm detailed in Section 3.2.
Finally, the approximated likelihood ratio is maximized with respect to θ as
discussed in Sec. 3.3. We comment in Sec. 3.4 on approaches for model selection.

For ease of exposition, we focus in the following on approximation of the
likelihood ratio in case of one realization, i.e. M = 1 and denote by y the
observed measurement data. The derived methodology is straightforwardly
extendable to the case M > 1, since by (C.9), the likelihood ratio for multiple
realizations is simply obtained by multiplying the likelihood ratios for each
separate realization.

The proposed MCMC maximum likelihood approach bears some resem-
blance to Monte Carlo EM in that it uses samples from the conditional distri-
bution of the missing data given the observed data. However, directly maxi-
mizing the Monte Carlo approximation of the likelihood is more efficient than
using EM steps for maximization, see the discussion in [33].

3.1 Monte Carlo approximations of likelihood

Using a result from [2, Section 8.6.1], the likelihood ratio can be expressed as3

L(θ; y)
L(θ0; y) = EZm|y;θ0

[ L(θ; y, Zm)
L(θ0; y, Zm)

]
, (C.12)

where EZm|y;θ0 denotes conditional expectation with respect to the hidden mul-
tipath components Zm given the data y under the parameter θ0 and the full
data likelihoods on the right hand side are given by (C.10). The right-hand side
of (C.12) is an importance sampling formula allowing us to use the conditional
distribution of Zm given y to integrate out Zm from the full data likelihood
ratio L(θ; y, Zm)/L(θ0; y, Zm). Thus the right-hand side of (C.12) can be ap-
proximated by an empirical average based on samples4 Zm,1, . . . , Zm,N from the

3Replacing the right-hand side of (C.11) by a direct Monte Carlo approximation
using samples from the marginal distribution of Zm under θ is possible, but gives an
unacceptably high variance of the estimated likelihood.

4An MCMC algorithm for sampling the conditional distribution of Zm is discussed
in Section 3.2.
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Fig. C.2: Diagram of one iteration of the birth-death MCMC algorithm.

conditional distribution of Zm given y,

L(θ; y)
L(θ0; y) ≈

1
N

N∑
n=1

Wn, (C.13)

with the notation

Wn = L(θ; y, Zm,n)/L(θ0; y, Zm,n). (C.14)

A delicate issue of the estimator (C.13) is its Monte Carlo variance. If
θ differs substantially from θ0, then only a small number of terms contribute
significantly to the Monte Carlo estimator in (C.13), which in turn leads to
a very high variance of the estimator. The magnitude of the degeneracy is
quantified by the effective sample size [34]

ESS =
(∑

nWn

)2∑
nW

2
n

. (C.15)

The effective sample size equals N in the extreme case where W1 = W2 · · · =
WN . In the other extreme where one term dominates, then the effective sam-
ple size approaches unity. When applied to dependent samples, such as those
obtained by MCMC samples, the effective sample size can be somewhat opti-
mistic as it does not take into account correlation between samples. However,
we still find it useful for gauging of the quality of the Monte Carlo estimator.
Alternatively, the variance of the Monte Carlo estimator could be estimated
using time series methods [35]. In case of multiple measurements, M > 1,
several MCMC samplers, one for each measurement vector, would be run in
parallel. In that case it would be natural to consider the minimal ESS over the
M samplers.

3.2 Birth/death MCMC sampling with parallel temper-
ing
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Algorithm 3 Birth/death MCMC sampler (rand/randn means draw
independent standard uniform/normal variate, |I| is length of I, and
n(z) is number of points in z)

Input. θ, z(0)
m

Output. z(1)
m , z

(2)
m , . . . with stat. distribution p(zm|y, θ)

for k = 1, 2, . . . do
z′m ← z

(k−1)
m [z′m proposal for next state of Markov chain]

if rand < pmove then
Pick (τ, ατ ) uniformly at random from z′m
if rand < pdelay then
τ ← τ + σdelay · randn
mhr ← L(θ; y, z′m)/L(θ; y, z(k−1)

m )
else
if rand < pphase then
phase(ατ ) ← phase(ατ )+σphase · randn
mhr ← L(θ; y, z′m)/L(θ; y, z(k−1)

m )
else
v := randn
magn(ατ ) ← magn(ατ ) · exp(σmagnitude · v)
mhr ← exp(v)L(θ; y, z′m)/L(θ; y, z(k−1)

m )
end if

end if
else
if rand < pbirth then
Add marked point (τ, ατ ) to z′m with τ uniform
in I and ατ ∼ f
mhr ← L(θ;y,z′m)(1−pbirth)|I|

L(θ;y,z(k−1)
m )pbirthf(ατ )(n(z′m)+1)

else
Pick (τ, ατ ) uniformly at random from z′m and
delete it from z′m.
mhr ← L(θ;y,z′m)pbirthf(ατ )n(z(k−1)

m )
L(θ;y,z(k−1)

m )(1−pbirth)|I|
end if

end if

if rand < min{1,mhr} then
z

(k)
m ← z′m [go to proposed state]

else
z

(k)
m ← z

(k−1)
m [remain at current state]

end if
end for
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Birth/Death MCMC

The challenging task of sampling from Zm|y, θ can be tackled using specialized
MCMC samplers for point processes [2]. Here, we rely on Algorithm 3 which is
a variant of the birth-death MCMC algorithm from [2, Chapter 7]. A diagram
of one iteration of the birth-death algorithm is shown in Fig. C.2.

The MCMC updates of Algorithm 3 are births, deaths and moving of
marked points (τ, ατ ). We first elucidate the mechanisms behind the birth
and death steps. A birth proposal attempts to add a marked point (τ, ατ )
where τ is drawn uniformly at random in the sampling window I and ατ is
drawn from the circular symmetric Gaussian distribution described in Section
2. A death proposal attempts to remove a marked point selected from the uni-
form distribution on the current marked points. The proposals are accepted or
rejected according to Metropolis-Hastings ratios appropriate for the set-up of
a varying number of points, see [2, Chapter 7].

The birth-death MCMC algorithm, unfortunately, suffers from the problem
of slow mixing. The reason for this is that if a marked point (τ, ατ ) is borne
close to the true location of a delay, this may increase the likelihood of the
data under the model substantially, even if the mark ατ is not entirely correct.
Since such a point dies with small probability, it likely remains in the MCMC
algorithm for a long time, thus leading to slow mixing of the Markov Chain.

To improve the mixing, we introduce updates that only change the mark
ατ for a uniformly selected point τ . For instance, if a large mark is changed to
a smaller, this may increase the chance that a death of the associated marked
point becomes accepted later on. In addition, if the originally proposed mark
was too small, the mark change allows for correcting this by proposal of a larger
mark.

To further improve the mixing, we use a parallel tempering scheme which
combines several birth-death Markov chains. Parallel tempering is a versatile
technique to reduce autocorrelation in slowly-mixing Markov chain samplers by
running in parallel several variants of the chain that mix substantially faster
[24]. Occasionally, the faster chains swap states with the slower ones, thereby
reducing the mixing time of the slower chains. Here, we can construct faster
chains by increasing the noise level whereby the conditional distribution of the
point process given the data becomes more dispersed, so that the chain does
not get stuck as easily. The swaps between different chains are controlled by a
Metropolis-Hastings criterion as follows. A chain in state zm with parameters
θ swaps states with a chain in state z′m with parameters θ′ with probability

min
{

1, L(θ′; y, zm)L(θ; y, z′m)
L(θ; y, zm)L(θ′; y, z′m)

}
. (C.16)

In the swap phase, we order the parameters according to their noise level σ and
then sequentially attempt a swap move for every pair of successive parameters.
That is, if parallel tempering considers K noise levels σ1 < · · · < σK , then we
attempt swap moves between σi and σi+1 for i < K.
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Fig. C.3: Estimated autocorrelation for MCMC samples of the log full data likeli-
hood in case of the constant (left) and quadratic (right) rate model. The dashed blue
lines indicate lag-wise 95% probability intervals for the estimated auto-correlations
under the null-hypothesis of zero autocorrelation.

Large spans of noise variances and large number of parallel chains generally
reduces the mixing time at the cost of parallelization overhead. We found that
working with only six temperature levels reduces the autocorrelation substan-
tially while maintaining a reasonable complexity. The distances between the
six noise levels are chosen such that we achieve the recommended acceptance
rates between 20% and 50% [36].

Initialization

In principle, the MCMC sampler converges for any choice of initial configura-
tion. The number of iterations required to reach the target equilibrium, called
the burn-in, can be reduced by careful initialization. We proceed in two steps.
First, we run the MCMC sampler for a number of steps starting in a random
initial configuration. This generally leads to a configuration with too many
points and a long burn-in would be needed to eliminate the excessive points.
Therefore, we remove points that are too close together to obtain a better ini-
tial configuration. More precisely, we achieved good results by removing delays
that are less than 1 ns apart.

Thinning and swapping

For each of the parallel chains we apply 400,000 basic birth-death MCMC
steps. After each 200th step pairwise swaps of chains are proposed. The first
100,000 samples are discarded as a burn-in. Subsequently, to reduce auto-
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Fig. C.4: An overview of the maximization procedure.

correlation and save storage, we only retain each 200th state of the MCMC
sampler. Moreover, the states of the chains with increased thermal noise are
discarded. This yields in total a sample of 1,500 realizations of the conditional
distribution. For the simulation study presented in Section 4 below, the auto-
correlation plots in Figure C.3 for the sequence of logarithms of the full data
likelihood logL(θ; y, Zm,n) illustrate that after thinning and parallel tempering,
the autocorrelation remains under control.

3.3 Optimization methods
To maximize the Monte Carlo approximation of the likelihood (C.13), we use
the cross-entropy method (CEM) [37] which is a gradient free method that
works robustly in settings where the objective function is subject to Monte
Carlo errors. To ensure that the MCMC approximations of the likelihood
within the CEM remain valid, we define a trust region, see Section 3.3. After
convergence of the CEM/trust region procedure we fine-polish the estimate by
applying a few Newton-Raphson updates. The computation of the gradient
and Hessian matrix required for this is discussed in Section 3.3. Algorithm 4
summarizes the resulting procedure and Fig. C.4 depicts the procedure in terms
of a block diagram.

The optimization procedure is also applicable in case of multiple measure-
ments, M > 1. In this case, given θ0, we would run M MCMC samplers in
parallel, one for each measurement vector y(m), m = 1, . . . ,M , and approxi-
mate the likelihood for each measurement vector using (C.13). Finally these
approximations are multiplied to get the approximation of the full likelihood
to be maximized.

CEM with trust region

In the CEM method, a Gaussian proposal distribution is iteratively adapted so
as to concentrate it to a small neighborhood of the maximum. More precisely,
we first draw a number of parameter vectors independently from the current
proposal distribution and evaluate the corresponding likelihoods. Then, a new
proposal distribution is fitted to the elite sample, that is, the parameter vectors
with the highest likelihoods. This process is repeated until the increase in the
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Algorithm 4 CEM Maximization of L(θ; y)
Input. data y, initial guess θmax, initial CEM proposal distribution.
Output. ML estimate θ̂ML
θ0 := θmax
Draw sample {Zm,n}n≤N from p(zm|y; θ0) using Algorithm 3
repeat
repeat
Generate CEM proposal parameter sample inside
trust region of size > 5 times elite sample size.
Get elite sample from CEM proposal sample.
Fit new CEM proposal distribution.
θmax := parameter vector in elite sample with
highest likelihood.

until θmax satisfies stopping criteria (see main text)
until θmax in interior of trust region (see main text)
θ̂ML:= output of Newton-Raphson initialized in θmax

Table C.1: Settings of the CEM algorithm

Parameter Value

Initial standard deviation for CEM proposal 1
Size of elite sample 10

ESS-threshold for the trust region 400
Threshold for likelihood convergence 0.1

Final ESS-threshold for interior 750

highest evaluated likelihood over the elite sample is below some user-specified
threshold. The CEM requires evaluations of the likelihood function. However,
the cost of these is minor relative to the cost of running the MCMC sampler
and the operation can be run in parallel.

If θ and θ0 are too distant, the approximation (C.13) of the likelihood ratio
(C.12) becomes unreliable. This situation is indicated by a small ESS value.
Therefore, we restrict the CEM maximization to a trust region [38] around the
current value θ0 determined so that the ESS is above a certain threshold for
all θ in the trust region. If the CEM maximization terminates at a value θmax
well inside the interior of the trust region, this value is used as an initial value
for some final Newton-Raphson updates to fine-polish the estimate. By well
inside we mean that ESS at θmax is bigger than a second threshold exceeding
the first threshold used to define the trust region. Otherwise we set θ0 = θmax,
draw a new MCMC sample and run the CEM maximization procedure once
again over a trust region centered around the new value of θ0 with the original
initial proposal standard deviation.
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Gradient and Hessian for Newton-Raphson updates

Let
Vθ(z) = d

dθ
[
log p(y|zm, σ

2) + log p(zm;κ, γ)
]

denote the gradient of the log joint density of (y, zm). Following [2, Sec-
tion 8.6.2], the score function and observed information are

u(θ) = Eθ[Vθ(Zm)|Y = y]

and
j(θ) = −E[dVθ(Zm)/dθ|Y = y]− Varθ[Vθ(Zm)|Y = y].

The conditional expectations and variances can in general not be evaluated
in closed form. However, it is feasible to approximate these quantities by
importance sampling. For instance, following [2, (8.43)],

u(θ) ≈
∑
n≤N

Vθ(Zm,n)W̄n

where W̄n = Wn/
∑
n≤N Wn and Wn is defined in (C.14).

3.4 Model selection based on likelihood ratios and bridge
sampling

In addition to model calibration, a second application of the likelihood-ratio
computation concerns model selection. Considering two models A and B with
parameter vectors θA and θB , respectively, we wish to select the model which
yields the highest likelihood value. In terms of the likelihood ratio, we select
model B if L(θB ; y)/L(θA; y) > 1. An appealing property of this criterion is
that the ratio on the left-hand side is precisely of the form appearing in equa-
tion (C.13) and therefore amenable to computation via importance sampling.
We have here described the likelihood-ratio approach in the case where the
compared models belong to the same model class. It is, however, also possible
to use the MCMC approach to compute ratios of likelihoods corresponding to
different model classes, possibly with different number of parameters.

If θA and θB are far apart, then the estimate (C.13) is unreliable since the
weights are almost degenerate. This problem is tackled via bridge sampling.
Let for ease of notation θ0 = θA and θM = θB for some M ≥ 1. Then, the
likelihood ratio is expanded as

L(θM ; y)
L(θ0; y) = L(θ1; y)

L(θ0; y)
L(θ2; y)
L(θ1; y) · · ·

L(θM ; y)
L(θM−1; y)

for intermediate parameters θ1, . . . , θM−1 bridging figuratively the large differ-
ence between θ0 and θM . Subsequently, we apply Monte Carlo estimation to
each of the ratios on the right-hand side.
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Fig. C.5: Power-delay profile for realizations of the constant (left) and quadratic
(right) rate model.

4 Simulation study
In this section, we analyze how well MCMC MLE performs on simulated data.
We consider two parameter configurations θconst and θquad. For both, we use
the same parameters driving the distribution of the thermal noise and the path
gains:

log(σ) = −10.5, γ0 = −20, γ1 = −0.029.

Here, the parameters are chosen to resemble the characteristics from the mea-
surement data discussed in Section 5. In the parameter set θconst, the arrival
rate of the Turin model is constant, i.e.,

κ0 = −0.75, κ1 = 0.

In the parameter set θquad, the rate increases quadratically, i.e.,

κ0 = −10.5, κ1 = 2.

Here we choose κ0 such that the expected number of multipath components
agrees approximately in both models. Moreover, within the simulation study,
we fix the size of the observation window |I| = 150 and the delay τ0 = 50 asso-
ciated with the LOS path. Figure C.5 shows the power-delay profiles simulated
from the two models. The settings of the CEM algorithm are given in Tab. C.1.

4.1 Bridge Sampling
First we illustrate how to justify selecting either the constant or the quadratic
rate model via bridge sampling. We draw a realization y from the constant rate
model θconst and then compare the likelihoods of y under θconst and θquad. For
this purpose, we interpolate linearly between κ1 = 0 and κ1 = 2 with a step size
of 0.4. The corresponding values of κ0 are fixed as (−0.75,−2.7,−4.7,−6.6,−8.6,−10.5).
In particular, the expected total number of points does not fluctuate substan-
tially among consecutive values. The remaining parameters log(σ), γ0 = −20
and γ1 = −0.029 agree in θconst and θquad and are therefore kept fixed. Setting
θ0 = θconst and θ5 = θquad, Tab. C.2 shows the estimated log likelihood-ratios
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Table C.2: Log likelihood-ratios and effective sample sizes for bridge sampling on
simulated data.

i 0 1 2 3 4

log
(
L(θi+1; y)/L(θi; y)

)
0.11 -1.62 -2.69 -4.61 -4.21

ESS 761 1170 396 1182 106

log
(
L(θi+1; y)/L(θi; y)

)
together with the effective sample sizes based on 2,000

nominal samples. The resulting log likelihood ratio log
(
L(θquad; y)/L(θconst; y)

)
becomes −13.02 identifying θconst as the correct model.

In order to assess how robust the model selection method is with respect to
taking a different sample, we took 100 samples from the constant rate model
and compared the likelihood with that under the quadratic rate model. In
all of the 100 samples, bridge sampling indeed indicates a higher likelihood
for the constant rate model. Conversely, when taking 100 samples from the
quadratic rate model and comparing it with the constant rate model, bridge
sampling indicates in all of the considered samples a higher likelihood for the
true quadratic rate model.

4.2 MLE with known multipath components
The first test case for MLE is the setting of known multipath components.
Although measurements in the field do not reveal this kind of information
directly, such test cases help to build intuition on how well maximum likelihood
estimation can work in an idealized setting.

As an illustration, we provide profile plots of the log-likelihood. That is,
we fix all but one of the parameters at their true values and then trace how
the log-likelihood changes when varying the considered parameter.

In general, Figure C.6 suggests that the log-likelihood is maximized close
to the true parameters. Still, even in this idealized setting, we do see devia-
tions of the parameter estimates from the true values, and they become more
pronounced as we now consider the case of unknown multipath components.

4.3 Unknown multipath components – fixed κ1

After these initial findings, we now rely on Algorithm 4 to estimate the model
parameters from simulated data sets where for each of the parameter config-
urations θconst and θquad we conduct 50 simulations. In this section we regard
κ1 to be known and fix it at its true value. For the remaining parameters, we
initialize the optimization at parameter values obtained by perturbing the true
values of the parameters. Then, we maximize the log-likelihood via Algorithm
4.
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Fig. C.6: Profile plots of the log-likelihood for known multipath components in the
constant (top) and quadratic (bottom) rate model. Red dashed lines indicate the
true parameters.
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Fig. C.7: Fixed κ1. Box plots for estimated parameters in 50 realizations of the
constant (left) and quadratic (right) rate model. Red dashed lines indicate the true
parameters.

In the present setting, we found CEM to perform robust optimization.
In the first steps, the likelihood improvements are large, but effective sample
sizes at the new parameter values are small. In other words, although the new
parameters indicate a substantially higher likelihood, the Monte Carlo approxi-
mation of the likelihood could be quite imprecise. However, as the optimization
proceeds, the improvements become smaller, while the effective sample sizes in-
crease. In particular, the final decision of identifying the maximum is based on
a high effective sample size.

Figure C.7 shows boxplot of the parameter estimates under both true pa-
rameter configurations. The boxplots illustrate that the medians of the es-
timates are almost identical to the true values both in the case κ1 = 0 and
κ1 = 2. Overall the MCMC MLE seems to work well.

4.4 Unknown multipath components – variable κ1

Next, we optimize with respect to the full parameter vector by including also
κ1 in the optimization process. When estimating the parameters from 50 re-
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Fig. C.8: Variable κ1. Box plots for estimated parameters in 50 realizations of the
constant (left) and quadratic (right) rate model. Red dashed lines indicate the true
parameters. Box plot for log σ2 omitted due to space constraints.

alizations, Figure C.8 reveals that while the medians are still close to the true
values, the estimates of both κ0 and κ1 now fluctuate substantially. In par-
ticular for κ0 it is evident that the estimation variance is much smaller when
κ1 is fixed compared to when κ1 is included in the estimation. This is caused
by a strong entanglement of the parameters κ0 and κ1 that we now explore in
further detail.

4.5 Issues with parameter idenfiability
Due to the complex interplay between the effects of the parameters κ0 and κ1,
it is difficult to optimize the likelihood jointly with respect to these parameters.
For instance, both κ0 and κ1 influence the total intensity of points (similarly,
both γ0 and γ1 affect the general magnitude of the path gains). The contour
plot of the log likelihood-ratio for a simulated data set under θconst in Figure C.9
illustrates this issue. Indeed, this plot shows two local maxima, both exhibiting
a ridges of (κ0, κ1)-combinations where the log likelihood-ratio is close to the
local optima.
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Fig. C.9: Contour plot of the log likelihood-ratios for varying κ0 and κ1 based on
samples from an MCMC run of length 2,000 in the constant rate model.

The parameters κ0 and κ1 are thus not jointly well identified by the like-
lihood. This entails strong correlation between the estimates of κ0 and κ1
as well as high variance of each of the estimates. This is further illustrated
by the scatterplots of estimates in Figure C.10 for each pair of parameters.
The estimates shown are those obtained from the 50 simulations under θconst.
Supporting the previous findings, we detect a strong negative linear relation
between the estimates of the intensity parameters κ0 and κ1. Similarly, the
estimate of γ0 is nicely approximated by an affine function of the estimates of
κ0 and κ1.

The optimization procedure CEM relies on a Gaussian proposal distribu-
tion with diagonal covariance structure. For tightly entangled parameters, the
optimization therefore explores the parameter space poorly. Hence, in order
to account for the correlations, we transform the parameters linearly with a
preconditioning matrix prior to applying the CEM. In the setting of the simu-
lation study we obtain an appropriate linear transformation from preliminary
parameter estimates for different simulations. It may not be easy to determine
such a transformation in a given application.
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Fig. C.10: Pairwise scatter plots for the parameter estimates of 50 realizations of
the constant rate model.

5 Application to measurement data
Having analyzed simulated data, we now turn to indoor channel data originally
considered in [25]. The data contains the channel response for 750 equally-
spaced measurements in the range [2 GHz, 3 GHz]. In particular, the impulse
response lies in the interval [0 ns; 750 ns] and decays rapidly after a strong
peak close to τ0 = 50 ns. Therefore, we henceforth work with a window of size
|I| = 150.

5.1 MCMC MLE and bridge sampling
As we saw in the simulation section, the optimization is prone to become un-
stable when when estimating κ0 and κ1 jointly. Hence, we consider two fixed
κ1 values of particular interest: κ1 = 0 (constant rate model) and κ1 = 2
(quadratically increasing intensity).

In our MCMC set-up, we found that when starting from reasonably chosen
initial parameters, the optimization converges both for the constant and for
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Fig. C.11: Power-delay profile for measurement data (left), a realization of the
constant rate model (center) and a realization of the quadratic rate model (right).

the quadratic rate model. Since random fluctuations were stronger than for
the synthetic data, we stabilized the optimization by increasing the number
of MCMC samples from 1,500 to 2,500. Figure C.11 illustrates the power-
delay profile of realizations for the fitted constant and quadratic rate models.
Although the plots already provide an indication on the different structure of
the arrival rates, we stress that the power-delay profile can vary substantially
from one realization to another. To see clearly how the model fits to the data,
we also plot the measured and estimated power delay profiles on the same
figure, see Figure C.12.

Let θ̂const and θ̂quad denote the parameter estimates under the constant
and quadratic intensity models. In order to compare the fitted constant rate
model with the fitted quadratic rate model, we estimate the likelihood ratio
L(θ̂quad,y)/L(θ̂const,y) via bridge sampling, see Section 2. For this purpose,
we bridge linearly between κ1 = 0 and κ1 = 2 in steps of size 0.125. Also
for the other parameters, we perform linear interpolation. Figure C.13 shows
the estimated log likelihood ratios log(L(θi+1,y)/L(θi,y)) for the intermediate
parameter vectors together with the associated effective sample sizes. Aggre-
gating the estimates yields a negative value for the estimated log likelihood
ratio for the quadratic rate in comparison to the constant rate model. Hence,
for the considered data set, the constant rate model seems more appropriate
than the quadratic rate model.

6 Conclusions
The developed calibration method for stochastic multipath radio channel mod-
els is based on the well-established method of maximum likelihood estimation.
Thus, we have shown that it is possible to approach the calibration problem in
a statistically sound manner without the need to resort to heuristic techniques.
In particular, our approach breaks the line of the widespread approach originat-
ing from the seminal works of Turin in the 1970s where the calibration problem
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Fig. C.12: Power-delay profile for measurement data (thick), a realization of the
constant rate model (thin) and a realization of the quadratic rate model (dashed).

Fig. C.13: Log likelihood ratios log(L(θi+1,y)/L(θi,y)) plotted against κ1.
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is broken down into (arbitrarily defined) sub-problems that are tackled by esti-
mators developed separately. Although the developed method has been used to
calibrate stochastic channel models using indoor radio channel measurements,
it is applicable to measurements from other scenarios as well. Another poten-
tial use of the proposed method is for calibrating stochastic channel models
based on the output of a ray tracer instead of measurement data.

We find that, despite the intractability of the likelihood function, maximum
likelihood estimation is possible by estimating the likelihood function using a
birth/death MCMC sampler and then optimizing it using our CEM algorithm.
Obviously, being an Monte Carlo approach, it necessitates repeated sampling
from a Markov Chain, which entails a significant computational complexity.
It was not the objective of the present work to optimize the estimator for
computational complexity, and thus we envision that more efficient samplers
can be made, in particular considering the availability of more measurement
data. Nevertheless, we find that the proposed method is indeed viable provided
the necessary computational power.

We observed for the considered model, that only a linear combination of
the parameters κ0 and κ1 is well identified by the data but not κ0 and κ1
separately. This is apparent from plots of the likelihood function. On the
contrary, we suspect that such lack of identifiability may be hidden by the
current step wise methods based on initial identification of delays and gains.
The optimization difficulties due to the poor identifiability can be somewhat
mitigated using a reparametrization. However, we resolve the issue by a more
robust discrete approach where optimization is first performed over a discrete
subset of the parameter space and afterwards the estimate is refined by the
method of bridge sampling.

With a view towards avenues of future research, we note that although
parametric Turin models can represent inhomogeneities in the arrival distribu-
tion, they are still based on the basic assumption of a Poisson point process.
Therefore, they do not allow for interactions between the different arrivals.
However, a commonly held belief is that arrivals tend to appear in clusters,
which would call for a more flexible point-process model. By extending the
model selection methods from the present paper, MCMC-based maximum like-
lihood estimation makes it possible to analyze this belief on the grounds of a
statistically well-established methodology.
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Abstract
Calibration of stochastic radio channel models is the process of fitting the pa-
rameters of a model such that it generates synthetic data similar to the measure-
ments. The traditional calibration approach involves, first, extracting the multi-
path components, then, grouping them into clusters, and finally, estimating the
model parameters. In this paper, we propose to use approximate Bayesian com-
putation (ABC) to calibrate stochastic channel models so as to bypass the need
for multipath extraction and clustering. We apply the ABC method to calibrate
the well-known Saleh-Valenzuela model and show its performance in simula-
tions and using measured data. We find that the Saleh-Valenzuela model can
be calibrated directly without the need for multipath extraction or clustering.

1 Introduction
Stochastic multipath models are indispensable tools for characterizing the radio
channel and analysing the performance of communication systems. Typically,
the models are generative, so synthetic data can be generated and used in
simulation studies. Such models are particularly useful if calibrated with mea-
surement data. Calibrating a model simply means estimating its parameters
such that the model fits to the measurements in some metric. Traditionally,
calibration problems are solved by maximizing the likelihood function of the
data with respect to the parameters, or by finding the posterior distribution
of the parameters (in a Bayesian approach). In either case, access to the like-
lihood function is required. Unfortunately, the likelihood is intractable here
as marginalization with respect to the hidden multipath components is not
possible.

Instead of relying on inference frameworks, typically we resort to splitting
the inference problem into sub-problems and solve these independently. For ex-
ample, calibration is typically done in three steps. First, multipath parameters
such as delays, gains, etc., of each multipath component is extracted from the
channel impulse response measurements. High-resolution algorithms such as
SAGE and CLEAN, among others, are used for this step. Then, the extracted
multipath components are grouped together into clusters, either manually or
using automated clustering algorithms, e.g. [1]. The third step then involves
fitting the extracted and clustered multipath components to the model and
estimating the parameters. Such multi-step procedures involve complex algo-
rithms that can be cumbersome to use and prone to errors such as estimation
artifacts and censoring effects. Moreover, a number of arbitrary choices need
to be made in order to implement these algorithms. The estimation accuracy
of the parameters then relies on each of the intermediate steps, and therefore
the overall performance of these methods is difficult to investigate.

Recently, calibration methods have been proposed in [2, 3] for the Turin
model [4] (with constant arrival rate) that bypasses the multipath extraction
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step. They summarise the channel measurements into temporal moments and
estimate the model parameters directly. While [2] assumes a multivariate Gaus-
sian model for the temporal moments and samples from the approximate pos-
terior of the parameters, [3] fits the expressions of means and covariances of the
temporal moments to the parameters using a method of moments approach.
However, in cases where the Gaussian assumption fails or when the model is
too complicated to derive the theoretical expressions, these methods cannot be
utilised. Hence, there is a need for methods to calibrate complex models that
involve clustering of multipath components.

The problem of calibrating generative models with unavailable likelihoods
appears in many other sciences. One approach to solving this problem is ABC,
which was first introduced in population genetics, and further developed and
used in many other fields of science as well [5, 6]. ABC relies on comparing
summary statistics of simulated and measured data in some distance metric.
A potential solution to calibrating stochastic multipath models could be to
use ABC methods combined with informative summary statistics such as those
studied in [2, 3]. To the best of our knowledge, ABC methods have not been
used in radio channel characterization.

In this paper, we propose an ABC algorithm based on population Monte
Carlo [7] and regression adjustment [8] for calibration of stochastic channel
models. As an example, we develop appropriate summary statistics for cal-
ibrating the well-known Saleh-Valenzuela [9] model using ABC. Performance
evaluation of this calibration method is carried out via a simulation experiment
as well as using measurement data.

2 Estimation Problem Formulation

Consider single-input, single-output (SISO) frequency domain measurement
where the received signal sampled at K equidistant frequency points within
the bandwidth B reads

Yk = Hk +Wk, k = 0, 1, . . . , (K − 1), (D.1)

where Hk is the transfer function, andWk is iid circular Gaussian measurement
noise with variance σ2

W . Discrete-frequency, continuous-time inverse Fourier
transform gives the time domain signal,

y(t) = 1
K

K−1∑
k=0

Yk exp (j2πk∆ft) . (D.2)

The frequency separation, ∆f , is related to the period of the time domain
signal as

tmax = 1
∆f = K − 1

B
. (D.3)
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A measurement campaign where Nobs observations of the channel transfer func-
tion are recorded, results in the data matrix Yobs ∈ CNobs×K .

A general multipath model of the transfer function may read

Hk =
∑
l

αl exp (−j2π∆kτl) , (D.4)

where τl and αl are the time delay and complex gain of the lth multipath
component. The delays and their corresponding gains form a marked point
process, X = {(τl, αl)}. A stochastic channel model driven by parameters
θ is a mechanism that outputs such a marked point process, i.e. X ∼ M(θ),
whereM(·) is the generative model. The model is calibrated by estimating θ
from the measurements, Yobs.

Typically, stochastic multipath models are proposed with the purpose of
simulation, i.e. they are generative in nature. However, in the general case of
unknown, potentially infinite, number of multipath components, the likelihood
p(X|θ), and consequently, p(Y|θ), are analytically and numerically intractable.
Therefore, standard inference and sampling techniques methods which rely on
the likelihood (or posterior) cannot be applied.

3 Approximate Bayesian Computation
ABC can be used to sample from an approximate posterior when the likelihood
is numerically unavailable. Based on these samples, we can approximate the
standard point estimates, e.g. the minimum mean squared error (MMSE)
estimate.

ABC relies on sampling parameter values from the prior distribution, p(θ),
and simulating datasets, Y, from the model, M(·). Summary statistics of Y
and Yobs are computed using a function, S(·). Let the vector of simulated and
observed summary statistics be s = S(Y) and sobs = S(Yobs), respectively.
The summaries are compared in some “distance” measure, ρ(·, ·). The basic
accept-reject ABC method involves accepting values of θ for which ρ(s, sobs) <
ε, where ε is some pre-defined tolerance threshold. Thus, samples from p̃(θ|sobs)
can be obtained, which is an approximation of the desired posterior, p(θ|Yobs).
The approximation arising here due to the substitution of Yobs with sobs and
the use of ε.

Implementation of an ABC algorithm requires the specification of three
quantities: the distance measure ρ(·, ·), the summary statistics s, and the
threshold ε. In this paper, we will use the Euclidean distance as our dis-
tance function, therefore ρ(·, ·) = || · ||. Moreover, we consider ε in terms of
percentile and specify the number of accepted samples, Mε instead. That is,
for M samples of θ from the prior, ε = M/Mε. Note that, an ε in terms of
the distance measure can be used, but it leads to unpredictable run times for
a certain number of accepted samples. The selection of appropriate summary
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statistics, however, relies heavily on the application (and model) at hand, and
will be addressed later with regards to an example channel model.

There exists more advanced ABC methods in the literature than the accept-
reject algorithm [5, 6], and in principle, any of them could be used for calibrat-
ing stochastic channel models. We propose to use the population Monte Carlo
(PMC) ABC [7] with regression adjustment [8].

3.1 Proposed ABC method
The accept-reject ABC algorithm weights each of the accepted samples equally
without taking into account the distance from the observed summary statis-
tics. In this paper, we use the method proposed in [8] which improves the
approximation of the posterior by weighting the accepted parameter samples,
θj , according to ||sobs − sj || and adjusting θj by using linear regression model
applied locally in the vicinity of sobs. Specifically, the optimisation problem
being solved is [8]

argmin
a,b

Mε∑
j=1

[
θj − a− (sobs − sj)T b

]2
Kε (||sobs − sj ||) (D.5)

Here, Kε(·) is the Epanechnikov kernel. The samples, θ̃j , are then adjusted as

θ̃j = θj − (sobs − sj)T b̂. (D.6)

This regression-ABC algorithm is described in Alg. 5. For details regarding the
solution of (D.5), see [8]. The estimate of the intercept, â, gives the estimate
of the posterior mean, E[θ|sobs].

After the regression adjustment, some samples of θ̃ may go beyond the
prior range. For example, getting a negative value after adjustment of a strictly
positive parameter does not make sense. To avoid this problem, samples of θ
outside its prior range are replaced by the extreme points (entrywise).

We combine the regression-ABC with the population Monte Carlo (PMC)-
ABC method of [7]. PMC-ABC is a sequential Monte Carlo method that works
with a population of θ values instead of one sample at a time. At each iteration,
M samples of θ are generated from the Mε accepted samples after performing
regression-ABC. The overall algorithm is given in Alg. 6, where θ is assumed
univariate. In the general case of θ being a vector of parameters, the same
algorithm applies on each entry of θ independently. Note that Ñ (·, ·) denotes a
Gaussian truncated to be in the prior range of θ, and q(·, ·) is a Gaussian kernel.
The overall computational time of Alg. 6 depends on how many observations
of the channel, say Nsim, are simulated to compute s from each value of θ.
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Algorithm 5 Regression ABC algorithm
Input: Parameter values (θ1, . . . , θM ) and corresponding simulated statistics
(s1, . . . , sM ), observed statistics sobs, number of accepted samples Mε,
1: Accept (θ∗1 , . . . , θ∗Mε

) ∼ {θi}Mi=1 with the smallest ‖sobs − si‖, i = 1, . . . , N
2: Solve optimisation problem (D.5) with

{
θ∗j
}Mε

j=1 and corresponding
{
s∗j
}Mε

j=1
to get b̂

3: Adjust accepted samples
{
θ∗j
}Mε

j=1 using (D.6) to get
{
θ̃j
}Mε

j=1 in the prior
range

Output: Samples (θ̃1, . . . , θ̃Mε
) from approximate posterior

4 Application to Saleh-Valenzuela model

The seminal model proposed by Saleh-Valenzuela [9] has been the basis of
standardized models such as IEEE 802.15.3a and IEEE 802.15.4a. It has been
extended further to include the spatial properties of the channel and also been
applied in millimetre wave scenarios using a MIMO system. Calibration meth-
ods for this model commonly rely on multipath extraction and clustering. For
this reason, we demonstrate the utility of the proposed ABC method by ap-
plying it to the Saleh-Valenzuela model.

4.1 Estimation problem
The Saleh-Valenzuela model can be formulated in the frequency domain as

Hk =
∑
l

∑
p

βpl exp (−j2π∆fk(Tl + τpl)) , (D.7)

where Tl is the delay of the lth cluster, while τpl and βpl are the delay and
complex gain of the pth ray within the lth cluster, respectively. By definition in
[9], T0 = 0 and τ0l = 0, l ∈ {0, 1, . . . }. The arrival time of the clusters and that
of the rays within the clusters are modelled as one-dimensional homogeneous
Poisson point processes, i.e., Tl ∼ PPP(R+,Λ) and τkl ∼ PPP(R+, λ) with
parameters Λ, λ > 0. The gains βkl, conditioned on Tl and τkl, are modelled as
iid zero-mean complex Gaussian random variables. Their conditional variance
is modelled as

E
[
|βkl|2|Tl, τkl

]
= Q exp(−Tl/Γ) exp(−τkl/γ), (D.8)

with Q being the average power of the first arriving multipath component,
and Γ, γ > 0 being the cluster and ray decay constants, respectively. The
expression for the power delay spectrum is given in [10]. To calibrate this
model, the parameter vector, θ = [Q,Λ, λ,Γ, γ]T , should be estimated based
on Yobs.



114 Paper D.

Algorithm 6 PMC-ABC with regression adjustment
Input: Prior p(θ), modelM(θ), observed statistics sobs, Mε, M , T
1: At iteration t = 1,
2: Sample M samples of θ from the prior, i.e. (θ1, . . . , θM ) ∼ p(θ)
3: Generate si ∼M(θi), i = 1, . . . ,M
4: Perform Algorithm 5 on (θ1, . . . , θM ) and (s1, . . . , sM ) to generate

(θ(1)
1 , . . . , θ

(1)
Mε

)
5: Set w(1)

i = 1/Mε for i = 1, . . . ,Mε and take σ(1) to be twice the sample
variance of (θ(1)

1 , . . . , θ
(1)
Mε

)
6: for t = 2, . . . , T do
7: for j = 1, . . . ,M do
8: Sample θ∗j ∼ (θ(1)

1 , . . . , θ
(1)
Mε

) with probability (w(1)
1 , . . . , w

(1)
Mε

)
9: Perturb θ∗j by sampling θ∗∗j |θ∗j ∼ Ñ

(
θ∗j , σ

(t−1))
10: Generate sj ∼M(θ∗∗j )
11: end for
12: Perform Algorithm 5 on (θ∗∗1 , . . . , θ∗∗M ) and (s1, . . . , sM ) to generate

(θ(t)
1 , . . . , θ

(t)
Mε

)
13: Set w(1)

i ∝ p(θ
(t)
i )/

∑Mε

j=1 w
(t−1)
j q

(
θ

(t−1)
j |θ(t)

i , σ(t−1)
)
, and take σ(t) to be

twice the sample variance of (θ(t)
1 , . . . , θ

(t)
Mε

)
14: end for
Output: Samples (θ(T )

1 , . . . , θ
(T )
Mε

) from the approximate posterior p̃(θ|sobs)

4.2 Development of summary statistics
In order to use the ABC method to infer on θ, informative summary statistics
of Y are needed about the five model parameters. The selection of summaries
determines the degree to which we approximate the posterior distribution by
replacing Y with s.

Temporal moments are widely used statistics that have been recently used
to estimate the parameters of the Turin model [4] without multipath extraction
in [2, 3]. We define the generalised ith temporal moment as

m
(n)
i =

∫ tmax

0
ti|y(t)|ndt, i = 0, 1, 2, . . . . (D.9)

Most commonly, only temopral moments with n = 2 are considered. The tem-
poral moments are random variables that summarise each channel realisation
into one instance for a particular n and i. So, Nobs realisations would lead
to a vector of temporal moments, m(n)

i for each choice of i and n. We use
the first three temporal moments, i.e. D(n) = [m(n)

0 ,m(n)
1 ,m(n)

2 ]. We further
summarise the nth order temporal moments by computing the sample mean
vector, µ(n)

D , and covariance matrix, Σ(n)
D . This results in nine distinct sum-
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Fig. D.1: Data flow from measurements to proposed summary statistics.

mary statistics for each n. Since the kurtosis of channel measurements is known
to be informative about the arrival rate [11, 12], we also include µ(4)

D and Σ(4)
D

as summaries.
We observed through simulation (not shown due to space limitations) that

the temporal moments alone were not as informative about the cluster pa-
rameters (Λ, Γ). For this reason, we include two additional summaries, %max
and %var, to measure the “unorderedness” of the averaged power delay profile
(APDP). Consider the discrete-time APDP with index sequence v = [1, . . . ,K].
Sorting the APDP in descending order leads to a permutation of indices, say
v′. Then the two summaries are computed as

%max = max (v− v′) , and (D.10)
%var = var (ν) , (D.11)

where ν contains all positive entries of (v− v′).
The resulting collection of summaries yields a twenty dimensional vector,

s, as outlined in Fig. D.1. The choice of summary statistics is not limited to
the ones discussed here. In principle, other summaries could also be used, as
long as they are informative about the model parameters.

4.3 Setting priors for parameters
The priors are used to sample θ values. Here we use flat priors for all the
parameters as a way limit the search space in the first iteration of Alg. 6. The
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Table D.1: Parameter settings and estimates.

θ
Prior
range

Simulated Measured

θtrue θ̂ θsd θ̂ θsd

Q (10−9, 10−9) 5× 10−8 4.4× 10−8 5.5× 10−9 9.6× 10−9 1.4× 10−9

Λ[ s−1] (5× 106, 108) 107 5.5× 107 4.7× 107 2.0× 107 1.4× 107

λ[ s−1] (5× 106, 4× 109) 109 1.2× 109 2.8× 108 7.2× 108 3.0× 108

Γ (0, 10−7) 10−8 8.4× 10−9 5.7× 10−10 2.8× 10−8 4.2× 10−9

γ (0, 10−7) 10−9 4.5× 10−9 1.2× 10−9 1.2× 10−8 4.4× 10−9

range should be wide enough to capture all the plausible values of the param-
eter, but not so wide that the computational time of the algorithm becomes
excessive. The specific ranges of the priors, given in Table D.1, are obtained
by the following reasoning.

The prior for Q is easily set from the PDP of measurements. Here, we set it
to be ±10 dB around the power of the first observed component. For Λ, on an
average we expect to see a minimum of one cluster in the data. This gives the
lower bound of the prior as 1/tmax. We limit our search to at most 20 clusters
arriving on an average, giving the upper bound as 20/tmax. Similar argument
is applied for λ, where the minimum and maximum number of rays arriving on
an average range from one to K. The decay constants are positive parameters,
so their lower bound is set to zero. The upper bound is limited to a number
that will lead to a 100 dB drop in the power over half the observation window,
i.e. 0.5tmax/100.

5 Performance Evaluation

5.1 Simulation Experiment
We first test the proposed algorithm by applying it to simulated data. A
synthetic data set is drawn from the Saleh-Valenzuela model with “true” pa-
rameters (denoted as θtrue) given in Table D.1, and summarised as per Fig.
D.1. The results obtained by applying the PMC-ABC with regression adjust-
ment to this data are reported in Fig. D.2. The approximate MMSE estimate,
defined as

θ̂ = 1
Mε

Mε∑
j=1

θ̃
(T )
j , (D.12)

is also reported in Table D.1, along with the standard deviation of the posterior
after T iterations, θsd.

It appears that the (approximate) posterior converges for all the parame-
ters. However, the marginal posterior for Λ converges more slowly than for the
other four parameters. The accepted samples are around the true value of the
parameter, indicating that the method is able to estimate the parameters.
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Q Λ λ Γ γ

Q Λ λ Γ γ

True value
MMSE
estimate

Posterior
estimate

1 2 3 4 5 6 7

Iterations
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Λ

1 2 3 4 5 6 7

Iterations

λ

1 2 3 4 5 6 7

Iterations
Γ

1 2 3 4 5 6 7

Iterations

γ

Fig. D.2: Density estimate of approximate posteriors of the parameters obtained
after first (top panel) and seventh (middle panel) iteration of Alg. 6 on simulated
data. The bottom panel shows boxplot of accepted samples as a function of iterations.
The black dots denote the outliers. The parameter axes are in their prior range.
Simulation settings: Nsim = 50, B = 4 GHz, K = 801, M = 2000, Mε = 100, T = 7.

5.2 Application to measured data
We now apply the proposed method to a set of in-room transfer function mea-
surements obtained using a vector network analyser and described in [13]. The
set-up is SISO, with a virtual planar array of 25 × 25, giving Nobs = 625.
The dimensions of the room was 3 × 4 × 3 m3. The signal was measured at
K = 801 frequency points in the range 58 GHz to 62 GHz. Thus, B = 4 GHz,
∆f = 5 MHz, and tmax = 200 ns. The results are shown in Fig. D.3. The con-
vergence behaviour of the approximate posterior for measurements is similar
to that observed in simulations. The posteriors for all the parameters but Λ
are concentrated in a small region of the prior range.

5.3 Refining the posterior for Λ
As observed from Fig. D.2 and D.3, p̃(Λ|sobs) converges more slowly than
the posterior of other parameters. One method to speed up the convergence
is to limit the parameter search space by fixing a subset of the parameters
to particular values, and only sampling from the remaining variables. Here,
we fix all but Λ to their MMSE estimate, θ̂, and sample only from p(Λ|sobs)
by applying Alg. 6 with T = 1. Fig. D.4 shows the approximate posterior
obtained with and without the regression adjustment.
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Fig. D.3: Density estimate of approximate posteriors of parameters obtained after
first (top panel) and seventh (middle panel) iteration of Alg. 6 on measured data.
The bottom panel shows boxplot of accepted samples as a function of iterations.
Simulation settings as in Fig. D.2.

For the simulated data, the posterior obtained without regression adjust-
ment is much narrower compared to Fig. D.2, and the MMSE estimate agrees
well with the true value. Regression adjustment narrows the posterior even
further. Similar behaviour is observed in the measurements. We also observe
Λ̂ to be very small in the measurements. This is particularly true when the re-
gression adjustment is applied, which shifts the posterior below the prior range.
This indicates that clusters are rare in the measured data. The rarity of clus-
ters is confirmed via visual inspection of the PDP of the data. Consequently,
the lower bound of p(Λ) could be chosen even smaller.

6 Conclusion
We proposed the PMC-ABC with regression adjustment method for calibrating
stochastic channel models with intractable likelihoods. The method is effective
in calibrating the Saleh-Valenzuela model from measurement data without the
need for multipath extraction and clustering. The temporal moments, com-
bined with the proposed cluster statistics, are found to be informative about
the model parameters. The summaries are observed to be less responsive to
the cluster arrival rate than the other parameters. As a result, the marginal
posterior of cluster arrival rate converges slower than others. However, its
estimate has been shown to improve using an additional round of the ABC
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Fig. D.4: Approximate posterior of Λ with and without the regression adjustment
for simulated and measured data.

method. Similar convergence behaviour is observed on applying the method to
measurement data. From the measurements, it seems that the cluster arrival
rate is outside the prior range, suggesting the absence of clusters in this data.
Non-clustered models might be a better fit for this data. In any case, a smaller
lower bound for the prior of this parameter should be chosen for future studies.

Despite the fact that the method is developed without considering the
measurement noise, it performs well on the noisy measurements. We conjecture
that the method can be improved by including the noise variance as a parameter
in the method, which may require an additional summary. This method can
also be extended to calibrate spatial models, provided appropriate summaries
are available.
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Abstract
Estimating parameters of stochastic radio channel models based on new mea-
surement data is an arduous task usually involving multiple steps such as mul-
tipath extraction and clustering. We propose two different machine learning
methods, one based on approximate Bayesian computation (ABC) and the other
on deep learning, for fitting data to stochastic channel models directly. The
proposed methods make use of easy-to-compute summary statistics of measured
data instead of relying on extracted multipath components. Moreover, the need
for post-processing of the extracted multipath components is omitted. Taking
the polarimetric propagation graph model as an example stochastic model, we
present relevant summaries and evaluate the performance of the proposed meth-
ods on simulated and measured data. We find that the methods are able to learn
the parameters of the model accurately in simulations. Applying the methods
on 60 GHz indoor measurement data yields parameter estimates that generate
averaged power delay profile from the model that fits the data.

1 Introduction
Stochastic models of the radio channel are indispensable tools in the design and
analysis of communication and localization systems. Stochastic radio channel
models are used for characterizing and simulating realizations of the channel
in different environments. However, for the model to generate data similar to
what is observed in the measurements, its parameters need to be learned from
the data. The process of learning or estimating the parameters of a model from
new measurements is termed as calibration. Calibration could be obtained by
deriving the parameters theoretically, e.g. in room electromagnetics or in ray
tracing. In fact, some parameters such as speed of light or room geometry
are set not using the data. Standard calibration technique using data would
be to either maximize the likelihood function of the data with respect to the
parameters, or to characterize the posterior distribution of the parameters in
a Bayesian sense. However, most stochastic channel models suffer from in-
tractability of the likelihood function, and therefore, calibrating them given a
new set of measurement data is challenging [1].

Typically, stochastic multipath radio channel models are calibrated in steps,
as described in Fig. E.1(a). This calibration methodology has been followed
since the early works of Turin [2] and Saleh-Valenzuela [3] till more recent
stochastic channel models [4–8]. First, the data is reduced to a set of multipath
components, each having their own gain, delay, etc., by applying high-resolution
algorithms such as SAGE (Space Alternating Generalized Expectation maxi-
mization) [9], MUSIC (MUltiple SIgnal Classification), ESPRIT (Estimation
of Signal Parameters via Rotational Invariance Techniques), and RiMAX [10],
among others. The extracted multipath components are then used to estimate
the model parameters. In case of cluster-based channel models, an additional
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clustering step can be applied. Alternatively, the presence of clusters, or other
multipath effects, can be included in the derivation of the high-resolution esti-
mator, as in [11–13], to obtain the cluster parameters directly. In a final step,
the model parameters are estimated from the extracted multipath components
and clusters.

Even though such multi-step calibration approaches are widely used, they
suffer from a range of issues. It can be cumbersome and labor-intensive to
derive, implement, and test sophisticated multipath extraction and clustering
algorithms that require a number of heuristic choices to be made. Moreover, the
estimation of the multipath components is prone to errors due to censoring [14].
Therefore, the overall estimation accuracy of the model parameters is difficult
to determine due to this step-by-step calibration approach.

There may exist statistics other than the multipath components that are
easier to obtain, and still hold enough information to be able to learn the model
parameters. Potentially, the parameters of the channel models can be estimated
without the multipath extraction step by relying on these easy-to-compute
summary statistics. Such an estimator for the Saleh-Valenzuela model [3] was
proposed in [15] where the estimation problem was framed as an optimization
problem that fitted summary statistics of the data with approximate analyti-
cal expressions. More recently, multipath extraction-free calibration methods
based on sampling [16] and method of moments [17] have been developed and
applied to the Turin model. These methods summarize the data into certain
statistics, and rely on explicit derivation of equations linking their means and
covariances to the model parameters. Drawback of these methods is that such
equations need to be derived for every stochastic channel model, which is either
non-trivial or oftentimes not possible.

In the present contribution, we further advance the idea of using other
summaries than the multipath parameters for model calibration. This leads
to the calibration methodology outlined in Fig. E.1(b) where the data is first
summarized into a set of statistics from which the model parameters are ob-
tained. We extend our previous work on learning parameters of stochastic
channel models using approximate Bayesian computation (ABC) [18] and deep
learning (DL) [19], where we had applied the methods on the cluster-based
model of Saleh-Valenzuela [3].

ABC is a framework for performing likelihood-free inference on generative
models with intractable likelihoods [20, 21], as is the case for stochastic chan-
nel models. It relies on sampling parameter values from a prior distribution,
simulating data from the model, and comparing the simulated summaries to
those obtained from the measurements. Parameter values that yield summaries
similar to the observed ones are used to approximate the posterior distribution.
Initially developed in the field of population genetics [22], ABC has since been
applied in various other fields of research such as ecology [23], astrophysics [24],
and structural dynamics [25], to name a few. To the best of our knowledge,
ABC has not been applied in wireless communications except for our previous
conference paper [18].
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The DL method utilizes a neural network (NN) to establish a functional
relationship between the summaries and the parameters, and uses the trained
NN to estimate the parameters given the observed summaries. Neural net-
works have been proven to exhibit capability for universal approximation of
any continuous real-valued function [26]. These networks have been success-
fully applied in fields such as computer vision and image processing over the
last several years. Recently, the wireless communications community has also
explored avenues for application of DL. While efforts have been directed to-
wards DL-enabled physical layer design, only a few applications to radio chan-
nel modeling and calibration have been proposed. In [27], the authors uti-
lized Deep Neural Network for uplink-downlink channel calibration in massive
MIMO. Similar network is utilized for predicting path-loss exponent from mil-
limeter wave channel measurements in [28]. The DL method proposed here is
a generalization of the framework introduced in [19] where a single layer neu-
ral network is applied to estimate parameters of propagation models. Similar
DL-based likelihood-free inference framework has been applied in population
genetics [29].

In this paper, we present two machine learning methods based on ABC
and DL to calibrate stochastic radio channel models without multipath extrac-
tion. We show the applicability of the methods by calibrating the polarimetric
propagation graph (PG) model [30] as an example, since multipath extraction
cannot be directly applied to calibrate it. We also present a number of sum-
mary statistics for representing channel measurements that are used as input
for the learning methods. The chosen statistics are qualified via simulation
study of the PG model. Simulation results illustrate the capability of the pro-
posed learning methods to accurately estimate the model parameters. The
methods are also applied to calibrate the PG model using real indoor chan-
nel measurements. Reasonable fits of the averaged power delay profile were
seen between the measurements and the model, thus validating the proposed
learning methods.

The remainder of the article is organized as follows. We describe the ABC
and DL calibration methods in section II. The description of the polarimetric
PG model is given in section III, along with the choice of summary statistics.
In section IV, we apply the ABC and DL methods on the PG model and show
the results. The discussion regarding the proposed methods is presented in
section V, and section VI provides our concluding remarks.

2 Summary-Based Calibration Methods

Consider a stochastic generative model,M(θ), which is easy to simulate from
given any value of the parameter, θ. Each time the model is called for a given
parameter vector, it generates independent realizations of simulated data, Y.
Here, Y could be a vector or a matrix. Let Yobs be a set of measurement
data obtained experimentally. The calibration problem then involves estimat-
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Fig. E.1: State-of-the-art calibration methodology (a), versus the proposed method
(b).

ing θ such that the model, M(θ), fits to the measured data, Yobs. However,
the likelihood function of Y given θ is intractable, and so standard estimation
techniques are not applicable. Typically, Y is a high-dimensional data matrix,
as is the case with radio channel transfer function or impulse response measure-
ments for multiple independent realizations of the channel. Therefore, we use
a function, S(·), that summarizes Y into a set of q statistics, s ∈ Rq, such that
s = S(Y). We then use these statistics as data in our calibration methods to
estimate θ given the observations sobs = S (Yobs). Ideal choice for s would
be sufficient statistics of Y, but those are unavailable in most practical cases.

2.1 Approximate Bayesian Computation
ABC is a likelihood-free inference method that samples from the approximate
posterior distribution of the parameters by finding values that lead to sim-
ulated datasets from the model that are similar to the observed data. The
method involves sampling from the prior distribution of the parameters, p(θ),
and then generating datasets from the model. These simulated datasets are
then compared to the observed set of measurements in some distance metric,
ρ(·, ·), and the values of θ that yield a distance smaller than a pre-defined tol-
erance threshold, ε, form samples from the approximate posterior distribution.
These samples can then be used to approximate standard point estimates of θ
such as the minimum mean square error (MMSE) or the maximum a posteriori
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Fig. E.2: Block diagram depicting data flow in the proposed PMC-ABC algorithm
with regression adjustment.

estimate. The basic rejection-ABC algorithm can be summarized as follows:

1. Sample from prior, θ∗ ∼ p(θ)

2. Simulate Y∗ ∼M(θ∗)

3. Compute summary statistics s∗ = S(Y∗)

4. Accept θ∗ if ρ(s∗, sobs) < ε

The approximation here arises on account of summarizing the data into a set
of statistics, and accepting samples within a tolerance threshold. Choosing
sufficient statistics to be used in ABC mitigates the former approximation,
however, finding sufficient statistics is typically not feasible. Choosing a small
ε improves the posterior approximation but increases the rejection rate signif-
icantly, whereas a large ε leads to sampling from almost the prior. Therefore,
the distance metric, the tolerance threshold, and the summary statistics are
the necessary ingredients required to implement an ABC algorithm.

The choice of appropriate summary statistics is crucial to the quality of
approximation [31], and it depends upon the application and the model at hand.
Given a pool of summary statistics, there exist statistical methods to e.g. select
best subset among them, or construct a much smaller set of highly informative
statistics through projection techniques, among others [32]. However, domain
knowledge is vital for constructing appropriate summaries that are not only
informative about the model parameters, but also relevant from an application
perspective. Thus, domain experts can choose meaningful summaries that they
wish to fit to the model. The specific statistics used in this paper will be
addressed in Sec. 3.4 with regards to a specific example radio channel model.

Typically, the Euclidean distance between the observed and the simulated
statistics is used as the distance metric in summary-based ABC methods, i.e.
ρ(·, ·) = ‖ ·‖. Other distance metrics can also be used, however, the Euclidean
distance seems appropriate in the context of summary-based ABC methods
for the application at hand. In cases where a set of statistics are used that
differ in their units and order of magnitude, it is important to normalize them
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before computing the distance [33]. The normalization aims to bring all the
individual distances to the same scale, such that the total distance will be their
sum. In this paper, we take ρ(·, ·) to be the Euclidean distance between the
normalized statistics, but still denote it as ‖s − sobs‖, with the normalization
of the statistics assumed to be implicit.

Specifying an appropriate value of ε in terms of the distance may prove to
be difficult. Setting ε too low leads to unknown run time of the algorithm to
get a certain number of accepted samples. Therefore, it is usual to employ a
k-nearest neighbor approach and specify ε as a percentile of the total simulated
samples. That is, out of M samples of θ from the prior, we accept the first
Mε = εM samples leading to the smallest ‖s− sobs‖.

The basic ABC method is simple but can be rather slow. Instead, we pro-
pose to use a sequential sampling method, specifically the Population Monte
Carlo ABC (PMC-ABC) [34], and supplement it by employing the local-linear
regression adjustment method proposed in [31]. The resulting algorithm, named
PMC-ABC with regression adjustment, is detailed in Alg. 8. A block diagram
summarizing the proposed method is shown in Fig. E.2. In the following, we
describe the two ABC techniques.

Regression ABC

We supplement the rejection-ABC algorithm by employing the local-linear re-
gression adjustment method proposed in [31]. The regression adjustment im-
proves the posterior approximation by 1) weighting the accepted parameter
samples according to their corresponding distance value and 2) adjusting them
using a linear regression model applied locally in the vicinity of sobs. For θj
being the jth accepted parameter sample and sj the corresponding simulated
statistics vector, the linear model reads

θj = α+ (sj − sobs)Tβ + εj , j = 1, . . . ,Mε, (E.1)

where α ∈ Rp and β ∈ Rq×p are the intercept and regression coefficients,
respectively, and ε1, . . . , εMε are uncorrelated noise variables with zero mean.
The least-squares estimate of α and β are obtained by solving the optimization
problem

argmin
α,β

Mε∑
j=1

[
θj −α− (sj − sobs)T β

]2
Kε (||sj − sobs||) . (E.2)

The Epanechnikov kernel, Kε(·), depends on the maximum accepted distance
based on the chosen ε, and ensures that the regression model is applied locally.
The samples are then adjusted as

θ̃j = θj − (sj − sobs)T β̂, j = 1, . . . ,Mε, (E.3)
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Algorithm 7 Regression ABC algorithm
Input: Parameter values (θ1, . . . ,θM ) and corresponding simulated statistics
(s1, . . . , sM ), observed statistics sobs, number of accepted samples Mε,

Accept (θ∗1, . . . ,θ
∗
Mε

) ∼ {θi}Mi=1 with the smallest ‖si − sobs‖
Solve optimisation problem (E.2) with

{
θ∗j
}Mε

j=1 and corresponding
{
s∗j
}Mε

j=1
to get β̂
Adjust accepted samples

{
θ∗j
}Mε

j=1 using (E.3) to get
{
θ̃j
}Mε

j=1

Output: Samples (θ̃1, . . . , θ̃Mε) from approximate posterior

thus improving the approximation to the posterior distribution. Note that the
adjustment is applied on each entry of the parameter vector independently.
This regression-ABC algorithm is described in Alg. 7.

The adjustment in (E.3) is done disregarding the prior range of the pa-
rameters. Therefore, the regression method may adjust the samples to fall
outside the support of the prior. This issue can be addressed by transforming
the parameters before adjustment [31]. A log transformation can be used for
positive parameters, and a logit transformation for parameters with bounded
priors [35].
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Algorithm 8 PMC-ABC with regression adjustment
Input: Prior p(θ), modelM(θ), observed statistics sobs, Mε, M , T

Initialization: t = 1,

for i = 1 to M do
Sample θ(1)

i ∼ p(θ)
Simulate Y(1)

i ∼M(θ(1)
i ) and compute s(1)

i = S(Y(1)
i )

end for
Perform regression adjustment by applying Algorithm 7 on{(

s(1)
i ,θ

(1)
i

)}M
i=1

to obtain
{
θ̃

(1)
j

}Mε

j=1
Set weights

w(1)
j = 1/Mε, j = 1, . . . ,Mε, and variance

σ2
(1) = 2V̂ar

({
θ̃

(1)
j

}Mε

j=1

)
for t = 2 to T do

for i = 1, . . . ,M do
Sample θ∗i ∼

{
θ̃

(t−1)
j

}Mε

j=1
with probabilities w(t−1)

j

Generate θ(t)
i ∼ Kt

(
θ|θ∗i ;σ2

(t−1)

)
Simulate Y(t)

i ∼M
(
θ

(t)
i

)
and compute s(t)

i = S
(
Y(t)
i

)
end for
Perform regression adjustment by applying Algorithm 7 on{(
s(t)
i ,θ

(t)
i

)}M
i=1

to obtain
{
θ̃

(t)
j

}Mε

j=1
Set weights

w(t)
j ∝

p
(
θ

(t)
j

)
∑Mε

j=1 w(t−1)
j Kt

(
θ

(t)
j |θ̃

(t−1)
i ;σ2

(t−1)

) , 1 ≤ j ≤Mε

and variance σ2
(t) = 2V̂ar

({
θ̃

(t)
j

}Mε

j=1

)
end for

Output: Samples
(
θ̃

(T )
1 , . . . , θ̃

(T )
Mε

)
from the approximate posterior
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Population Monte Carlo ABC

In cases where the parameter vector is high-dimensional, rejection-ABCmethod
needs a large number of simulations of the model to reasonably explore the pa-
rameter space. Therefore, more advanced ABC methods have been introduced
that rely on Markov chain Monte Carlo and Sequential Monte Carlo techniques
that sample the parameter space efficiently. One such sequential technique is
the Population Monte Carlo (PMC)-ABC method [34] that iteratively con-
verges towards the approximate posterior distribution.

In the initialization of PMC-ABC, Mε closest parameter samples out of
(θ1, . . . ,θM ) are retained, similar to rejection-ABC. These accepted samples,
{θj}Mε

j=1, form an approximation to the posterior distribution. A new popula-
tion of M parameter samples is then drawn from the density kernel

ϕt(θ) =
Mε∑
j=1

w(t−1)
j Kt

(
θ(t)|θ(t−1)

j ;σ2
(t−1)

)
, (E.4)

where t is the iteration index, w(t−1)
j is the importance sampling weight asso-

ciated with the accepted sample θ(t−1)
j , and σ2

(t−1) is a variance vector with
each entry associated with a kernel Kt. Note that wj and σ2 are vectors of
the same dimension as θ, and the new population for each parameter is drawn
independently from the kernel with the corresponding variance. Typical choice
for Kt is a Gaussian kernel, although other distributions may also be useful.
A good choice for the variance of Kt is shown to be twice the empirical vari-
ance of the accepted samples [34]. Data and statistics are again simulated
from the newly generated population, and the Mε closest parameter samples
are accepted and assigned weights w(t) ∝ p(θ)/ϕt(θ), where the division is
taken entry-wise. This sequence of steps is repeated for T iterations, till the
approximate posterior distributions converge.

To improve the posterior approximation and speed up the convergence,
we combine the aforementioned two methods by applying the regression ad-
justment step on the accepted parameters after each iteration of PMC-ABC.
The sample mean of the accepted samples after T th iteration,

(
θ̃

(T )
1 , . . . , θ̃

(T )
Mε

)
,

gives the approximate MMSE estimate.

2.2 Deep Learning
Given a set of summary statistics and corresponding model parameters, {(si,θi)}i∈{1,··· ,M},
the calibration problem described above can be expressed as a mapping from
s to θ. Denoting f as the mapping function, the model parameters can be
expressed as

θi = f(si) + εi i = 1, · · · ,M, (E.5)
where εi denotes the approximation error. Given the expression in (E.5), the
calibration problem is equivalent to finding a representation of f such that εi
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Fig. E.3: Block diagram for the proposed DL method. The left and right dashed
boxes represent the training and the test phase, respectively.

is minimized for all si. The function f can, e.g., be defined as a linear or
polynomial function of s which can be obtained via a least square fit to the
simulated data, {si}Mi=1. It may however be difficult to find such functions
for the multi-dimensional and potentially complex relationship between the
statistics and the model parameters. We, therefore, propose using a deep neural
network architecture which has been shown to exhibit universal approximation
property [26].

The DL based calibration method is illustrated in Fig. E.3. We approximate
f using a deep NN architecture illustrated in Fig. E.4. The deep NN model
can be defined using a hypothesis, f̂(·; Φ), with parameter Φ. For a network
with R hidden layers, Er neurons in the the rth hidden layer, and p neurons in
the output layer (since θ ∈ Rp), the DL hypothesis for the ith statistic can be
expressed as [26]

hr(si) = ah(Wrhr−1(si) + br), r = 1, · · · , R
f̂(si; Φ) = aout(WouthR(si) + bout) (E.6)

where hr(·) is the output of the rth layer, Wr ∈ REr×Er−1 and Wout ∈
Rp×ER denote the weights matrix for connections terminating at the rth hid-
den layer and output layer, respectively, with br ∈ REr and bout ∈ Rp be-
ing the corresponding bias terms. The activation function at the nodes of
each intermediate layer is ah, and that at the output layer is aout. Note
that h0(si) = si, with the number of neurons in the input layer being the
dimensionality of s. The DL hypothesis in (E.6) is parameterized by the set
Φ = {{(Wr,br)}Rr=1, (Wout,bout)}. The network parameters are estimated
by training the network using the simulated data-set, {(si,θi)}i∈{1,··· ,M}, from
the model. Typically, the training is done by minimizing a loss function, L(Φ),
defined as

L(Φ) = 1
2M

M∑
i=1
||f(Φ, si)− θi||2. (E.7)

Minimization of the loss function is typically performed via stochastic gradient
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descent with back propagation of the error gradients viz:

Φn = Φn−1 − ζ∇L(Φn−1), (E.8)

where ζ denotes the step-size (also referred to as the learning rate) and ∇ is
the gradient operator. Due to its fast convergence and good generalization for
small data-sets, we utilize the Levenberg – Marquardt algorithm [36, 37] for
network training in this paper. The network parameters are thus updated as

Φn = Φn−1 −
[
JTJ + λI

]−1 JTL(Φn−1), (E.9)

where J is the Jacobian matrix with Jm` = δ(f(Φ, sm)−θm)/δΦ`, I is an iden-
tity matrix and λ is the adaptive damping factor. The damping factor controls
the learning rate and is increased by λinc or decreased by λdec with increasing
or decreasing error, respectively. This procedure is repeated until a termina-
tion criterion is achieved. Implementation of such a NN architecture can be
achieved through standard toolboxes available in MATLAB, R, or Python.

Denoting the trained network parameters as Φ̂, the calibration is done by
applying the trained network on sobs as

θ̂ = f̂(sobs; Φ̂). (E.10)

The accuracy of the estimated model parameter, θ̂, is affected by how well
the trained hypothesis approximates the relationship between the summary
statistics and the model parameters. This is dependent upon a number of
factors such as the selected network structure, activation functions, and training
method. Therefore, adequate care has to be taken in selecting the NN model
in order to obtain reasonable estimates.
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3 Calibration of Polarimetric Propagation Graph
Model

The proposed ABC and DL methods are applied for estimating parameters
of a polarimetric propagation graph (PG) model [30, 38, 39]. First proposed
in [40], the PG offers a simple and efficient approach for modeling propaga-
tion channels that account for both specular and dense multipath components.
The model also has the ability to capture reverberation effects. Several studies
have applied or modified the PG model in indoor [41], outdoor-to-indoor [42],
high-speed railway [43, 44], indoor-to-indoor [45, 46] and millimetre-wave sys-
tems [47, 48]. Despite the growing interest in the PG model, study on its
calibration based on measurements is severely limited. A vast majority of
works utilizing the PG model are either based on the stochastic generation
procedure in [49] or in combination with a map of the environment. The po-
larimetric PG model in [30] was calibrated with measurements using method
of moments. However, the method requires manually fixing one parameter due
to identifiability issues. Moreover, the measurement noise variance is not esti-
mated, necessitating manual truncation of the power delay profile (PDP) prior
to fitting.

3.1 Model Description
Consider a time-invariant radio channel in a multi-input, multi-output (MIMO)
set-up with Nt and Nr output ports at the transmit and receive antennas,
respectively. In the PG framework , the radio channel is modeled as a directed
graph G = (V, E) [49]. The vertex set V = Vt ∪ Vr ∪ Vs is a union of a set Vt
of Nt transmitters, a set Vr of Nr receivers, and a set Vs of Ns scatterers in
the environment. The edges E = Ed ∪ Et ∪ Es ∪ Er model the wave propagation
between the vertices, where Ed is a set of direct edges, Et is a set of transmitter
to scatterer edges, Es is a set of scatterer to scatterer edges and Er is a set of
scatterer to receiver edges.

To each vertex v we associate a position rv ∈ R3. From these positions,
the length of an edge (v, w) is ||rv − rw||. This results in a propagation delay
from v to w of τe = ‖(rw − rv)‖/c, where c is the speed of light in vacuum and
‖ · ‖ denotes the Euclidean norm. Accordingly, the direction of propagation is
specified by a unit vector Ωe associated with edge e, pointing in the direction
of propagation.

The transfer function matrix at a particular frequency, H(f), of the polari-
metric PG is given as

H(f) = D(f) + R(f)[I−B(f)]−1T(f), (E.11)

where D(f) ∈ CNr×Nt is the transmitter to receiver, T(f) ∈ C2Ns×Nt is the
transmitter to scatterer, R(f) ∈ CNr×2Ns is the scatterer to receiver, and
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B(f) ∈ C2Ns×2Ns is the scatterer to scatterer edge transfer function sub-matrix.
Then, the transfer function sub-matrices are given as:

D(f) = X Tt (Ωe)Xr(Ωe)Ge(f), e ∈ Ed
T(f) = X Tt (Ωe)MΓ(Ωe)Ge(f), e ∈ Et
B(f) = MΓ(Ωe)Ge(f), e ∈ Es
R(f) = Xr(Ωe)Ge(f), e ∈ Er

Here, Xt(Ωe) and Xr(Ωe) are the 2×1 transmit and receive polarimetric antenna
array response vectors, respectively, and Γ(Ωe) is the 2×2 rotation matrix. The
2×2 scattering matrix, M, represents the coupling between the two polarization
states. Assuming it is equal for all the scatterers, M reads

M = 1
1 + γ

[
1 γ
γ 1

]
, (E.12)

where γ ∈ (0, 1) is the polarization power coupling ratio. Finally, Ge(f) is the
scalar that captures polarization-independent propagation characteristics, and
is expressed as

Ge(f) = ge(f) exp[j(ψe − 2πτef)], (E.13)

where ψe is the phase. The edge gain, ge(f) is calculated as:

ge(f) =



1
(4πfτe) ; e ∈ Ed

1√
4πτ2

e fµ(Et)S(Et)
; e ∈ Et

g
odi(e) ; e ∈ Es

1√
4πτ2

e fµ(Er)S(Er)
; e ∈ Er

(E.14)

Here, g ∈ (0, 1) is the reflection gain, odi(e) denotes the number of outgoing
edges from the nth scatterer, and

µ(Ea) = 1
|Ea|

∑
e⊂Ea

τe, S(Ea) =
∑
e⊂Ea

τ−2
e , Ea ⊂ E ,

with | · | denoting set cardinality.
To draw a random graph and simulate transfer function from the model,

the positions of the transmit and receive antennas need to be specified. An
edge between Vt and Vr is drawn with probability Pdir. Note that for line-of-
sight case, Pdir = 1, while for non-line-of-sight (NLOS) case Pdir = 0. Edges
between Vt and Vs, Vs and Vs, or Vs and Vr are drawn with probability Pvis.
The phase ψe is drawn uniformly between 0 and 2π.
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3.2 Calibration problem formulation
To calibrate the PG model based on measured data, Yobs, we need to es-
timate the parameters of the model such that the model fits the data. We
consider measurements conducted in NLOS conditions, resulting in Pdir = 0.
Apart from the model parameters, we would also like to estimate the noise
variance. The parameter vector to be estimated from Yobs thus becomes
θ = [g,Ns, Pvis, γ, σ

2
N ]T .

3.3 Measurement data description
Let the MIMO channel transfer function be measured at K equidistant points
in the bandwidth B, giving a frequency separation of ∆f = B/(K − 1). The
resulting measured signal matrix at each frequency point, Yk ∈ CNr×Nt , reads

Yk = H(fk) + Nk, k = 0, 1, · · · ,K − 1 (E.15)

where H(fk) is the sampled transfer matrix, and Nk is the measurement noise.
Assuming independent and identically distributed (iid) noise at each measure-
ment point and for each transmitter-receiver link, we model it as iid zero-mean
complex Gaussian variables with variance σ2

N . The entire polarized observed
data-set, denoted as Yobs, thus becomes an Nr × Nt ×K matrix. Let Y ij

k be
the measurement for the kth frequency sample between the ith receiver and the
jth transmitter. The received signal in time-domain, yij(t), is computed as

yij(t) = 1
K

K−1∑
k=0

Y ij
k exp(j2πk∆ft). (E.16)

3.4 Summary statistics
Implementation of the ABC and the DL learning method necessitates a choice
of appropriate summary statistics of observed data that are informative about
the model parameters. The first three temporal moments, computed as

mij
l =

∫ 1/∆f

0
tl|yij(t)|2, l = 0, 1, 2, (E.17)

have been used previously for calibration of stochastic radio channel models and
found to be informative about model parameters [16–19]. Here, we compute
the sample mean of the lth temporal moment as

m̄l = 1
NrNt

Nr∑
i=1

Nt∑
j=1

mij
l , (E.18)
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and the sample covariance between lth and l′th temporal moment as

ĉov
(
mij
l ,m

ij
l′

)
=

1
NrNt − 1

Nr∑
i=1

Nt∑
j=1

(
mij
l − m̄l

)(
mij
l′ − m̄l′

)
. (E.19)

Additionally, we separate the temporal moments according to their polariza-
tion, i.e. vertical-vertical (vv), vertical-horizontal (vh), horizontal-vertical (hv),
and horizontal-horizontal (hh), to compute the cross-polarization ratio, XPR,
as

XPR = 1
2

[
m̄vv

0
m̄vh

0
+ m̄hh

0
m̄hv

0

]
. (E.20)

The summary statistics vector, s, therefore has ten entries: the XPR, the three
means m̄l, and, and six covariances ĉov

(
mij
l ,m

ij
l′

)
for l, l′ = 0, 1, 2.

To verify that the chosen summary statistics are informative about the
model parameters, we conduct a simulation experiment. One parameter at
a time is sampled 100 times from its uniform prior distribution (given in
Tab. E.1), while the other parameters are held fixed. Data is simulated from
the polarimetric PG model for such a parameter vector and the statistics are
computed. Each of the ten statistics are then plotted versus the five parameters
in Fig. E.5.

We observe that XPR and the means of the temporal moments are infor-
mative about almost all the parameters. The covariances become informative
for higher values of g and Pvis and lower values of γ. We see a clear functional
relationship devoid of any jitter between XPR and γ, and m̄2 and σ2

N . This
indicates from the outset that γ and σ2

N should be estimated very accurately.
In contrast, the summaries seem the least informative about g, suggesting that
the estimate of g would be the most uncertain. In principle, a subset of these
statistics could also be used in the calibration methods. However, we observed
a degradation in performance on leaving out the covariances, and therefore
include all ten statistics.

4 Performance Evaluation
We apply the ABC and DL methods to calibrate the polarimetric PG model
using the summary statistics described in the previous section. First, we eval-
uate the performance of the two calibration methods via simulations, and later
validate it using millimetre-wave NLOS measurements from [50]. The measure-
ments were taken in a room of dimensions 3 × 4 × 3 m3 in the bandwidth
range of 58 GHz to 62 GHz, sampled at K = 801 equidistant points. The
frequency separation of ∆f =5 MHz results in a signal observation interval
of 200 ns in the time domain. A 5 × 5 virtual planar array of dual polarized
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Fig. E.5: Summary statistics versus model parameters. Each plot is generated by
varying one parameter while the others are held fixed to the values in Tab. E.1.
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antennas with 5 mm inter-element spacing, was used at both the receiver and
the transmitter. This gives Nt = Nr = 50.

For the simulation experiment, we set the parameters of the model to some
“true" value, say θtrue, and generate data from the model that we consider as
observed data. We then apply the proposed methods on this simulated data
to estimate the parameters. We use the same settings for simulations as in
the measurements [50]. The antennas in the PG model implementation are
assumed to be omni-directional with perfect cross-polar isolation at both the
receiver and the transmitter. The scatterers are distributed uniformly across
the floor of the room.

For the simulation experiment, the observed statistics, sobs, that corre-
sponds to θtrue needs to be set. For a fixed θtrue, the stochastic model generates
samples

(
s(1), . . . , s(Z)) from p (s|θtrue). Running the estimator Z times with

each realization of the statistics vector as sobs results in Z parameter estimates,
giving the error distribution around θtrue. However, as shown in Appendix 6,
this is equivalent to taking sobs as the sample mean of

(
s(1), . . . , s(Z)) and run-

ning the estimator once. Here, we adopt the latter computationally convenient
approach and compute sobs from θtrue using Z = 200. It should be noted that a
similar approach is only possible in general for measured data if Z independent
measurements can be obtained.

4.1 Approximate Bayesian Computation
The ABC method is applied with M = 2000 samples simulated for each it-
eration. For the first iteration, the samples are taken from a uniform prior
distribution of the parameters with ranges given in Tab. E.1. Note that the
prior for Ns is uniform integers in the specified range. A Gaussian kernel
truncated to the prior range is used to generate populations of subsequent it-
erations. We set the tolerance threshold to ε = 5%, giving Mε = 100 accepted
samples, and the total number of iterations to T = 10. The summary statistics
are normalized by the estimate of their median absolute deviation before apply-
ing ABC. A logit transformation is applied to the parameters before regression
adjustment to keep the adjusted samples within the prior boundary. The esti-
mated marginal posterior distributions are shown in Fig. E.6 and Fig. E.7 for
simulated and measured data, respectively. The obtained point estimates and
the sample standard deviation of the accepted samples after T = 10 iterations
are reported in Tab. E.1.

We observe in Fig. E.6 that the samples obtained from approximate pos-
teriors lie around the true value for all the parameters, and that the MMSE
estimates are fairly accurate even after the first iteration. As the iterations go
on, the posteriors shrink and converge for each parameter, albeit some faster
than others. For example, the posteriors for Ns, Pvis, γ and σ2

N barely change
after the second iteration, while that of g seem to converge after around five
iterations with the MMSE estimate getting better with further iterations. Sim-
ilarly, the posterior for g is the widest, while that of the other parameters are
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Fig. E.6: Kernel density estimates of the marginal approximate posteriors of the
parameters obtained by applying ABC on simulated data, plotted in the prior range
for each parameter. The posteriors are shown after each iteration of the algorithm,
with the parameter estimate marked in red. The true value of the parameter is shown
in green.

quite narrow. This uncertainty in the estimates of different parameters reflects
their relationship with the summary statistics shown in Fig. E.5. Parameters
that have a distinct functional relationship with, at least, a few statistics are
easier to estimate than others.

Similar behavior is observed in Fig. E.7 for measurements as was seen for
the simulation experiment. The approximate posteriors for Pvis, γ, and σ2

N are
very narrow, and seem to have converged since the first iteration. However, the
posteriors for g and Ns takes approximately four iterations to converge. The
width of posterior for g and Pvis is narrower in comparison to those in simula-
tion. This is attributed to the fact that for a high value of Pvis, as is the case in
measurements, almost all the statistics become informative, see Fig. E.5. The
averaged power delay profile (APDP) generated from the model using the point
estimates obtained for the measurements is shown in Fig. E.11. The calibrated
model fits both the co- and cross-polarized APDP of the measurements well.
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Fig. E.7: Kernel density estimates of the marginal approximate posteriors of the
parameters obtained by applying ABC on measured data. The posteriors are shown
after each iteration of the algorithm. The density is plotted in the prior range for
each parameter. The sample mean is marked in red.

4.2 Deep Learning
We determine the structure of the NN for the calibration problem via a guided
search procedure. First, we limit the number of hidden layers to R = 2 and
assume that there are equal number of neurons in each layer, i.e. Er = E. A
single hidden layer architecture is excluded due to its poor performance during
our preliminary experiments. The number of neurons in each layer is varied
from 2 to 28. We then divide the data set into two equal subsets for training
and cross-validation. The mean and standard deviation of squared error on the
training and validation subsets are shown in Fig. E.8. We observe that the error
stabilizes after around 12 neurons, and so we set E = 20 as this is sufficient.
This results in a 10-20-20-5 network architecture which is used for evaluating
the DL calibration method. We use the hyperbolic tangent sigmoid and linear
activation functions [26] for the hidden and output layers, respectively.

The NN is trained using the same M = 2000 samples of si and correspond-
ing θi as used in the initialization of the ABC method. In principle, the training
data could be as extensive as possible, thus leading to a better approximation
of the summary-parameter function. In order to eliminate the sensitivity of
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Table E.1: Summary of the parameter estimates obtained from ABC and DL for
simulated and measured data. Note that the sample standard deviation reported in
parenthesis is of the approximate posterior for ABC and of the estimate distribution
for DL.

Estimate (standard deviation)
Parameter

θ
Prior range

p(θ)
Simulated Data Measured Data

True value ABC DL ABC DL MoM [30]

Reflection gain, g [0, 1] 0.6 0.59 (0.11) 0.58 (0.04) 0.54 (0.03) 0.56 (0.05) 0.64
Number of scatterers, Ns [5, 50] 15 15 (1.56) 15 (0.92) 14 (1.25) 16 (6.5) 11

Probability of visibility, Pvis [0, 1] 0.6 0.58 (0.04) 0.60 (0.014) 0.99 (0.006) 0.96 (0.03) 0.9a

Polarization ratio, γ [0, 1] 0.5 0.51 (0.02) 0.50 (0.01) 0.09 (0.005) 0.09 (0.05) 0.06

Noise variance, σ2
N [2× 10−10, 2× 10−9] 10−9 9.98× 10−10

(2.86× 10−12)
9.96× 10−10

(8.8× 10−12)
4.3× 10−10

(2.11× 10−11)
4.3× 10−10

(2.8× 10−11) -

a Note that this value is not estimated but set in [30].

network to the range of values in the summary statistics, the entire data-set is
normalized using the standard Z-score scaling prior to network training. The
data-set is randomly partitioned into training, test, and validation subsets in
the ratio 0.70, 0.15 and 0.15, respectively. We utilized the LM algorithm with
damping parameters: λ = 0.1, λinc = 10 and λdec = 0.1 for training the NN.
The training procedure is terminated when the number of epochs reaches 1000
or the gradient is below 10−7.

Once the termination criterion is achieved, we apply the trained network on
sobs from simulated and measured data to get point estimate of the parameter
vector. This process is repeated 200 times to estimate the distribution of the
parameter estimates, which is shown in Fig. E.9 and Fig. E.10 for simulated
and measured data, respectively. The sample mean of the estimates and their
standard deviations are reported in Tab. E.1. We observe in Fig. E.9 that
the DL method is able to estimate the model parameters accurately and with
reasonable precision. The uncertainty in the estimates is fairly small. As was
the case with the ABC method, the estimate of g has the largest standard
deviation out of all the parameters, corroborating our conjecture based on
Fig. E.5. The method performs similarly on measured data, as seen in Fig. E.10,
although with slightly larger standard deviations. The APDP generated from
the parameter estimates fits the measurements, see Fig. E.11, thus validating
the methodology.

5 Discussion
In our example, we see that the calibration approach based on summaries is
effective. However, as experienced during the development of the algorithms,
the choice of summaries is important for obtaining a good calibration. Ideally,
sufficient statistics should be considered, but such are rarely available or practi-
cal to extract in the context of radio channel models. Although the simulation
method of checking summaries has proved useful for the example problem con-
sidered here, it only gives an indication of how informative the summaries are,
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Fig. E.8: Learning curve for selecting NN size. The mean and standard deviation of
the squared error at each number of neurons per layer is computed from 200 repeated
network training.
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Fig. E.9: Parameter estimates obtained by applying the DL method on simulated
data. Kernel density estimates of the distribution obtained after 200 estimator runs.
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Fig. E.10: Parameter estimates obtained by applying the DL method on measured
data. Kernel density estimates of the distribution obtained after 200 estimator runs.

and does not guarantee that the algorithms will work. The summary statistics
used in this paper appear to be informative about the different aspects of the
channel, and could be useful in calibrating other stochastic channel models as
well. In the case of calibrating a directional model, the summaries possibly have
to be chosen differently. The method for checking the summaries described here
would be useful for this selection.

Although based on the summary statistics of the data, the two proposed
methods are complementary to each other as they approach the same problem
in distinct ways. To highlight this fact, we have intentionally avoided com-
paring the two methods with each other. ABC infers on the parameters in a
Bayesian sense by learning the distribution of the parameters given the data.
On the other hand, the DL method fits a function between the summaries and
the parameters and provides point estimates of the parameters given the data
in a frequentist manner without considering any prior information. Despite
their differences, both methods are able to learn the parameters of the model
such that, qualitatively, it is not apparent in Fig. E.11 which APDP fits the
measurements better.
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Fig. E.11: Averaged power delay profile from the measurements versus those ob-
tained from the polarimetric PG model after calibration using ABC, DL and the
method of moments approach from [30]. The parameter estimates for all three meth-
ods are reported in Tab. E.1.

The choice of prior naturally affects the posterior distribution of the ABC
method. In this paper, we used uninformative (flat) priors in order to rely
solely on the data to estimate the parameters. The ranges of these priors are
chosen conservatively, i.e., to be very wide. Choosing more informative priors
instead would lead to faster convergence of the approximate posterior in the
ABC method, thus reducing run-time. In general, if the data is large enough,
the effect of the prior distribution on the posterior becomes irrelevant.

Since the ABC method relies on simulations from the model, the compu-
tational complexity primarily depends on the complexity of the model. The
computationally expensive step in the DL method is the training of the NN,
which depends on the size of the training data and the chosen NN architecture.
While the two layer architecture was found to be sufficient for the example
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model in the paper, more complex models may require deeper networks. How-
ever, the network needs to be trained just once, and parameter estimates can
be obtained for different measurement data instantly. In contrast, the sequen-
tial nature of the ABC algorithm requires running the iterations again for new
observed statistics.

The computation time for the proposed methods depends on the particu-
lar implementation and the available hardware. The methods are lightweight
enough to be run on standard laptops with reasonable run-time. As an indica-
tion of the required run-time of the proposed methods, our implementation of
the proposed ABC method was able to complete ten iterations within a day on a
Lenovo ThinkPad with Intel Core i7 processor having 24 GB RAM. Training the
NN took less than 2 hours on a Lenovo ThinkPad with Intel Core i7 processor
and 16 GB RAM. Due to the different choices of high-resolution and clustering
algorithms that are available, their comparison with the proposed methods in
terms of computational complexity is not feasible. We remark that in all the
cases, the specific run-time depends not only on the choice of algorithms and
hardware, but is significantly impacted by the particular implementation and
choice of settings in the respective algorithms.

We experience that the ABC method is not very sensitive to the particular
settings of the algorithm due to its iterative nature. Increasing the number of
simulated samples per iteration, M , increases simulation time from the model,
but leads to lower ε ifMε is kept constant. Thus, the algorithm would converge
in fewer iterations. Similarly, increasing ε would mean accepting samples that
are further away from sobs, and therefore, would require more iterations to
converge to a stable approximate posterior. Overall, changes in one setting is
compensated by another, and the method performs similarly. This means that
the performance primarily relies on the choice of statistics. In contrast, for
the DL method the particular NN architecture should be chosen carefully since
generalization accuracy is sensitive to the network size, particularly with small
number of training samples.

In principle, the entire channel impulse response measurements could be
used as input data instead of a set of summary statistics. However, the ABC
method is then hit by the curse of dimensionality [35]. That is, the distances
become very large due to the high-dimensional data, thus increasing the re-
jection rate significantly. For the DL method, this would increase the number
of input layers, thereby increasing the computational complexity, along with
complicating the training procedure.

An appealing feature of the summary-based approach is that it is specified
exactly which criteria are used to fit the model to the data. In this sense,
we obtain the best fitting model in the eyes of the summary statistics. This
is very different from what is obtained by the multi-step methods relying on
ad-hocery and possibly conflicting assumptions in the individual steps, e.g. as-
suming “well-separated” paths in multipath extraction, followed by application
of clustering algorithms. Statistical techniques to construct a more informative
subset of summaries [32] to be used in ABC can be explored. However, by do-
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ing so we lose the transparency as to which summaries are being fitted. Both
the proposed machine learning methods are also simpler to implement than the
classical state-of-the-art approach of multipath extraction, with fewer settings
of the algorithm. Moreover, since the proposed methods are integrated, their
performance is easy to investigate by simulation studies. This is again a great
advantage compared to multi-step approaches where the performance of each
step is evaluated separately, thus making it difficult to judge the accuracy of
the overall parameter estimates.

Additionally, the ABC and DL methods are able to estimate all model
parameters, including the noise variance. Thus it is not necessary to provide
side information to the algorithm (as is often done by separately estimating
e.g. noise variance) or to post-process the data by setting the noise threshold.
This advantage is clearly seen when comparing with the method of moments
(MoM) approach of calibrating polarimetric PG models [30] where noise is not
estimated (see Fig. E.11).

6 Conclusion
The proposed machine learning methods based on ABC and deep learning are
able to accurately calibrate stochastic radio channel models. The model fit is
obtained in light of the explicitly chosen summaries. The proposed methods
demonstrate that stochastic channel models, in particular the PG model, can
be calibrated without access to likelihoods. The methods also by-pass any in-
termediate step of extracting the multipath components. We observed that the
choice of summaries is crucial in learning the parameters, and the uncertainty
in parameter estimates decreases with informative summaries. The summaries
used in this paper are general purpose, and we conjecture that they can work
for other models as well. The methodology to qualify the summaries through
simulation study is useful in the design of the algorithm, although it does not
provide any guarantees. Availability of pseudocodes and libraries make the pro-
posed methods easy to implement, compared to the state-of-the-art approach.
The performance of the proposed methods is easy to evaluate, as opposed to the
multi-step approach. Moreover, no additional information or post-processing
is required to calibrate the model.

Appendix

We want to show that setting sobs as one realization out of p (s|θtrue) and
running the estimator Z times gives the same estimate of θtrue in mean as
taking sobs as the sample mean of Z such realizations out of p (s|θtrue) and
running the estimator once.

Let sobs be the zth sample, s(z), from the distribution p (s|θtrue), and the
corresponding MMSE estimate be θ̂

(z)
. Then, the sample mean for Z such



148 References

estimates is

θ̂avg = 1
Z

Z∑
z=1

θ̂
(z)
≈ E[θ|s = E [s|θtrue]] . (E.21)

The mean of θ̂
(z)

then reads

E
[
θ̂

(z)]
=
∫
θ̂

(z)
p (s|θtrue) ds = θtrue. (E.22)

Assuming
(
s(1), . . . , s(Z)) are independent samples, the expected value of θ̂avg

can be computed as:

E
[
θ̂avg

]
=
∫
· · ·
∫ 1
Z

Z∑
z=1

θ̂
(z)

ΠZ
z′=1p

(
s(z′)|θtrue

)
ds(1) . . . ds(Z)

= 1
Z

Z∑
z=1

∫
θ̂

(z)
p
(
s(z)|θtrue

)
ds(z)

= 1
Z

Z∑
z=1

θtrue = θtrue

Therefore, both θ̂
(z)

and θ̂avg converge to θtrue in mean and thus, are unbiased
estimates. The variance of θ̂avg is, however, reduced by a factor of 1/Z.
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Abstract
Recently, a calibration method has been proposed for estimating the parameters
of stochastic radio channel models using summaries of channel impulse response
measurements without multipath extraction. In this paper, we attempt to auto-
matically generate summaries using an autoencoder for calibration of channel
models. This approach avoids the need for explicitly designing informative sum-
maries about the model parameters, which can be tedious. We test the method
by calibrating the stochastic polarized propagation graph model on simulated as
well as measured data. The autoencoder is found to generate summaries that
give reasonably accurate results while calibrating the considered model.

1 Introduction
Stochastic radio channel models are widely used for simulating the channel
in order to design and test communication and localization systems. To en-
sure that such models yield accurate simulations, they must be calibrated.
Most often, this is done by estimating the model parameters from measure-
ment data. Unfortunately, the likelihood function for stochastic channel mod-
els are usually intractable. Thus, calibrating them from new measurements
becomes challenging. Hence, it is standard practice to employ high-resolution
path extraction algorithms to estimate the delays, gains, etc. of the multipath
components. These estimates are further used to estimate the parameters of
the channel model. This methodology has been followed to calibrate channel
models from the early days of Turin [1] and Saleh-Valenzuela [2] to the more
recent ones [3–5]. However, implementing such complicated algorithms is not
trivial and requires a number of heuristic choices to be made. Such choices
affect the accuracy of the results, and the overall performance of the estimator
is difficult to assess.

Recently, calibration methods which circumvent the need for resolving the
multipath components have been introduced [6–10]. In [6, 7], a method of
moments approach is used for calibration. However, these methods rely on
analytical expressions for the moments which may not be available for more
complicated stochastic models. More general calibration methods based on
summary statistics of the channel measurements have been proposed for the
Saleh-Valenzuela model in [8, 9] and for the propagation graph model [11]
in [10]. The methods proposed in [8, 10] are based on approximate Bayesian
computation (ABC), which is a likelihood-free inference framework that relies
on simulations from the model to infer on the model parameters [12]. ABC in-
volves comparing summary statistics of the simulated and the measured data in
some distance metric. The parameter samples that yield simulated summaries
“close" to the measured summaries are accepted. These accepted parameters
form a sample from the approximate posterior distribution. Thus, such meth-
ods rely on handcrafted summaries of the measurement data which should be
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Fig. F.1: Illustration of a deep autoencoder with 2 hidden layers in both the encoder
and decoder.

informative about the parameters of the stochastic channel models. However,
designing such summaries is a time-consuming process which is not always
straightforward for most models.

In this paper, we attempt to automatically generate the summaries by
using an autoencoder [13]. An autoencoder is a combination of two neural net-
works; one encodes the input data-set into a low-dimensional set of features,
and the other decodes those features in order to replicate the input data. We
use the encoded feature vector as summary statistics to calibrate the polar-
ized propagation graph model [11, 14] using the ABC algorithm [10]. This
approach circumvents the need for manual design of summaries which can be a
time-consuming process. We test the method by calibrating the stochastic po-
larized propagation graph model [11, 14] and comparing to previously obtained
results for the algorithm [10] with handcrafted summaries. We find that the
method requires much less effort than handcrafted summaries, while obtaining
a comparable performance.

2 ABC using Autoencoder

We aim to fit a stochastic radio channel model, M(θ), to a set of measure-
ment data, x ∈ Rn. This amounts to estimating the p−dimensional parameter
vector, θ from the data. The ABC method in [10] allows us to do so provided
simulations can be obtained fromM(θ). The ABC method relies on summa-
rizing x into a low-dimensional vector of summaries, s = E(x), informative
about θ. In [8, 10], we relied on handcrafted summaries. Here, we circum-
vent designing the summarizing function, or encoder, E(·) ourselves by using
an autoencoder to automatically learn this function.

2.1 Generating Summaries using Autoencoder
As in Fig. F.1, a typical autoencoder comprises of two neural networks —
an encoder E and a decoder D, and an intermediate layer often referred to
as the latent space. The encoder converts high-dimensional input variables
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into low-dimensional latent variables, s = E(x) ∈ Rq; q � n. The decoder D
reconstructs the input from the latent variables. The goal is to obtain functions
E and D such that the output, x̂, is close to the input in some metric, i.e.,

x̂ = D(E(x)) ≈ x. (F.1)

For the considered autoencoder architecture in Fig. F.1, the encoding function
reads

s = E(x) = η2(W2(η1(W1x + b1) + b2)), (F.2)

where ηi,Wi and bi denote the activation function, the weights, and the biases
of the ith hidden layer of the encoder, respectively. The decoding function, D, is
defined analogous to (F.2). The weights and biases are obtained by minimizing
a reconstruction loss defined as the mean squared error between x and x̂.
Standard packages for performing such optimization exist in languages such as
MATLAB, R and Python.

2.2 Approximate Bayesian Computation method
The summarizing function E obtained by the autoencoder is now used in the
ABC algorithm proposed in [10] to approximate the posterior distribution,
p(θ|sobs), where sobs is the summary vector of the measurements. The algo-
rithm is stated in Alg. 10 and illustrated in Fig. F.2. Here, we give an overview
of the ABC algorithm; see [10] for further details.

The ABC method proceeds by sampling θ1, . . . ,θM independently from the
prior distribution p(θ), and simulating the corresponding summaries s1, . . . , sM
using the model and the summarizing function. The Euclidean distance be-
tween the simulated and the observed statistics, ‖si−sobs‖, are then computed.
Note that the summaries are normalized using their mean absolute deviation
before computing the distance. The first Mε parameter samples that corre-
spond to the smallest distance are accepted, along with their corresponding
summary vectors. This results in an acceptance ratio of ε = Mε/M . The ac-
cepted samples are then adjusted using local-linear regression [15] to improve
the posterior approximation. Given the accepted set {(si,θi)}Mε

i=1, the ith ac-
cepted parameter sample is adjusted as

θ̃i = θi − (si − sobs)T β̂, i = 1, . . . ,Mε, (F.3)

where β̂ is solution to the optimization problem

arg min
α,β

Mε∑
i=1

[
θi −α− (si − sobs)T β

]2
Kε (‖si − sobs‖) . (F.4)

Here, Kε(·) is the Epanechnikov kernel. The ABC method of [10] then draws
a new set of M parameter samples from (θ̃1, . . . , θ̃Mε

) in a sequential Monte
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Fig. F.2: Block diagram of the data flow in the proposed PMC-ABC algorithm with
regression adjustment.

Algorithm 9 Regression adjustment
Input: Parameter values (θ1, . . . ,θM ) and corresponding simulated summaries
(s1, . . . , sM ), observed statistics sobs, number of accepted samples Mε,
Accept (θ∗1, . . . ,θ

∗
Mε

) ∼ {θi}Mi=1 with the smallest ‖si − sobs‖
Solve optimisation problem (F.4) with

{
θ∗j
}Mε

j=1 and corresponding
{
s∗j
}Mε

j=1
to get β̂
Adjust accepted samples

{
θ∗j
}Mε

j=1 using (F.3) to get
{
θ̃j
}Mε

j=1

Output: Samples (θ̃1, . . . , θ̃Mε
) from approximate posterior

Carlo fashion [16]. These new samples form the prior distribution for the next
iteration of the algorithm, where they are used to generate simulated data from
the model again and perform regression adjustment. The idea is to iteratively
converge towards the posterior distribution by sampling the parameter space
efficiently. In iteration t, the parameter samples of the lth parameter are drawn
from the density kernel

ϕ
(t)
l (·) =

Mε∑
j=1

w
(t−1)
l,j K

(
·|θ̃(t−1)
l,j ;σ2

l,(t−1)

)
, (F.5)

l = 1, . . . , p, where w(t−1)
l,j and σ2

l,(t−1) are the importance sampling weight
and the variance associated with θ̃

(t−1)
l,j , respectively. Note that the univari-

ate Gaussian kernel, K, is truncated to be in the prior range. The adjusted
parameter samples after Niter iterations are then taken as samples from the
approximate posterior distribution.



3. Calibration of stochastic channel models 159

Algorithm 10 ABC method [10]
Input: Prior p(θ), modelM(θ), observed summaries sobs, Mε, M , Niter

Initialization: t = 1,

for i = 1 to M do
Sample θ(1)

i ∼ p(θ)
Simulate M(1)

i ∼M(θ(1)
i ) and compute s(1)

i = E(x(1)
i )

end for
Perform regression adjustment by applying Algorithm 9 on{(

s(1)
i ,θ

(1)
i

)}M
i=1

to obtain
{
θ̃

(1)
j

}Mε

j=1
Set

w
(1)
l,j = 1/Mε, and σ2

l,(1) = 2V̂ar
({

θ̃
(1)
l,j

}Mε

j=1

)
,

j = 1, . . . ,Mε, l = 1, . . . , p

for t = 2 to Niter do

for i = 1, . . . ,M do

for l = 1, . . . , p do
Sample θ∗l,i ∼

{
θ̃

(t−1)
l,j

}Mε

j=1
with probabilities w(t−1)

l,j

Generate θ(t)
l,i ∼ K

(
·|θ∗l,i;σ2

l,(t−1)

)
end for
Simulate M(t)

i ∼M
(
θ

(t)
i

)
and compute s(t)

i = E
(
x(t)
i

)
end for
Perform regression adjustment by applying Algorithm 9 on{(
s(t)
i ,θ

(t)
i

)}M
i=1

to obtain
{
θ̃

(t)
j

}Mε

j=1
Set

w
(t)
l,j ∝

p
(
θ̃

(t)
l,j

)
ϕ

(t)
l (θ̃(t)

l,j )
, and σ2

l,(t) = 2V̂ar
({

θ̃
(t)
l,j

}Mε

j=1

)
,

j = 1, . . . ,Mε, l = 1, . . . , p

end for
Output: Samples

(
θ̃

(T )
1 , . . . , θ̃

(T )
Mε

)
from the approximate posterior

3 Calibration of stochastic channel models
We apply the calibration method to calibrate the stochastic polarized prop-
agation graph model (SPPGM) [11] in which the channel is represented as a
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propagation graph [17] with the transmitters, the receivers, and the scatterers
as vertices. Edges in the graph are defined randomly depending on the proba-
bility of visibility, Pvis. An edge transfer function accounting for depolarization
effects, attenuation, delay and phase shifts is defined for each edge. To calcu-
late the edge transfer functions, the SPPGM only requires three parameters
viz: reflection coefficient g, number of scatterers Ns and the polarization ratio
γ. The edge transfer functions are then used in a simple expression to com-
pute the channel transfer function, Hk. Detailed description of the model and
channel generation procedure can be found in [11].

We consider data from a linear, time-invariant radio channel, measured
using a vector network analyzer (VNA) in the bandwidth B. The transfer
function Hk is measured at K equidistant frequency points resulting in a fre-
quency separation of ∆f = B/(K−1). The measured signal at each frequency
point, Yk, can be modeled as

Yk = Hk +Nk, k = 0, 1, · · · ,K − 1, (F.6)

where Nk denotes the measurement noise. The noise samples at each k are as-
sumed independent and identically distributed (iid) as a circular complex Gaus-
sian with variance σ2

N . Discrete-frequency, continuous-time inverse Fourier
transforming (Y0, . . . , YK−1) gives the measured signal in time-domain

y(t) = 1
K

K−1∑
k=0

Yk exp(j2πk∆ft), (F.7)

which is periodic with period tmax = 1/∆f . Typically K is in order of hun-
dreds or even thousands, and so we intend to summarize the high-dimensional
measured signal into its first J temporal moments, defined as

mj =
∫ tmax

0
tj |y(t)|2, j = 0, 1, 2, . . . , (J − 1). (F.8)

The temporal moments are computed instantaneously per realization of y(t).
For the dual polarized channel from the SPPGM, this computation is per-
formed for each of the four polarizations. Thus, the ith realization yields a
4J dimensional vector m(i). Consequently, a measurement with L indepen-
dent polarimetric measurements yields an L× 4J matrix of temporal moments
Mobs = [m(1), . . . ,m(L)]>. Including the noise variance as a parameter, cal-
ibration of the SPPGM therefore requires estimating the parameter vector
θ = [g,Ns, Pvis, γ, σ

2
N ]>.

3.1 Implementation and Training of the Autoencoder
We consider the first three temporal moments, J = 3, and L = 625 realizations.
The training data is obtained from the SPPGM with 4000 parameter vectors
generated uniformly over the prior ranges in Tab. F.1. For each parameter
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vector, θi, we compute the temporal moments using (F.8) and convert the
625×12 matrix Mi into an input vector, xi ∈ R7500. To be consistent with [10],
we set the number of summaries q = 10.

We adopt Python’s popular machine learning libraries, Keras and Tensor-
flow, to design and implement the autoencoder. We use the Rectified Linear
Unit activation function at the hidden layers of both the encoder and decoder
due to its non-vanishing gradient property. A linear activation function is used
at the output layer of the decoder. Based on our initial experiments, we ob-
serve that a network with two hidden layers in the encoder and decoder yields
reasonably informative summaries. We adopt a mini-batch gradient descent
procedure in which the training data is partitioned into equal batches of size
32. The training is performed using the Root Mean Square Propagation (RM-
SProp) algorithm with learning rate = 0.1 as optimizer.

3.2 Evaluation of summaries
We now use the trained encoder to test whether the auto-generated summary
vector s is informative about the parameters of the SPPGM. We do that by
varying one parameter at a time while setting others to a fixed value, and
computing s. If the summaries have a functional relationship with the param-
eters, then they are deemed informative. Each parameter is varied in its prior
range, and the other parameters are fixed to true values given in Tab. F.1.
The resulting plot for q = 10 summaries is shown in Fig. F.3. We see that the
summaries are responsive to changes in each of the parameters, albeit more
for some than others. The generated summaries are informative enough to be
able to calibrate the SPPGM. However, this visual test gives only a picture of
how well the summaries work separately. To evaluate how informative the joint
summaries are about the parameters, we apply these in the ABC algorithm.

3.3 Application to simulated data
We apply Alg. 10 to calibrate the SPPGM from simulated data. We set the
parameter vector to a true value and generate polarized channel measurements
from the SPPGM which we then summarize using the encoder to get the sum-
maries. We take an average over 200 realizations of such summaries to get sobs
in order to remove any bias in the estimate arising due to Monte Carlo approx-
imation. The prior distributions were kept same as in [10] and are given in
Tab. F.1, along with the approximate minimum mean squared error (MMSE)
estimates. The approximate posterior distributions are shown in Fig. F.4. We
observe that the marginal posteriors are concentrated around the true values,
and that the algorithm seems to work. The width of the posteriors indicate
how informative the summaries are about each parameter. For example, the
fact that the posterior for g is the widest is due to its lack of any distinct
relationship with statistics in Fig. F.3. Overall the method seems to work rea-
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Fig. F.3: Auto-generated statistics versus the parameters of the SPPGM. Each plot
is generated by varying one parameter while others are kept fixed to the true values
in Tab. F.1.
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Fig. F.4: Kernel density estimates of the approximate marginal posteriors for simu-
lated data after Niter = 10 iteration. Settings: L = 625, J = 3,M = 2000,Mε = 100,
B = 4 GHz,K = 801,∆f = 5 MHz, tmax = 200 ns.

sonably well, considering that no manual effort went into designing the specific
summaries.

4 Application to Measured Data
We now apply the method to calibrate the SPPGM using millimetre-wave polar-
ized channel measurements from [18]. The measurements were conducted using
dual-polarized antennas in a small conference room of dimensions 3× 4× 3 m3

in the frequency range 58 GHz to 62 GHz. A 5 × 5 virtual planar array was
used at both the transmitter and receiver with 5 mm inter-element spacing,
resulting in L = 625 realizations for each polarization.

The approximate marginal posteriors are given in Fig. F.5 while the ap-
proximate MMSE estimates, obtained by averaging the accepted samples after
the last iteration, are reported in Tab. F.1. The width of the posterior estimates
are similar to what we observed in simulation. The summaries therefore seem
to be useful for calibration even in case of measurements. The averaged power
delay profile (APDP) of the co- and cross-polarized channel from the measure-
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Table F.1: Parameter estimates for simulated and measured data. The sample
standard deviation of the approximate posterior is reported in the parenthesis.

Parameter
θ

Prior range
p(θ)

True value / Estimate (standard deviation)

Simulated data Measured data

Refl. coeff. g [0,1] 0.65 / 0.54 (0.18) — / 0.71 (0.15)
No. of scat. Ns [5,50] 15 / 11 (3.08) — / 16 (5.48)
Prob. of vis. Pvis [0,1] 0.90 / 0.83 (0.13) — / 0.70 (0.14)

Pol. ratio γ [0,1] 0.10 / 0.11 (0.02) — / 0.14 (0.02)
Noise variance
σ2
N × 10−10 [2,20] 10.0 / 10.6 (1.07) — / 3.75 (0.51)
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Fig. F.5: Kernel density estimates of the approximate marginal posteriors for mea-
sured data after Niter = 10 iteration. The algorithm settings are same as given in
Fig. F.4.
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Fig. F.6: Averaged power delay profile from the measurements versus that obtained
from the SPPGM after calibration. The parameter estimates are reported in Tab. F.1.

ments is compared to that from the SPPGM in Fig. F.6. The estimated APDP
seems to fit the measurements well, thus validating the method.

5 Conclusion
The autoencoder is able to generate summaries that are informative enough
to calibrate the parameters of the polarized propagation graph model. In this
case, handcrafting of summaries is not necessary for implementing the cali-
bration method of [10]. Avoiding the need for handcrafted summaries enables
even non-propagation experts to easily apply the method. Even though the
performance of the calibration method is better when using the handcrafted
summaries in [10], we do get reasonably accurate results with fairly limited
effort of training the autoencoder. However, since the training is done in an
unsupervised manner, there is no guarantee that the generated summaries will
be informative enough about the parameters to be able to estimate them. With
auto-generated summaries, we are one step closer to fully automated model cal-
ibration.
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Abstract
We propose a joint statistical model for the received power, mean delay, and
rms delay spread, which are derived from the temporal moments of the radio
channel responses. Indoor wideband measurements from two different data sets
show that the temporal moments are strongly correlated random variables with
skewed marginals. Based on the observations, we propose a multivariate log-
normal model for the temporal moments, and validate it using the experimental
data sets. The proposed model is found to be flexible, as it fits different data sets
well. The model can be used to jointly simulate the received power, mean delay,
and rms delay spread. We conclude that independent fitting and simulation
of these statistical properties is insufficient in capturing the dependencies we
observe in the data.

1 Introduction
Characterization of radio channel properties such as the received power, mean
delay, and rms delay spread are imperative for the design of communication
systems. These statistics are computed from the moments of the instanta-
neous power of the received signal, known as temporal moments. Used since
the 1970s [1], the temporal moments are ubiquitous in wireless communica-
tions literature, and are also used in simulations of communication systems.
More recently, temporal moments have been used as summary statistics for
parameter estimators for stochastic channel models [2–4]. In applications such
as these, where more than one of the temporal moments are used simultane-
ously, knowledge of their statistical properties, including their dependencies, is
beneficial.

Empirical averages and cdfs of received power, mean delay, and rms delay
spread are reported frequently in the literature. In [5], Awad et al. survey
the empirical data on the delay properties of the indoor radio channel, includ-
ing the mean delay and rms delay spread, and fit marginal models to a large
number of available data sets. They obtained normal, Weibull, or log-normal
distributions as the best fit models, with Rayleigh, Rician, and Poisson being
the other considered distributions. Although clearly handling a model selection
problem, the selection was done by evaluating the best fit without adjusting
for model complexity. Similar results were obtained in [6] where the rms de-
lay spread was empirically modeled as a normally distributed random variable.
The expected values of temporal moments are connected to parameters de-
scribing the model for the impulse responses for in-room scenarios [7]. This
observation was further deepened in [8, 9] which show how the arrival rate of
a process changes the variance of the mean delay and rms delay spread. It
is wide-spread practice to report only empirical marginal distributions of rms
delay spread and to disregard the dependencies between moments. Moreover,
independent modeling of rms delay spread is prevalent in the literature, while
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its dependency with received power and mean delay is not.
An exception is Greenstein et al. [10] who modeled the path gain1 and de-

lay spread jointly. They proposed a joint log-normal distribution for the path
gain and rms delay spread based on intuitive arguments, and later validated it
empirically using a wide range of outdoor measurements available from litera-
ture. However, Greenstein et al. did not consider mean delay. Moreover, they
proposed a fixed correlation coefficient of –0.75 between path gain and rms
delay spread, which might not be able to account for the variability observed
in measurements.

In this contribution, we extend the Greenstein model to jointly characterize
the mean delay, along with received power and rms delay spread. We propose
a multivariate log-normal model for the temporal moments, from which we can
obtain mean delay and rms delay spread using a simple transformation. We
find that this easy-to-use model is flexible enough to capture the variability
observed in data. We also provide a method to estimate parameters of the
model so that it can be easily fitted to new measurements, something that the
Greenstein model lacked. Finally, the model is validated using indoor channel
impulse response measurements from two different campaigns.

2 Temporal Moments
Consider the case where measurements of the channel transfer function are
recorded using a vector network analyzer (VNA) in a single-input, single-output
(SISO) set-up. The transfer function is sampled in the measurement bandwidth
B at Ns frequency points with separation ∆f = B/(Ns − 1). The model for
the measured transfer function, Yn, at frequency sample n reads

Yn = Hn +Wn, n = 0, 1, . . . , (Ns − 1), (G.1)

where Hn is the transfer function and Wn is measurement noise modeled as
independent and identically distributed (iid) circularly symmetric Gaussian
random variables. The time domain signal, y(t), is obtained by the discrete-
frequency, continuous-time inverse Fourier transform as

y(t) = 1
Ns

Ns−1∑
n=0

Yn exp (j2πn∆ft) , (G.2)

where y(t) has period 1/∆f .
A particular realization of y(t) can be summarized in terms of its temporal

moments defined as

mk =
∫ 1

∆f

0
tk|y(t)|2dt, k = 0, 1, . . . , (K − 1). (G.3)

1Greenstien et al. defined path gain as the ratio of received power to transmitted
power.
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In total K temporal moments are computed “instantaneously" per realization
of the received signal, i.e. without “averaging" over multiple realizations. Thus,
having Nreal realizations of the channel results in the Nreal × K dimensional
matrix, M =

[
m(1), . . . ,m(Nreal)

]T , where m(i) =
[
m

(i)
0 ,m

(i)
1 , . . . ,m

(i)
K−1

]
.

The SI unit for the kth temporal moment is sk.
The instantaneous received power, P0, equals m0, while the instantaneous

mean delay, τ̄ , or the instantaneous rms delay spread, τrms, are obtained as
transformations of the temporal moments as

τ̄ = m1

m0
, and τrms =

√
m2

m0
−
(
m1

m0

)2
. (G.4)

Note that the unit of τ̄ and τrms is in seconds. For the purpose of our discussion,
we will focus on the first three temporal moments, i.e. (m0,m1,m2), as they
suffice for the received power, mean delay, and rms delay spread. We refer to
(m0,m1,m2) as temporal moments and (P0, τ̄ , τrms) as standardized moments
of |y(t)|2. Note that in (G.4), we make no attempt to compensate or remove the
effect of a finite measurement bandwidth, i.e. the standardized moments are
computed of the received signal, y(t), and not of the channel impulse response.

3 Measurement Data and Observations

3.1 Dataset from Lund University
In [11], mm-wave measurements of the channel transfer function are recorded
at 60 GHz using a VNA in a SISO set-up. The measurement is conducted in
a small room of dimensions 3× 4× 3 m3 using a 25× 25 virtual planar array,
giving Nreal = 625 realizations of the channel. Frequency bandwidth used is
4 GHz, with Ns = 801 frequency sample points. This gives a signal observation
time of 1/∆f = 200 ns in the time domain. Temporal moments are computed
for this dataset for the non-line-of-sight (NLOS) case, and the density estimates
and scatter plots are shown in Fig. G.1.

3.2 Dataset from Lille
The 60 GHz channel sounder developed in [12] measures the frequency transfer
function using a VNA in bandwidth B = 2 GHz at Ns = 1601 sample points
by steps of ∆f = 1.25 MHz. This results in a signal observation time of
1/∆f = 800 ns. Measurements were taken in a computer laboratory of floor
area 7.15 × 5.2 m2 at 26 sites, covering the whole room. At each site, 250
measurements were carried out. We use a subset of this data, specifically, line-
of-sight (LOS) measurements with Nreal = 500 realizations obtained from
the first two sites having the same distance between transmitter and receiver.
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Table G.1: Sample Pearson correlation coefficients between standardized and tem-
poral moments of data.

ρ̂P0,τ̄ ρ̂P0,τrms ρ̂τ̄ ,τrms

Lund -0.28 -0.35 0.53
Lille -0.55 -0.21 0.85

ρ̂m0,m1 ρ̂m0,m2 ρ̂m1,m2

Lund 0.94 0.34 0.54
Lille 0.93 0.39 0.69

Density estimates and scatter plots of temporal moments for this dataset is
shown in Fig. G.1.

3.3 Observations
The marginal distributions of the temporal moments appear to be skewed,
more so for the Lille data. The scatter plots fan out towards the top-right of
each plot, giving rise to the skewed marginals. It is evident from the scatter
plots that the temporal moments are correlated random variables, suggesting
that the standardized moments could be correlated as well. This conjecture is
indeed found to be true from the correlation coefficients between the temporal
and standardized moments for the two data sets reported in Table G.1. The
Pearson correlation coefficient between random variables A and B is

ρA,B = cov(A,B)
σAσB

, (G.5)

where cov(·, ·) is the covariance operator and σ is the standard deviation. The
sample Pearson correlation coefficients for both temporal and standardized
moments are reported in Table G.1. We observe that the correlation between
received power and rms delay spread is less than the value proposed by Green-
stein et al. [10]. Moreover, the correlation of standardized moments across
the two data sets vary significantly, while the correlation of temporal moments
seems more stable.

4 Proposed model
The temporal moments are non-negative, correlated random variables with
skewed marginals. Therefore, we propose to use a multivariate log-normal
distribution to model the temporal moments. In principle, one could use a
multivariate Gaussian distribution or copulas [13] to model the dependency
structure. However, given the support for log-normality of standardized mo-
ments in the literature, coupled with the aim to have a general yet simple-
to-use model, we propose a multivariate log-normal distribution to model the
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vector, m = (m0,m1,m2), of first three temporal moments, i.e. K = 3.
The K-variate log-normal distribution, which is the exponential transform of
a multivariate Gaussian, has the pdf

f(m;µ,Σ) =
∏K−1
k=0 (mk)−1√
(2π)K det Σ

× exp(−1
2(ln(m)− µ)TΣ−1(ln(m)− µ)), (G.6)

where µ and Σ are the mean vector and covariance matrix of the associated
multivariate Gaussian pdf. The entries of µ and Σ are defined as µk = E [lnmk]
and Σkk′ = cov (lnmk, lnmk′), for k, k′ = 0, 1, 2, respectively. In contrast,
the means and covariances of m0, m1, and m2 are functions of µ and Σ as

E [mk] = exp
(
µk + 1

2Σkk
)
, and (G.7)

cov (mk,mk′) = e(µk+µk′+ 1
2 (Σkk+Σk′k′ )) (eΣkk′ − 1

)
. (G.8)

The multivariate log-normal is a positive distribution which models the skewed
marginals better than a Gaussian.

In principle, the received power, mean delay and rms delay spread could
be the quantities modeled using the multivariate log-normal distribution. In
practice, we do not observe any qualitative difference between one or the other.
However, here we chose to model the temporal moments as their means and
covariances are easier to compute analytically, given a channel model, as com-
pared to the standardized moments due to the non-linear transformation. Us-
ing the model of the temporal moments, the standardized moments can be
simulated via the one-to-one transformation given in (G.4).

4.1 Estimation of parameters
Fitting the matrix of temporal moments M, obtained from Nreal independent
realizations of the channel impulse responses, to the proposed model requires
the estimation of the mean vector, µ, and the covariance matrix, Σ. This can
be achieved by maximizing the likelihood of the data as

(µ̂, Σ̂) = argmax
µ,Σ

Nreal∏
i=1

f
(
m(i);µ,Σ

)
. (G.9)
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Table G.2: Parameter estimates obtained after fitting.

Lund data Lille data

µ̂T -38.8 -56.8 -74.4 -29.0 -47.2 -63.2

Σ̂
2.8×10−3 2.5×10−3 1.4×10−3 0.22 0.17 0.12
2.5×10−3 2.6×10−3 2.1×10−3 0.17 0.15 0.19
1.4×10−3 2.1×10−3 5.3×10−3 0.12 0.19 0.70

Since µ and Σ are the parameters of the associated Gaussian, the maximum
likelihood estimates µ̂ and Σ̂ are

µ̂ = 1
Nreal

Nreal∑
i=1

ln m(i), and (G.10)

Σ̂ = 1
Nreal

Nreal∑
i=1

(
ln m(i) − µ̂

)(
ln m(i) − µ̂

)T
. (G.11)

The estimates obtained after fitting the model to the two data sets are reported
in Table G.2.

4.2 Simulation from the model
Simulation from the proposed model is straightforward. To generate one real-
ization, three steps should be performed:

1. Draw x ∼ N (µ,Σ)

2. m = exp(x) (entry-wise exponential)

3. Compute τ̄ and τrms from (G.4) (optional)

5 Model Validation
We check the validity of the model by fitting it to the two experimental datasets
available, and then qualitatively investigating the simulated data against the
measurements.

5.1 Simulation of temporal moments
We estimate the parameters of the proposed model for the two datasets, and
then simulate temporal moments using the methodology described in the pre-
vious section. The results are shown in Fig. G.1 for both Lund and Lille data,
and the parameter estimates are in Table G.2. The model appears to fit the
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Fig. G.1: Density estimates and scatter plots of temporal moments obtained from
(left) Lund data and (right) Lille data (shown in black) vs. those simulated from
the fitted proposed model (shown in red). The scales of the corresponding scatter
plots are the same. Number of points simulated is same as in the measurements, i.e.
Nreal = 625 for Lund data and Nreal = 500 for Lille data. Correlation coefficients
of temporal moments are reported in Table G.1 and the parameter estimates are in
Table G.2.

marginals well, even for the very skewed case of Lille data. The high corre-
lation between the temporal moments, especially between m0 and m1, is well
captured by the model. For both Lund and Lille data, the fanning out of the
scatter plots is well represented by the model.

5.2 Simulation of P0, τ̄ , and τrms

We now compare the scatter plots of received power, mean delay, and rms delay
spread obtained from the proposed model with those from the measurements
in Fig. G.2. Additionally, we also show the samples obtained by independently
fitting log-normal pdfs to the standardized moments from the measurements.
We observe a strong positive correlation between the mean delay and rms
delay spread obtained from measurements. The received power, however, is
negatively correlated with mean delay and rms delay spread. This dependency
structure between the standardized moments is captured well by the proposed
joint model. In contrast, any information on the correlation between the vari-
ables is lost when simulating them independently.
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Fig. G.2: Scatter plots of received power, mean delay, and rms delay spread obtained
from (left) Lund data and (right) Lille data (in black) vs. those simulated from the
proposed model (in red). The samples simulated by independently fitting P0, τ̄ ,
and τrms to the data are shown in blue. The scales of the corresponding scatter
plots are the same. Number of points simulated is same as in the measurements, i.e.
Nreal = 625 for Lund data and Nreal = 500 for Lille data. Correlation coefficients of
standardized moments are reported in Table G.1 and the parameter estimates are in
Table G.2.

6 Conclusion
Observing that temporal moments of channel impulse responses, and hence
their standardized moments, are dependent random variables, we propose to
model them as jointly log-normal random variables. The proposed model is
simple, easy to use, and analyze. We find that the model is flexible enough
to fit measurements exhibiting contrasting behaviors. This model can be used
to jointly simulate received power, mean delay, and rms delay spread. We
validated the joint model using experimental data obtained from indoor envi-
ronments.

Independent fitting and simulation of received power, mean delay, and rms
delay spread leads to loss of correlation observed in the measurements, and
these should be simulated jointly. Therefore, reporting only their marginal
distributions, e.g. in the form of plots of their empirical cdfs, is insufficient.
Instead, their means and covariances should be reported.
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1. Introduction 183

Abstract
We propose a multivariate log-normal distribution to jointly model received
power, mean delay, and root mean square (rms) delay spread of wideband ra-
dio channels, referred to as the standardized temporal moments. The model
is validated using experimental data collected from five different measurement
campaigns (four indoor and one outdoor scenario). We observe that the re-
ceived power, the mean delay, and the rms delay spread are correlated random
variables, and therefore, should be simulated jointly. Joint models are able to
capture the structure of the underlying process, unlike the independent models
considered in the literature. The proposed model of the multivariate log-normal
distribution is found to be a good fit for a large number of wideband data-sets.

1 Introduction
Standardized temporal moments such as received power, mean delay, and root
mean square (rms) delay spread are widely used to summarize power-delay pro-
files (PDPs) of wideband radio channels. Characterization of these temporal
moments is imperative for understanding the effects of multipath propagation
on the received signal [1], and hence, for the design and analysis of communica-
tion and localization systems. The standardized temporal moments are derived
from transformations of the raw temporal moments of the instantaneous power
of the received signal. Therefore, the raw moments, and consequently the
standardized moments, are dependent random variables. The raw temporal
moments have recently been used to estimate parameters of stochastic radio
channel models from measurements [2–7]. Mean delay and rms delay spread
have also been used to fit an extension of the WINNER II model to measure-
ments [8]. In applications where multiple temporal moments are used, it can
be valuable to consider their dependencies to avoid biases which can occur due
to false assumptions of independence.

Independent modeling of received power, mean delay, and rms delay spread
is prevalent in the literature, with their empirical averages and cumulative
distributions functions (CDFs) being reported frequently while disregarding
their dependencies. A survey of the empirical data available for the delay
properties of indoor radio channel is given in [9], where a variety of marginal
models is fit to the mean delay and rms delay spread from the various data-
sets. They obtained log-normal, Gaussian, and Weibull as the best fit models.
Empirical distribution of delay spread has been modeled using a log-normal
distribution in the 910 MHz channel [10, 11], the 30 MHz to 400 MHz frequency
band [12], at 460 MHz [13], at 11 GHz [14], and at 39 GHz [15]. A Gaussian
distribution for the rms delay spread has also been proposed based on empirical
data in [16] and [17]. Recently, the rms delay spread has also been modeled
using a bimodal Gaussian mixture distribution [18] and neural networks [19].

The shortcomings of independent modeling become clear by considering
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Fig. H.1: Scatter plot of received power and rms delay spread obtained from AAU-
Hall measurements (see Sec. 4.4) is shown in black (above). The contour lines from
independently fitting log-normal distribution to the measurements is shown in red.
The empirical CDFs of the marginals is also shown with the fitted log-normal CDF
in red (below). Note that the received power is unitless.

jointly the received power and rms delay spread as done in the example in
Fig. H.1. It is apparent that by fitting independent log-normal models to
the received power and the rms delay spread, the marginals of the data are
modeled correctly. However, the correlation information in the data is lost on
modeling them independently. Delay spread is previously found to be correlated
to received power at 60 GHz [20] and to mean delay in the ultra-high frequency
band [21]. One approach to mitigate this problem is to model the standardized
moments jointly. An exception to the independent models is the one proposed
by Greenstein et al. [11] where they accounted for the correlation between
rms delay spread and shadow fading after analysing a wide range of outdoor
measurements, mostly in the 900 MHz frequency band. They argued that
rms delay spread is log-normally distributed at a given propagation distance,
and proposed a joint log-normal model for path gain1 and delay spread with
a correlation coefficient of –0.75. However, they did not take mean delay into
account. Moreover, the correlation coefficient was based on qualitative analysis
of scatter plots and on a single measurement setting. The mutual relations
between the means of the raw temporal moments have been modeled in [22–24]
for the in-room case, while their joint distribution was not studied. To the
best of our knowledge, joint characterization of the temporal moments in the
millimetre-wave (mm-wave) band has not been done before.

Potentially, the temporal moments could be modeled jointly using a multi-
variate distribution such that the model could be fitted to new measurements.
Joint modeling of multivariate random variables is considerably more involved
than modeling of scalar random variables because the model is required to rep-
resent the marginals and the dependency structure in the data at the same

1Greenstein et al. [11] defined path gain as the ratio of received power to trans-
mitted power.
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time. Only a few univariate probability distribution functions (pdfs) exist that
have unique multivariate extensions, such as the multivariate Gaussian, log-
normal, and Gamma distributions [25]. Copulas [26] can also be used to model
the dependency structure between the random variables, especially when the
marginal distributions lead to a multivariate distribution that is difficult to
handle due to the lack of analytical expression or difficulties to estimate the
parameters.

After considering several of these methods, we conclude that the multivari-
ate log-normal is a reasonable choice which provides a good balance between
goodness-of-fit and ease of interpretation. Moreover, there is substantial sup-
port for log-normality of standardized temporal moments in the literature. In
this paper, we propose and validate the multivariate log-normal model using a
wide variety of measurements taken in different scenarios and frequency ranges,
including both indoor and outdoor settings. Measurement campaigns were con-
ducted at Lund University [27], University of Lille [28], and Aalborg University
(AAU) [29]. We also present mm-wave measurements from one indoor and one
outdoor campaign in the 28 GHz to 30 GHz band conducted recently at AAU.
We compare the proposed model with the multivariate Gaussian and inde-
pendent marginal models in terms of the Akaike Information Criterion (AIC).
Finally, we investigate the model fits to the raw and standardized temporal
moments from the measurements. Preliminary results have been published in
the conference publication [30].

The paper is organized as follows: Section II describes the raw and stan-
dardized temporal moments, and Section III presents the model. In Section IV
we compare the proposed model with other modeling choices. Section V and
VI compare the model fits to the raw and standardized temporal moments of
the measurements, respectively. Finally, the conclusions are outlined in Section
VII.

2 Temporal Moments
Consider a measurement campaign where the channel transfer function between
fixed transmit and receive antennas is recorded using a vector network analyzer
(VNA). Sampling the transfer function, H(f), at Ns frequency points in the
measurement bandwidth B results in a separation of ∆f = B/(Ns − 1) be-
tween the points. We assume that the measurement noise at the nth frequency
point, Wn, is additive and independent of the transfer function, Hn. Then, the
measured frequency-domain signal, Yn, reads

Yn = Hn +Wn, n = 0, 1, . . . , (Ns − 1). (H.1)
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Discrete-frequency, continuous-time inverse Fourier transform gives the 1/∆f -
periodic measured time-domain signal

y(t) = 1
Ns

Ns−1∑
n=0

Yn exp(j2πn∆ft). (H.2)

Note that y(t) is often referred to as the impulse response despite suffering from
limited bandwidth and noise. This terminology is somewhat misleading since
strictly speaking the impulse response is the inverse Fourier transform of H(f).
For large bandwidth and high signal-to-noise ratio (SNR), y(t) can be used as an
approximation to the impulse response in the time interval [0, 1/∆f ], provided
that the impulse response decays rapidly enough. To avoid this confusion, we
refer to y(t) as the measured signal.

The raw temporal moments are summary statistics of the measured signal
y(t), where the kth temporal moment is defined as

mk =
∫ 1

∆f

0
tk|y(t)|2dt, k = 0, 1, . . . , (K − 1). (H.3)

Here, a total of K raw temporal moments are computed “instantaneously" per
realization of y(t), giving theK-dimensional vector m = [m0,m1, . . . ,mK−1]>.
The raw temporal moments are correlated random variables as they are all de-
rived from the received signal power, |y(t)|2. The kth temporal moment is
measured in [second]k.

The standardized temporal moments are obtained from the first three raw
temporal moments. The received power, P0, the mean delay, τ̄ , and the rms
delay spread, τrms, are given as

P0 = m0, τ̄ = m1

m0
, and τrms =

√
m2

m0
−
(
m1

m0

)2
. (H.4)

The unit of τ̄ and τrms is in seconds whereas P0 is unitless. The determin-
istic relationship between the raw and the standardized temporal moments is
depicted in Fig. H.2. The non-linearity of the above transformations and the
dependency of the raw temporal moments complicates the joint characteriza-
tion of mean delay and rms delay spread. Summarizing Nreal realizations of the
measured signal into K temporal moments therefore results in the K × Nreal
dimensional matrix, M =

[
m(1), . . . ,m(Nreal)

]
. We will focus our discussion on

the first three temporal moments, (m0,m1,m2), as they suffice for the received
power, mean delay, and rms delay spread but it is straightforward to extend
the framework to include more moments as long as the marginal distributions
fit the same distribution.

Note that the standardized temporal moments in (H.4) are computed from
the measured signal, y(t), rather than the channel impulse response. The
impulse response is unobservable due to the noise and bandwidth limitations.
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Fig. H.2: The connections between the magnitude square received signal and the
summary statistics (raw- and standardized temporal moments).

It is widespread practice to employ a thresholding procedure to reduce the effect
of the measurement noise on the estimation of temporal moments. However,
such procedures require the setting of a threshold or dynamic range. The
choice of the threshold affects the resulting estimates in a manner that makes
comparison between measurements obtained with different equipment difficult.
For this reason, we omit any thresholding procedure in the present work.

The finite measurement bandwidth also manifests itself in the rms delay
spread as an approximately additive term equal to the delay spread of the
transmitted signal. This effect can be partially removed by subtracting the
delay spread of the frequency window. This is widespread practice in the
literature and results in a good approximation if the bandwidth is large and
the SNR is high. However, in case of low SNR and small signal bandwidth, this
can lead to inaccurate and sometimes negative estimates of the delay spread.
For the measurements considered in Section 4, where the bandwidth is very
large, the effect of the transmitted signal can be ignored. Hence, we make no
attempt to compensate for the effect of a finite measurement bandwidth.

3 Proposed Statistical Model

We intend to jointly model the first three raw temporal moments, (m0,m1,m2),
and use the transformation in (H.4) to simulate the mean delay and rms delay
spread. In principle, the standardized temporal moments could be modeled
instead of the raw moments. However, the distribution on the raw moments
implies a distribution on the standardized moments from which sampling is
straightforward. Modeling the raw moments has the added advantage that
their means and covariances are easier to compute analytically for a given
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Table H.1: Summary of different measurement data-sets.

Data set Bandwidth
(GHz)

No. of
samples

No. of
realizations

Antenna
Tx/Rx

Dimensions
(m3) Scenario Environment

Lund Data [27] 58-62 801 625 Biconical/Open waveguide 3× 4× 3 NLOS Small room
Lille Data [28] 59-61 1601 750 Microstrip/Microstrip 5.20× 7.15× 2.90 LOS Large room

AAU-Industry [29] 3-8 5001 95 Biconical/Biconical 33× 14× 6 Both Industry hall
AAU-Hall 28-30 1500 720 Biconical/Biconical 44× 25× 10 NLOS Large hall

AAU-Outdoor 28-30 2000 360 Horn/Biconical — LOS Outdoor

channel model than those of the standardized moments due to the non-linear
transformation.

We model the vector m = [m0,m1,m2]> as a multivariate log-normal vari-
able. The exponential of a random vector following a multivariate Gaussian
distribution is multivariate log-normal distributed. Let x be a K-variate nor-
mal random vector with mean µ and covariance matrix Σ. Then its entry-wise
exponentiation, m = exp(x), yields a log-normal vector with pdf

f(m;µ,Σ) =
∏K−1
k=0 (mk)−1√
(2π)K det Σ

× exp
(
−1

2(ln(m)− µ)>Σ−1(ln(m)− µ)
)
. (H.5)

Here the logarithm is taken entry-wise. By property of the marginals of the
multivariate Gaussian, it is easy to see that this transform results in a distri-
bution with log-normal marginals. Note that the parameters of a multivari-
ate log-normal are the mean vector and the covariance matrix of the associ-
ated multivariate Gaussian distribution. The entries of µ and Σ are given as
µk = E [lnmk] and Σkk′ = cov (lnmk, lnmk′), for k, k′ = 0, 1, . . . ,K − 1,
respectively. Given that raw temporal moments are log-normally distributed,
their means and covariances can be related to µ and Σ as

E [mk] = exp
(
µk + 1

2Σkk
)
, and (H.6)

cov (mk,mk′) = exp
(
µk + µk′ + 1

2 (Σkk + Σk′k′)
)
× (exp (Σkk′)− 1) . (H.7)

Note that we model the raw temporal moments as opposed to Greenstein et
al. [11] who model shadow fading and rms delay spread as jointly log-normal.
With the proposed model, log-normality is preserved for the received power
and mean delay due to the multiplicative transform applied on m0 and m1.
However, the distribution of rms delay spread depends on a more complicated
transformation (see (H.4)) and hence cannot easily be derived in closed form.
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3.1 Estimation of parameters
The parameters of the proposed model need to be estimated from measured
data in order to use the model for simulation purposes. Here, we refer to the
matrix of raw temporal moments, M, as the data. This data matrix is obtained
by summarizing Nreal realizations of the measured signal using (23). Assuming
independent and identically distributed (iid) realizations, maximum likelihood
estimation of µ and Σ is achieved by solving the optimization problem,

(µ̂, Σ̂) = argmax
µ,Σ

Nreal∏
i=1

f
(
m(i);µ,Σ

)
. (H.8)

Since µ and Σ are the mean vector and the covariance matrix, respectively,
of the associated multivariate Gaussian distribution, their maximum likelihood
estimates, µ̂, and Σ̂, are

µ̂ = 1
Nreal

Nreal∑
i=1

ln m(i), and (H.9)

Σ̂ = 1
Nreal

Nreal∑
i=1

(
ln m(i) − µ̂

)(
ln m(i) − µ̂

)>
. (H.10)

3.2 Simulation from the model
Given a particular value of µ and Σ, simulation from the proposed model is
straightforward. To generate one sample of m, or subsequently, one sample of
(P0, τ̄ , τrms), the following steps should be performed:

1. Draw x ∼ N (µ,Σ)

2. Compute entry-wise exponential, m = exp(x)

3. Compute τ̄ and τrms from (H.4)

4 Measurement Data Description
We now describe the different radio channel measurements used to validate
the proposed model. An overview of the measurement data-sets is given in
Tab. H.1. The parameter estimates obtained after fitting the proposed model
to the measurements are reported in Tab. H.2.

4.1 Data-set from Lund University
Polarimetric radio channel measurements at 60 GHz was recorded in a small
meeting room of dimensions 3×4×3 m3 using a VNA [27]. The room consisted
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of a table, white-board, bookshelves, and a window on one of the walls. The
receive antenna was placed at one corner of the room and the transmit antenna
was placed on the table. A water-filled human phantom was used to block the
line-of-sight (LOS) path to emulate non-line-of-sight (NLOS) scenario. A 5× 5
virtual array of dual-polarized antennas was used with an inter-element spacing
of 5 mm at both the transmitter and the receiver. This resulted in a 25 × 25
dual-polarized MIMO system, however, in this paper, we only use the vertical-
vertical polarized channels. Measurements were performed in the bandwidth
range of 58 GHz to 62 GHz using 801 equally spaced frequency points. For
further details on the measurement campaign, see [27].

4.2 Data-set from Lille University

Measurements were taken in a computer laboratory of floor area 7.15× 5.2 m2

at 26 sites, covering the whole room. The 60 GHz channel sounder developed
at IEMN [28] used two heterodyne emission and reception heads developed by
monolithic integration with frequencies ranging from 57 GHz to 59 GHz and
with intermediate frequencies of 1 GHz to 3 GHz. A dedicated network analyzer
allows, after calibration, the vectored measure of the frequency transfer function
by steps of 1.25 MHz. The resulting impulse response has a delay resolution
of 0.5 ns and a maximum measurable delay of 800 ns. In this paper, we select
a subset of the entire data-set, specifically, taking the measurements from the
first three sites having the same distance between the transmit and receive
antennas in LOS condition. Each site consists of 250 positions separated by
2 mm. The transmitter was fixed in a corner, close to the roof, pointed towards
the opposite corner. The receiver was oriented towards the transmitter in the
horizontal plane but not in the vertical one. Horizontal linear polarization
patch antennas were employed.

4.3 AAU Data, Industry Scenario
Short-range ultra-wideband measurement campaigns were conducted in a 33×
14 × 6 m3 industrial factory hall at the Smart Production Lab, AAU. The
factory hall was a typical high clutter density environment with large metallic
machinery such as welding machines, hydraulic press, and material processing
machines. Measurements were collected over the frequency range 3 GHz to
8 GHz using a Rhode & Schwarz ZND 8.5 GHz VNA and omni-directional
broadband bi-conical antennas at both the transmitter and the receiver. Dur-
ing the measurements, the transmitter was placed at a fixed location and the
receiver location was varied to obtain horizontal distances between 1 m and
9 m. A total of 95 channel transfer functions were obtained with a frequency
resolution of 1 MHz corresponding to 5001 samples over the 5 GHz bandwidth.
Detailed description of the measurements can be found in [29].
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4

TABLE I
SUMMARY OF DIFFERENT MEASUREMENT DATA-SETS.

Bandwidth
(GHz)

No. of
samples

No. of
realizations

Antenna
Tx/Rx

Dimensions

(m3)
Scenario Environment

Lund Data [19] 58-62 801 625 Biconical/Open waveguide 3× 4× 3 NLOS Small room
Lille Data [20] 59-61 1601 750 Microstrip 5.20× 7.15× 2.90 LOS Large room

AAU-Industry [21] 3-8 5001 95 Biconical/Biconical 33× 14× 6 Both Industry hall
AAU-Hall 28-30 1500 720 Biconical/Biconical 44× 25× 10 OLoS Large hall

AAU-Outdoor 28-30 2000 360 Horn/Biconical - LoS Outdoor
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Fig. 2. The layout of the indoor hall measurement campaign.

1

2
3

4
5

6

7

8

9

10

11

14

12

13

15

16

17
18
19

0 1 4 5 10

Rx

Tx UCA array

Concrete pillar

Metal pillar

0◦180◦

Meters

T
ab

le

Fig. 3. The layout of the indoor hall measurement campaign.

metallic machinery including welding machines, hydraulic

press, and material processing machines. Measurements were

collected over the frequency range 3 GHz to 8 GHz using a

Rhode & Schwarz ZND 8.5 GHz VNA and omni-directional

broadband bi-conical antennas at both the transmitter and

receiver. During the measurements, the transmitter was placed

a fixed location and the receiver location is varied to obtain

horizontal distances between 1 m and 9 m. A total of 95

channel transfer functions were obtained with a frequency

resolution of 1 MHz corresponding to 5000 samples over the

5 GHz bandwidth. Detailed description of the measurements

can be found in [21].

D. AAU Data, Hall Scenario

Based on a vector network analyzer (VNA) and the radio-

over-fiber (RoF) technique, an ultra-wideband channel sounder

was developed in AAU [22]. The proposed phase compensa-

tion scheme using optical circulators allows phase coherence

R

T
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Fig. 4. The layout of the outdoor measurement campaign.

measurements. Moreover, it has been demonstrated in [22]

that the dynamic range for the back-to-back connection with

a optical cable of 300 m at 30 GHz can be 112 dB.

A measurement campaign was conducted with the devel-

oped channel sounder in a large hall scenario as illustrated

in Fig. 3. The hall was with a floor area of 44×25 m2 and

contained tables, metallic pillars, concrete pillars, stairs, etc.

The height of the hall was approximately 10 m. Two quasi-

omnidirectional biconical antennas (with their parameters can

be found in [23]) were used as Tx and Rx antennas, respec-

tively. During the measurement, the Rx antenna was fixed with

a height of 1 m to the ground. The Tx antenna was installed

on a rotator and rotated with 720 uniform steps on a circle

with a radius of 0.54 m. In each step, the channel transfer

function from 28-30 GHz was swept with 1500 samples in

the frequency domain using the VNA. Totally 19 channels

between the Rx and the Tx uniform circular arrays (UCAs)

at different locations were recorded. The selected data is from

the first UCA location, where the distance between Tx and Rx

was around 15 m.

E. AAU Data, Outdoor Scenario

An outdoor measurement campaign was conducted exploit-

ing the same channel sounder used in the indoor hall scenario.

However, some different settings were applied as illustrated in

Fig. 4. The radius of the virtual Tx UCA was set as 0.25 m in

the outdoor scenario, and 360 uniform steps were preformed at

each UCA location. The Rx antenna was fixed on a roof edge

with a height of around 20 m. To increase the SNR, the Rx

antenna was replaced by a horn antenna with a 30◦ (I will

check) half-power-beamwidth (HPBW). Moreover, its main

(a)

Tx UCA

VNA 

Rx antenna

(b)

Fig. H.3: The layout (a) and a photo (b) of the indoor hall taken during the measure-
ment campaign conducted at Aalborg University. The measurements corresponding
to the 1st receive antenna array position are presented in this paper.

4.4 AAU Data, Hall Scenario
Measurements were conducted in a large hall scenario as illustrated in Fig.H.3(a).
A photo taken during the measurement campaign is also shown in Fig.H.3(b).
The hall had a floor area of 44 × 25 m2 with a height of approximately 10m.
As shown in the picture and the layout sketch, tables, metallic pillars, concrete
pillars, stairs, etc. were in the hall. The VNA measurements were taken with
the ultra-wideband radio-over-fiber channel sounder developed at AAU [31].
Quasi-omnidirectional biconical antennas [32] were used. The receive antenna
was fixed with a height of 1m to the ground while transmit antenna was in-
stalled on a rotator and rotated with 720 uniform steps on a circle with a
radius of 0.54m. In each step, the channel transfer function from 28 GHz to
30 GHz was swept with 1500 samples in the frequency domain. In this paper
we analyse the first of the 19 different locations recorded. For this location,
the transmitter-receiver distance was around 15m in NLOS condition.

4.5 AAU Data, Outdoor Scenario
Outdoor measurements were conducted in an open area to in-between the two
buildings as shown in Fig.H.4. The same channel sounder is used as in the
indoor hall scenario. In this case, the transmitter antenna was rotated with a
radius of 0.25m in 360 uniform steps. In each step, the channel transfer function
from 28 GHz to 30 GHz was swept with 2000 samples. The receive antenna was
fixed on a roof edge with a height of around 20m. To increase the SNR, the
receive antenna was replaced by a horn antenna with half-power-beamwidths
around 30◦ in both azimuth and elevation. Moreover, its main beam was down
tilted to appropriately cover the transmit antenna. Data was collected from 15
transmit transmit antenna locations as indicated in Fig.H.4. The data used in
this paper is from the 7th location which was in LOS condition.
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Fig. H.4: Environment for the outdoor measurement campaign conducted at Aal-
borg University. Measurements from transmit antenna location number 7 are pre-
sented in this paper.

5 Model Comparison
To characterize the raw temporal moments jointly, their marginal distributions
as well as their correlation structure needs to be well represented. We compare
the proposed model against competing model choices for the available data-sets.

5.1 Model Comparison using AIC
We compare the proposed joint model with the model of a multivariate Gaus-
sian distribution. We also include three independent models for the raw tem-
poral moments based on log-normal, Gaussian, and Gamma distributions. We
omit comparison with the multivariate Gamma distributions in [25] as they did
not give useful results when fitted to the raw temporal moments. Model com-
parison is done by computing the Akaike Information Criterion (AIC) value [33]
of the competing models. AIC is a common tool for model selection that es-
timates the quality of different models relative to each other. It compares
models through their likelihoods, but penalises models with a larger number
of parameters κ. One motivation for this penalty comes from Ockham’s ra-
zor, which states that, when comparing models, one should prefer the simplest
model which explains the data well. The criterion is computed as follows

AIC = −2L+ 2κ, (H.11)

where L is the maximized log-likelihood of the data. Given a set of models
fitted by maximum likelihood to the same data, the preferred model is the
one with the lowest AIC value. The reader is referred to [34, Ch. 2] for
a detailed discussion. We also considered the Bayesian Information Criterion
(BIC), which penalises more than AIC for a large number of parameters; see [35]
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Table H.2: Parameter estimates obtained using maximum likelihood estimation.
Each entry corresponds to the estimate for some scalar parameter θ, which corre-
sponds to an element of either the 3-dimensional mean (column) vector µ or the 3×3
dimensional covariance matrix Σ. The number in bracket (δ) is the half-width of
the 95% confidence interval for that parameter, so that the interval takes the form
(θ − δ, θ + δ).

Data set Mean vector µ̂(±δ) Upper triangle of Covariance matrix Σ̂(±δ)

Lund
–39 (4× 10−3) 2.8 (0.3)×10−3 2.5 (0.3)×10−3 1.4 (0.3)×10−3

–57 (4×10−3) 2.6 (0.3)×10−3 2.1 (0.3)×10−3

–74 (6×10−3) 5.3 (0.6)×10−3

Lille
–29 (0.03) 0.19 (0.02) 0.15 (0.02) 0.11 (0.03)
–47 (0.03) 0.14 (0.01) 0.19 (0.03)
–63 (0.06) 0.70 (0.07)

AAU-Industry
–36 (0.31) 2.34 (0.67) 1.36 (0.40) 1.24 (0.38)
–53 (0.18) 0.82 (0.23) 0.77 (0.23)
–70 (0.18) 0.84 (0.24)

AAU-Hall
–39 (9× 10−3) 1.4 (0.14)×10−2 1.2 (0.12)×10−2 6.6 (0.76)×10−3

–56 (7× 10−3) 1.0 (0.11)×10−2 6.2 (0.68)×10−3

–72 (5× 10−3) 4.6 (0.48)×10−3

AAU-Outdoor
–40 (1.2× 10−2) 1.3 (0.20)×10−2 9.9 (0.14)×10−3 5.2 (0.82)×10−3

–56 (9× 10−3) 7.6 (1.1)×10−3 4.2 (0.64)×10−3

–71 (5× 10−3) 2.7 (0.40)×10−3

and [34, Ch. 3]. However, the ordering of the models was found to be the same
for both the criteria, and therefore we omit the BIC values here.

The models are fitted to the five aforementioned data-sets by maximizing
their likelihood. The parameter estimates obtained for the proposed model are
reported in Tab. H.2. The AIC values of the joint fit of the raw temporal mo-
ments are reported in Tab. H.3, with κ = 9 for the multivariate distributions,
and κ = 6 for the independent marginal models. The proposed model comes
out as the better choice for the joint fit for three out of five data-sets, with
the multivariate Gaussian performing better for Lille Data and AAU-Outdoor.
However, the AIC values for both the joint models are close to each other. It
is evident that modeling the random variables independently leads to a signifi-
cantly poorer fit than either of the joint models, no matter which distribution
is chosen. We remark that using more complicated models such as copulas [26]
to model the dependency structure may lead to a better fit, but could be harder
to interpret.

5.2 Log-normal vs. Gaussian Marginals
We now compare the marginal fits of the multivariate log-normal and Gaussian
distributions for modeling the raw temporal moments. To assess model fit, the
quantiles of the data are plotted against the theoretical quantiles of the model
being assessed. If the model is a good fit, then the quantiles of the data and
the theoretical quantiles should be close to one another, and the points will



194 Paper H.

Table H.3: AIC values for different model choices for the raw temporal moments.
Best model is indicated in bold. Note that the joint AIC for the independent models
is the sum of the AIC values of the three marginals.

Data set Multivariate
Log-normal

Multivariate
Gaussian

Independent
Log-normal marginals

Independent
Gaussian marginals

Independent
Gamma marginals

Lund –219636.0 –219573.9 –217787.6 –217750.2 –217777.0
Lille –208357.2 –208665.6 –205657.4 –204816.6 –205589.4

AAU-Industry –29815.61 –28922.53 –29337.3 –28604.83 –29201.75
AAU-Hall –247225.8 –247212.2 –243329.2 –243348.8 –243342.9

AAU-Outdoor –125244.8 –125286.7 –122385.1 –122342.4 –122374.1

hence lie approximately on a straight line. On the other hand, any deviation
from this line might indicate issues with the fit of the model. See e.g. [36, Sec.
10.2] for more details. We show the Q-Q plots for two of the five data-sets,
namely the Lille and the AAU-Outdoor data, in Fig. H.5, as they highlight
the difference between the fits obtained from both the distributions. The Q-Q
plots of AAU-Outdoor data is representative of what we observed for the other
data-sets, therefore we exclude reporting them.

We observe that for AAU-Outdoor data, the marginals are well-modeled by
both the log-normal and the Gaussian distributions. The fit is similar for both
distributions, and it is not apparent which model performs better. As can be
seen in Fig. H.6, the marginals in AAU-Outdoor data are very close to being
symmetric, which means that the Gaussian fits well. However, for the Lille
data, it is evident that the log-normal distribution outperforms the Gaussian
in terms of the marginals. The log-normal is able to model the left tail and
the center of the distribution very well, but sometimes performs poorly for the
right tail. On the other hand, the Gaussian is not able to model either of the
tails. Moreover, the Gaussian assigns non-zero probabilities to quantiles below
zero, which is not the case for the data as temporal moments are non-negative
random variables. Hence, the multivariate log-normal is a better choice. Note
that a good marginal fit does not imply good overall fit in terms of AIC and
vice-versa, as is the case for Lille data. This is simply because the AIC measures
a different property of the model which does not require the marginals to fit
perfectly.

The deviation of the right tail of the data from the fitted marginals is to
be expected due to the low number of such extreme points. Such points are
in-frequent and could potentially arise due to a number of factors such as noise,
interference, measurement conditions, etc. Therefore, we argue that the right
tail is not as important to model perfectly, and thus make no adjustment for
it. However, this should be scrutinized further in applications where this effect
could be important.
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Fig. H.5: Quantiles of the measured raw temporal moments from Lille (left) and
AAU-Outdoor (right) data versus the theoretical quantiles of fitted log-normal and
Gaussian distributions. The theoretical quantile-quantile line passing through the
first and third quantile is shown in red.

6 Model Fit to Raw Temporal Moments
The parameter estimates, obtained by fitting the proposed model to the data-
sets using (H.9) and (H.10), are reported in Tab. H.2. We also compute and
report the 95% confidence intervals for each of the estimates in Tab. H.2, see
Appendix 8 for details. The confidence intervals are very small for the mean
estimates, and an order of magnitude smaller for the covariance estimates. The
fit of the proposed model to the various data-sets is shown in Fig. H.6 where
each row corresponds to a particular data-set. The marginal distributions of
the data and the fitted model is shown on the left, while 2D scatter plots for
all pairs of temporal moments are shown on the right along with contour lines
of the fitted distribution.

Firstly, we observe in Fig. H.6 that the distribution of the raw temporal
moments varies across the different data-sets. This is attributed to the con-
trasting scenarios that the measurements were taken in, along with the use of
different equipment, antennas, and measurement settings. We also observe that
the raw temporal moments are highly correlated random variables. Marginal
distributions for Lille and AAU-Industry data are skewed, while those from
other data-sets are more symmetric. We notice a fanning out of the scatter
plots on the top-right of all the indoor data-sets, which is not present in the
outdoor data. Despite the variability in the data, the proposed model fits the
data well, even the skewed ones. There is a high correlation between the raw
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moments, in particular between m0 and m1, since the basis functions used to
compute them in (23) are not orthogonal. This is captured well by the model.

7 Model Fit to Standardized Moments
We now compare the distribution of the standardized temporal moments ob-
tained from the measurements with those from the proposed model. Mean
delay and rms delay spread are computed from the raw temporal moments us-
ing (H.4), while the received power is equal tom0. Pair-wise scatter plots of P0,
τ̄ , and τrms from the data and the proposed joint model are shown in Fig. H.7.
We also include the samples obtained from independently fitting a log-normal
distribution to the standardized moments from the data-sets. The log-normal
is chosen as it was the best in terms of AIC amongst the independent models
as per Tab. H.3. Here we exclude the AAU-Industry data as the low number of
sample points makes it difficult to make any useful conclusions on the correla-
tion behavior. We observe in Fig. H.7 that the standardized temporal moments
are also dependent random variables, and the proposed model is able to cap-
ture their dependency structure. In contrast, correlation information between
the variables is lost when they are simulated independently.

Sample Pearson correlation coefficients between P0, τ̄ , and τrms from the
data are given in Tab. H.4. For paired samples {(a1, b1), . . . , (am, bm)}, the
sample Pearson correlation coefficient is defined as

ρ̂a,b =
∑m
j=1(aj − ā)(bj − b̄)√∑m

j=1(aj − ā)2
√∑m

j=1(bj − b̄)2
, (H.12)

where ā and b̄ are the sample means. We also compute 95% confidence intervals
for the correlation estimates using the bootstrap method [37, Chapter 6]. The
correlation coefficients obtained from the fitted model, computed from 10,000
samples to get a robust estimate, are also reported in Tab. H.4. Mean delay
and rms delay spread have a positive correlation that varies from 0.53 for
the Lund data to as high as 0.97 for AAU-Outdoor. The received power is
negatively correlated with both τ and τrms. In general, the correlation tends to
increase with the size of the environment, with the outdoor case being highly
correlated. The model is able to replicate the varying correlation between P0
and τrms that is observed in the data, as opposed to having a fixed correlation
coefficient suggested in [11]. Note that the correlation coefficient between τ̄
and τrms for the model fitted to the Lille data-set is not within the bootstrap
interval. This is due to the banana-like shape of their scatter plot which is not
replicated by the model, see Fig. H.7.
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Fig. H.6: Density estimates and scatter plots of raw temporal moments obtained
from the different measurements (shown in black) versus the density and contour
plots of the fitted proposed model (shown in red). Each row corresponds to one
of the data-sets. All the axes are in linear scale. The parameter estimates are in
Tab. H.2.

Table H.4: Sample Pearson correlation coefficients between standardized temporal
moments of measured data. The correlation coefficients for the model is computed
using 10,000 samples of simulated data. The number in parenthesis (ε) is the 95%
bootstrap confidence interval of the correlation estimates computed using 1000 re-
samples, such that the interval is of the form (ρ− ε, ρ+ ε).

Data set ρ̂P0,τ̄ ρ̂P0,τrms ρ̂τ̄ ,τrms

Data Model Data Model Data Model

Lund –0.28 (± 0.06) –0.28 –0.35 (±0.05) –0.36 0.53 (±0.05) 0.52
Lille –0.48 (±0.03) –0.51 –0.20 (±0.05) –0.19 0.89 (±0.02) 0.83

AAU-Hall –0.66 (±0.03) –0.65 –0.87 (±0.02) –0.87 0.70 (±0.03) 0.70
AAU-Outdoor –0.91 (±0.01) –0.92 –0.93 (±0.01) –0.93 0.97 (±0.004) 0.97
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Fig. H.7: Scatter plots of received power, mean delay, and rms delay spread from
data (in black), and from the proposed model (in red). The samples simulated by
independently fitting log-normal marginals to P0, τ̄ , and τrms from the data are in
blue. Number of points simulated is same as in the measurements. The scales of the
corresponding plots are the same.
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8 Conclusion
Joint modeling of received power, mean delay, and rms delay spread provides
more accurate models in a range of scenarios as opposed to independent mod-
eling. The proposed model of the multivariate log-normal distribution seems
to be a reasonable choice for simulating these standardized moments, however
the fit can be improved by using more complex models. The proposed model
is simple, easy to simulate from, and easy to fit to new measurements in both
indoor and outdoor settings using standard estimators. The raw temporal mo-
ments are dependent random variables which should be simulated jointly; as
a result, the same is also true for the standardized temporal moments. The
correlation of these moments changes from scenario to scenario, but can be
inferred efficiently in each case.

In the light of the strong correlation observed in the measurements, assum-
ing independence might lead to significant errors in some applications. Hence,
reporting of the marginal distributions of the standardized moments is insuf-
ficient and a clearer picture can be obtained by considering both their means
and covariances. The correlation between these standardized moments can be
used to validate multipath models instead of just their marginal fits. The cor-
relation should also be accounted for in the analysis and simulation of radio
channels.

The means and covariances of the temporal moments potentially depend
on a number of physical factors. The relation between the means and the
transmitter-receiver distance has been studied for indoor scenarios. However,
the effect of the distance on the covariance matrix is presently unclear. For
multipath models, the covariance matrix is known to depend on the first- and
second-order intensity functions which governs the arrival process. Since both
intensity functions are affected by antenna directivity, the covariance matrix
should also be. Nevertheless, these effects are not yet well-understood and
should be the topic of further studies.
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Appendix: Parameter Inference for the Log-Normal
In this appendix, we recall how to derive the maximum likelihood estimates and
related confidence intervals for a log-normal distribution. Let Y = (Y1, . . . , Yd)
be a multivariate log-normal random variable. We will denote this distribution
LN (µ,Σ), where µ and Σ denote the parameters. Then, X = (X1, . . . , Xd) =
(log(Y1), . . . , log(Yd)) is a multivariate Gaussian random variable with mean
vector µ and covariance matrix Σ. Since the maximum likelihood estimator
is invariant to one-to-one transformations of the data, we can simply take the
logarithm of our data points and compute the maximum likelihood estimate
corresponding to Gaussian data. Given N iid observations {yi}Ni=1, we hence
compute xi = log yi for i = 1, . . . , N , and return the following estimates

µ̂ = 1
N

N∑
i=1

xi, and (H.13)

Σ̂ = 1
N

N∑
i=1

(xi − µ̂) (xi − µ̂)> . (H.14)

Now, let theK free parameters be combined into a single vector θ = (α,β),
where α = (µ1, . . . , µd), and β = (Σ11, . . . ,Σdd). Note that Σij = Σji. The
Fisher information matrix reads

I(α,β) =
[
I(α) 0

0 I(β)

]
(H.15)

where, for 1 ≤ m,n ≤ K, the (m,n) entry of the matrix is

I(α)m,n = ∂µ>

∂αm
Σ−1 ∂µ

∂αn
, 1 ≤ m,n ≤ d (H.16)

I(β)m,n = 1
2tr
(

Σ−1 ∂Σ
∂βm

Σ−1 ∂Σ
∂βn

)
. (H.17)

On further simplification, the entries of the Fisher information matrix become

I(α)m,n = Σ−1
mn, (H.18)

I(β)m,n = 1
2tr
(
Σ−1EmΣ−1En

)
, (H.19)

where Em is a d× d matrix of all zeros except the (i, i) entry corresponding to
βm = Σii which is 1. Note that for βm = Σij , i 6= j, both (i, j) and (j, i) entry
of Em will be 1. Same goes for En. The 95% confidence interval for the mth

parameter of the Gaussian, (θm ± δm) is

θm ±
1.96√
N

√
I−1
m,m

where I−1
m,m is the (m,m) entry of I−1.
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Abstract
Calibrating stochastic radio channel models to new measurement data is chal-
lenging when the likelihood function is intractable. The standard approach to
this problem involves sophisticated algorithms for extraction and clustering of
multipath components, following which, point estimates of the model parame-
ters can be obtained using specialized estimators. We propose a likelihood-free
calibration method using approximate Bayesian computation. The method is
based on the maximum mean discrepancy, which is a notion of distance between
probability distributions. Our method not only by-passes the need to implement
any high-resolution or clustering algorithm, but is also automatic in that it
does not require any additional input or manual pre-processing from the user.
It also has the advantage of returning an entire posterior distribution on the
value of the parameters, rather than a simple point estimate. We evaluate the
performance of the proposed method by fitting two different stochastic channel
models, namely the Saleh-Valenzuela model and the propagation graph model,
to both simulated and measured data. The proposed method is able to estimate
the parameters of both the models accurately in simulations, as well as when
applied to 60 GHz indoor measurement data.

1 Introduction
Stochastic channel models are used to simulate the behavior of the radio chan-
nel in order to test the performance of communication and localization systems.
Often models are flexible enough to be applied to different scenarios, provided
that their parameters can be adjusted accordingly. Adjustment of the model
parameters based on data collected from measurement campaigns is called cal-
ibration (or inference). Calibration is usually challenging since most state-of-
the-art stochastic radio channel models have intractable likelihood functions.
This renders usual inference techniques such as maximum likelihood estimation
or standard Bayesian inference inapplicable.

Instead of solving the whole calibration problem at once, it is wide-spread
practice (e.g. [1–9]) to split the task into intermediate steps as outlined in
Fig. I.1(a). The first step involves resolving the multipath components, i.e.
estimating path parameters including delays, directions, and complex gains.
This task can be carried out using high-resolution algorithms such as MUSIC,
SAGE, and RiMAX, among others, see e.g [10, Ch. 5] for an overview. The
second step is clustering of the extracted multipath components in the case of
cluster-based models. Clustering is either performed manually, as in [2], or us-
ing automated algorithms such as [11–13]. In a final step, the model parameters
are estimated from the extracted and clustered multipath components.

Despite being widely applied, the multi-step approach suffers from a range
of issues, owing to the composite nature of the methodology. In particular,
high-resolution and clustering methods, although very useful in analyzing and
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Fig. I.1: Methodologies for calibration of stochastic radio channel models: (a) State-
of-the-art methodology based on multipath extraction and clustering; (b) proposed
method based on generic summaries (here exemplified by log-temporal moments) and
approximate Bayesian computation (ABC).

understanding the radio channel, are problematic when it comes to model cal-
ibration. These methods require implementation of sophisticated and special-
ized algorithms at each step, which involves a number of heuristic choices and
settings which might be conflicting. An emblematic example is the assumption
of “well separated” paths while extracting multipath components. The high-
resolution methods are prone to estimation artifacts, especially if paths are
not “well separated”. However, this conflicts with the inherent assumption in
the clustering step that multipaths arrive “close” to each other. Consequently,
even though the performance of high-resolution and clustering algorithms are
thoroughly investigated in isolation, the accuracy of the applied multi-step cal-
ibration techniques is unknown. Moreover, the calibration technique needs to
be tailored to the particular model at hand. While attempting to calibrate and
compare different ultra-wideband models using a large database, Greenstein et
al. in [14] noted that “the problem in doing so is that there is no simple, clear
and established method for extracting cluster model parameters from measured
data”. As a result, they were unable to fit the cluster model to their calibration
data.

Calibration methods that by-pass the need to resolve the multipath compo-
nents have been recently proposed. They have been used to calibrate the Turin
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model [1], the Saleh-Valenzuela (S-V) model [2] and the polarized propagation
graph (PG) model [15]. These calibration methods rely either on a Monte Carlo
approximation of the likelihood [16, 17], the method of moments [18, 19], or
a summary-based likelihood-free inference framework [20–23] such as approxi-
mate Bayesian computation (ABC). First developed in the field of population
genetics in 1997, ABC has since become a popular method for calibrating mod-
els with intractable likelihoods in various fields, see [24] for an overview. The
main drawback of the calibration methods [17–19] is their reliance on equations
that explicitly link the moments of the summaries with the model parameters,
or in case of [16], on the model-specific point process. These methods should
therefore be re-derived for each new model. We encounter this to be a non-
trivial task, and it may not even be possible for the more elaborate channel
models. Similar problems exist in [20–22] where a low-dimensional vector of
statistics should be redesigned or trained using an autoencoder [23] for the
channel model at hand, which is not always trivial and may not generalize to
other models. Moreover, summarizing the data leads to information loss that
can hamper the accuracy of the parameter estimates.

The aim of the present contribution is to propose a general method which
can be applied to stochastic channel models of very different mathematical
structure. This will be done without the need for specializing summaries, or
extraction and clustering of multipaths. To achieve this, we follow the proposed
calibration methodology depicted in Fig. I.1(b). First, we map the channel mea-
surements into easily computable log temporal moments. These moments are
then used for calibration in an ABC framework, where we use the maximum
mean discrepancy (MMD) [25] to compare the distribution of simulated and
measured data. The MMD has previously been used for frequentist inference
in [26, 27], and in a Bayesian sense in [28]. Specific ABC methods using kernels
include [29–32], and the MMD has also been used to train generative adversar-
ial networks in [33–35]. These papers have shown MMD to be a powerful way
to represent either data-sets or distributions, and as a result calibrate complex
models. They have acted as inspiration for our work, but our algorithm spe-
cializes the approach to the problem of calibrating stochastic channel models.
Our calibration method is automatic since it can be applied to different models
without the need for further pre- or post- processing. Additionally, the method
is able to account for model misspecification, which occurs when the model is
not able to represent the data for any parameter setting.

The rest of the paper is organized as follows. Section 2 presents the model
calibration problem. Section 3 gives an overview of the MMD, and Section 4 de-
scribes the proposed kernel-based ABC method. We demonstrate the method’s
generality by calibrating the seminal S-V model, which is a clustered multipath
model, and the propagation graph model, which is based on a different princi-
ple, using exactly the same data and procedure. Indeed, no other method able
to do this is available in the open literature. In Section 5, the performance
is evaluated on simulated data and in Section 6 on data from a 60 GHz in-
door measurement campaign. We find that the S-V model is misspecified for
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the considered measurements, and hence fails to replicate its characteristics.
Discussion and concluding remarks are given in Sections 7 and 8, respectively.

2 Stochastic Channel Model Calibration
Consider the transfer function measurement of a linear, time-invariant ra-
dio channel in a single-input, single-output (SISO) setup using a vector net-
work analyzer (VNA). The transfer function is measured at Ns equidistant
frequency points in the bandwidth B, resulting in a frequency separation of
∆f = B/(Ns − 1). The measured complex signal at the nth frequency point,
Yn, is modeled as

Yn = Hn +Wn, n = 0, 1, · · · , Ns − 1, (I.1)

where Hn is the transfer function sampled at the nth frequency and Wn is
the complex measurement noise. The additive noise samples are assumed in-
dependent and identically distributed (iid) at each frequency point, and are
usually modeled as zero-mean circular symmetric complex Gaussian variables
with variance σ2

W . The time-domain signal, y(t), is obtained by taking the
discrete-frequency, continuous-time inverse Fourier transform of Yn as

y(t) = 1
Ns

Ns−1∑
n=0

Yn exp(j2πn∆ft), (I.2)

periodic with a period of tmax = 1/∆f . Multiple realizations of the channel can
be obtained by repeating the measurements Nobs times, yielding an Nobs ×Ns
complex data matrix Y. The data can be thought of as iid realizations from
some unknown distribution, Y, which is the true state of nature.

A stochastic model can be seen as a parametric family of distributions {Pθ}
with a p-dimensional parameter vector θ defined on some Euclidean space1.
In the case of generative models such as the stochastic channel models, it is
straightforward to simulate realizations of Y from the model, even though the
distribution Pθ is unknown. Calibration then amounts to finding the θ for
which the model output fits the observed data Y well, or in other words, to
find the θ such that Pθ is “closest” to Y. Standard calibration techniques
involve the likelihood function of the model given Y. For iid realizations, the
likelihood function, denoted as p(Y|θ), is the product of the probability density
or mass function of Pθ evaluated at each of the data points in Y.

For most stochastic radio channel models, p(Y|θ) is either intractable or
cannot be approximated within reasonable computation time. Intractability

1The restriction to parameters in Rp is only needed in the adjustment method
described in Section 4.2. The remaining part of the method can be used for more
general parameter spaces, e.g. discrete, complex or subsets of Rp. In this case,
the adjustment algorithm should be modified to either accommodate or ignore such
parameters.
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here refers to the inability to numerically evaluate the likelihood function for a
given value of θ. For intractable likelihood, the posterior, p(θ|Y), also becomes
intractable as it is proportional to p(Y|θ)p(θ), where p(θ) is the prior assumed
on the parameters. An intractable likelihood prevents maximum likelihood
estimation of θ as well as Bayesian inference via sampling of the posterior.
This is the case for stochastic multipath models, such as the Turin and the S-V
model, which were constructed with the ease of simulation in mind.

Since stochastic channel models are easy to simulate from given an arbitrary
θ value, likelihood-free inference is possible by comparing simulated data-sets to
the observed data. Therefore, we need a method to compute distances between
the data-sets which is challenging as the data-sets are high-dimensional, and
may have possibly different sizes. We tackle this problem using distance metrics
based on kernels, in particular the maximum mean discrepancy (MMD).

3 The Maximum Mean Discrepancy between
Probability Distributions

We now introduce the MMD which is a notion of distance between arbitrary
probability distributions P and Q or data-sets. We aim to use MMD as a sim-
ilarity measure within an ABC framework to compare simulated and observed
data-sets. Note that we can identify any data-set {x1, . . . ,xn} to an empirical
distribution 1

n

∑n
i=1 δxi where δxi denotes a distribution with mass one at xi

and 0 otherwise. We restrict our discussion to distributions defined on Rd.
This section will provide further details on constructing the MMD [25, 36].

3.1 Kernels and The MaximumMean Discrepancy (MMD)
The MMD consists of first mapping the distributions to a function space Hk,
then using the distance in that space to compare the mapped distributions. See
Fig. I.2 for an illustration. The mapping enables the use of distance defined on
Hk.

The spaces of functions to which we will map distributions are called repro-
ducing kernel Hilbert space (RKHS). We denote the RKHS withHk, and 〈·, ·〉Hk
and ‖ · ‖Hk for its inner product and norm, respectively. Associated to each
RKHS, there exists a symmetric and positive definite function k : Rd×Rd → R
called a reproducing kernel [37]. This function satisfies two properties: (i) for
all f ∈ Hk, f(x) = 〈f, k(x, ·)〉Hk (called the reproducing property), and (ii)
k(x, ·) ∈ Hk for all x ∈ Rd.

It is straightforward to map probability distribution P to Hk through what
is called a kernel mean embedding defined as

µP(·) = EX∼P[k(X, ·)] =
∫
Rd
k(x, ·)P(dx), (I.3)
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Fig. I.2: Given a kernel k, the distributions P and Q are mapped to their kernel
mean embeddings µP and µQ using Equation I.3. The MMD is obtained by computing
the distance between µP and µQ in the function space Hk, as expressed in Equation
I.5. This figure is inspired by [36].

under mild regularity conditions satisfied for all kernels in this paper, see [25,
Lemma 3]. Here, E[·] denotes the expectation with respect to the random
variable and probability distribution given in subscript. Note that, µP ∈
Hk. In the case where the probability distribution P has a probability den-
sity function p, the integral in (I.3) can be written in the more wide-spread
form

∫
Rd k(x, ·)p(x)dx. Alternatively, when P is an empirical distribution

corresponding to a data-set, then the kernel mean embedding is given by
1
NX

∑NX
i=1 k(xi,x).

The MMD between probability distributions P and Q embedded in Hk is
defined as the supremum taken over the mean of all functions in the unit ball
in an RKHS, i.e. [36]

MMDk[P,Q] = sup
‖f‖Hk≤1

|EX∼P[f(X)]− EX∼Q[f(X)]| . (I.4)

As the name suggests, the MMD is the maximum distance between means of
(unit norm) functions computed with respect to the distributions P and Q. As
shown in [25], the MMD in (I.4) can equivalently be expressed as

MMDk[P,Q] = ‖EX∼P[k(X, ·)]− EY∼Q[k(Y, ·)]‖Hk (I.5)
= ‖µP − µQ‖Hk

This gives an alternative interpretation of the MMD as the distance between
mean embeddings in Hk as Fig. I.2 illustrates.

A third expression for the MMD appears upon expanding the squared norm
in (I.5) and using the reproducing property of k which yields an expression in
terms of k as

MMD2
k[P,Q] = EX,Y∼P[k(X,Y )]

− 2EX∼P,Y∼Q[k(X,Y )] + EX,Y∼Q[k(X,Y )]. (I.6)

The latter expression is computationally more appealing than the two former as
it only calls for computation of expectations of the kernel. Thus, computation
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of the supremum in (I.4) is not required to compute the MMD. As discussed
later in Section 3.3, the expression (I.6) forms the basis for estimation of the
MMD from data.

3.2 Selecting a Kernel
The choice of kernel defines the RKHS and thus the properties of its distance,
the MMD. In addition to being reproducing, it is a great advantage if the
kernel is characteristic [38, 39]. This implies that the kernel mean embedding
is an injective mapping, meaning that each distribution is mapped to a unique
function. Thus, in the case of characteristic kernels, the kernel mean embedding
captures all the information about the distribution. As a result, MMDk[P,Q] =
‖µP − µQ‖Hk = 0 if and only if P = Q. In this case, the MMD is capable of
comparing infinitely many moments of two probability distributions without
ever having to compute these moments explicitly. Consequently, the MMD is
able to distinguish probability distributions even when these coincide in finite
number of moments. This gives a great advantage over methods based on
comparison of finitely many moments which are potentially blind to differences
between distributions.

A very popular characteristic reproducing kernel is the squared-exponential
(or Gaussian) kernel, defined as

kSE(x,x′) = exp
(
−‖x− x′‖22

l2

)
, (I.7)

for x,x′ ∈ Rd. Here, ‖ · ‖2 is the Euclidean norm and l > 0 is a parameter
called the lengthscale of the kernel. The norm inside the exponent can be
chosen based on the specific data and application. For additional examples of
characteristic kernels, see [38, 39].

We now give a simple example comparing Gaussian distributions, in which
case the MMD can be derived analytically.

Example

Let P = N (µ1, σ
2
1) and Q = N (µ2, σ

2
2) be two Gaussian distributions on R.

For the squared-exponential kernel in (I.7), the MMD takes the form (see [40,
Appendix C]):

MMD2
kSE

[P,Q] = l

l + 2
√

2σ1
+ l

l + 2
√

2σ2

− 2l
l +
√

2σ1 +
√

2σ2
exp

(
− (µ1 − µ2)2

l2 + 2σ2
1 + 2σ2

2

)
. (I.8)

It is apparent from (I.8) that the MMD is zero if and only if µ1 = µ2 and
σ1 = σ2 (as guaranteed by using a characteristic kernel). Fig. I.3 illustrates
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how the MMD increases as the parameters of these distributions increasingly
differ. Varying the lengthscale, l, of the kernel scales the overall MMD curve,
but does not affect the point at which the MMD is minimised. The overall
behaviour of the curves do not vary significantly on changing the lengthscale
by an order of the magnitude.

3.3 Maximum Mean Discrepancy Between Data-sets
Unlike in the previous example, it is, in most realistic cases, not feasible to
analytically calculate (I.6). Moreover, numerical integration is problematic, as
the dimension of X and Y may be large and P or Q unavailable. Fortunately, it
is straightforward to estimate the MMD if it is an empirical distribution, such
as in the case of data-sets.

Imagine that we do not have access to P and Q, but that we instead have
two data-sets consisting of realisations from these distributions. More precisely,
suppose we have access to X = {x1, . . . ,xNX}

iid∼ P and Y = {y1, . . . ,yNY }
iid∼

Q. Then, an unbiased empirical estimate of MMD2
k[P,Q] can be obtained as [25]

M̂MD
2
k[X,Y] =

∑
i 6=i′ k(xi,xi′)
NX(NX − 1)

−
2
∑NY
j=1

∑NX
i=1 k(xi,yj)

NYNX
+
∑
j 6=j′ k(yj ,yj′)
NY (NY − 1) . (I.9)

Note that NX and NY are permitted to differ, i.e. the two data-sets are not
limited to be of the same size. To use this estimator with the kernel in (I.7),
the lengthscale should be specified. Following [25], the lengthscale can be set
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Fig. I.4: Diagram depicting steps in the proposed kernel-based ABC algorithm with
regression adjustment described in Alg. 12. The block “Rejection based on MMD”
corresponds to Sec. 4.1, “Regression adjustment” corresponds to Sec. 4.2, and “Sample
from importance distribution” corresponds to Sec. 4.3. Here the term “Data” can be
either obtained from physical measurements or as in Sec. 5 by simulation.

based on the data-set X using the median heuristic

l =
√

med/2, (I.10)

where med denotes the median of the set of squared two-norm distances ‖xi −
xj‖22 for all pairs of distinct data points in X. This setting of l scales the kernel
with the spread of the data, and is robust to outliers.

Concentration bounds for MMD, such as [26, Lemma 1] or [36, Theorem
3.4], imply that with high probability,∣∣∣∣M̂MD

2
k[X,Y]−MMD2

k[P,Q]
∣∣∣∣ ≤ C ( 1

NX
+ 1
NY

)
, (I.11)

for some C > 0. This tells us that the accuracy of the estimate converges
linearly in both NX and NY . The computational cost of computing this es-
timate is O(N2

X + N2
Y ) due to the need to compute double sums in both NX

and NY . In order to best balance computational cost and accuracy, NX and
NY should be chosen to be commensurate. These two results on accuracy and
computational cost can be used to determine how to make default choices for
the parameters of our ABC algorithm.

3.4 Kernels for Radio Channel Measurements
In order to use the MMD for calibrating stochastic radio channel models, we
need a kernel defined on the space of transfer function measurements: kY :
Y ×Y → R. Given such a kernel, we could then estimate the MMD between a
measured data-set Y and a data-set Ysim simulated from the model.

A significant challenge with this approach is that, in the context of stochas-
tic radio channel models, Y is usually a high-dimensional space. This is espe-
cially the case for large bandwidth measurements where Ns can be in the order
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of thousands. Such high-dimensional problems are challenging for kernel meth-
ods based on default kernels such as the squared-exponential kernel [41]. These
kernels indeed suffer from the curse-of-dimensionality, a phenomenon implying
that the distance between points increases exponentially with the dimension of
the space.

To tackle this issue, there exist kernels specialised to certain time-series or
functional data models in the literature [42–47]. These use specific properties
of the type of data in order to avoid the curse-of-dimensionality. In this paper,
we contribute to this literature and construct a kernel specifically tailored to
transfer function measurements. We base the kernel on the temporal moments
of y(t), defined as

m(i) =
∫ tmax

0
ti|y(t)|2dt, i = 0, 1, 2, . . . , I. (I.12)

The integral in (I.12) is easy to compute numerically. The temporal moments
can be seen as an expansion of |y(t)|2 into the basis of monomials. Since the
monomials form a complete basis for finite energy time-limited signals [48], no
information is lost compared to |y(t)|2 if I →∞. Referring to [49, 50], the first
few moments are well modeled by a log-normal distribution. Thus, taking the
entry-wise logarithm z(i) = lnm(0) brings the moments to the same scale and
gives an approximately Gaussian vector z = [z(0), . . . , z(I−1)]. Multiple channel
realizations yield Z = (z1, z2, . . . , zNobs).

Define the mapping AI : Y → RI from Y to the I-dimensional space of log
temporal moments. We propose to construct a kernel kY for transfer function
data as

kY (y,y′) := kSE (AI(y), AI(y′)) , for all y,y′ ∈ Y, (I.13)

where kSE denotes the squared-exponential kernel in dimension I. We note that
this is the composition of a reproducing kernel and a map, and thus according
to [51, Lemma 4.3] is a reproducing kernel on Y. We also note that the MMD
with kernel kY computed on the original data can be obtained through the
MMD with kernel kSE on the log temporal moments. Similarly, the empirical
estimators of these quantities are also identical, i.e.

M̂MD
2
kY [Y,Ysim] = M̂MD

2
kSE

[Z,X], (I.14)

where X is the simulated log temporal moments data-set.
In practice, we will have to limit ourselves to a finite I for computational

reasons. This, however, is not a problem since we can expect the signal energy
to be concentrated on the lowest moments. In fact, taking I to be small also
allows us to by-pass issues with the curse-of-dimensionality.

From a theoretical viewpoint, since the squared-exponential kernel is char-
acteristic, we should be able to recover any distribution on the space of log
temporal moments. However, since the mapping AI leads to loss of informa-
tion when I is finite, kY will not be characteristic on Y, and we may not be
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able to uniquely identify the distribution on |y(t)|2. This however is not an
issue for the considered channel models, as will be shown in Section 5.

4 Proposed Kernel-based Approximate Bayesian
Computation Method

ABC methods rely on simulation from the model to approximate the posterior,
and can be used to estimate θ such that the model fits to the observed data Y.
Let ρ(·, ·) be some notion of distance between data-sets. The basic form of ABC,
called rejection ABC, proceeds by samplingM parameter values from p(θ) and
generating the corresponding simulated data Ysim from the model. The values
of θ for which ρ(Y,Ysim) is less than some pre-defined threshold ε, form a sam-
ple from the approximate posterior distribution, p̃(θ|Y) = p(θ|ρ(Y,Ysim) < ε).
The tolerance threshold impacts the degree of approximation in ABC meth-
ods. Setting ε = 0 would lead to exact Bayesian inference, however, achieving
equality for continuous-valued data is not possible. Hence, ε should be small
but non-zero in order to be computationally feasible.

We now propose an ABC method based on the MMD as the distance metric
to calibrate stochastic radio channel models. We employ the Population Monte
Carlo (PMC) ABC method [52] to iteratively refine our approximation of the
ABC posterior. At the end of each iteration, we perform local-linear regression
adjustment [53] to further improve the posterior approximation. The complete
algorithm is depicted in Fig. I.4 and outlined in Alg. 12. Individual steps of
this PMC-ABC algorithm will be highlighted in Sec. 4.1 to 4.3. In Sec. 4.4, we
describe how to detect and account for model misspecification in the algorithm.

4.1 Rejection based on MMD
The proposed ABC method uses the MMD between data-sets as a rejection
criteria. Instead of setting the threshold ε in terms of the distance, we specify
the proportion of accepted samples, i.e. ε = Mε/M where Mε is the number
of parameter samples accepted out of M . This is particularly convenient as
it avoids the need to manually find a threshold, which may lead to unknown
run-time of the algorithm.

The method computes M̂MD
2
kSE

[X,Z], where X = (x1, . . . ,xNsim) is the
simulated log temporal moments data-set, as this is identical to estimating the
MMD between Y and Ysim (see Eq. I.14). First, M independent parameter
samples Θ = (θ1, . . . ,θM ) are drawn from the prior p(θ). For each θi, the log
temporal moments data-set, Xi ∼ Pθi , is simulated. The simulated data-sets
are gathered in X = (X1, . . . ,XM ). The M̂MD

2
kSE

[Xi,Z] is computed for each i
using (I.9), setting the lengthscale of kSE as per (I.10). The parameter samples
resulting in the Mε smallest MMD values are then accepted.
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In principle, the MMD could be computed between the samples of the
temporal moments instead of their logarithm. However, the magnitudes of the
different temporal moments may vary strongly and using a single lengthscale
may lead to poor performance. Using a log transformation helps mitigate this
issue. Alternatively, the lengthscale should be defined for each dimension of θ.

4.2 Regression Adjustment
As proposed in [53], it is possible improve the posterior approximation by
adjusting the accepted samples using a model of the relationship between a
low-dimensional vector of statistics and the parameter vector. Let s be a vector
of summary statistics of X such that s = S(X) for a function S(·). Similarly,
the observed summary statistics are denoted sobs = S(Z). We begin by fitting
a function, g, between the accepted parameters Θ∗ = (θ∗1, . . . ,θ

∗
Mε

) and the
corresponding statistics S∗ = (s1, . . . , sMε

) as [24, Ch. 3]

θi = g(si) + ε, i = 1, . . . ,Mε, (I.15)
where g(s) is the conditional expectation of θ given s, and ε is the residual.
Here, θ should belong to a subset of Rp. Considering that the log of the
temporal moments are well modeled by a Gaussian distribution, we take sobs
to be the vector consisting of the sample means and sample covariances of the
elements of z, similar to [22]. In total, sobs consists of (I2 + 3I)/2 elements for
I temporal moments. The statistics s is computed in the same manner for X.
Note that s and sobs are normalized by an estimate of their median absolute
deviation to account for the difference in magnitude of the statistics. In case
the prior distributions are bounded, a logit transformation is applied to the
parameters before the adjustment.

For simplicity reasons, we assume g to be linear as in [53] and adjust the
accepted parameters as

θ̃i = θ∗i − (si − sobs)> β̂, i = 1, . . . ,Mε, (I.16)

where β̂ is the solution to the weighted least-squares problem

arg min
α,β

Mε∑
i=1

[
θ∗i −α− (si − sobs)> β

]2
W(M̂MD

2
kSE

[Xi,Z]
). (I.17)

The weighting function W applies weights to each θi based on the estimated
MMD value. This guarantees that parameters which yield simulated log mo-
ments “closer to” Z are weighted more heavily. We take W to be the Epanech-
nikov function, W(δ) = 1 − (δ/δmax)2 for |δ| ≤ δmax and zero otherwise, as
proposed in [53]. Here, δmax is the maximum estimated MMD associated to
the accepted parameters. Note that choosing a constant regression function,
i.e. β = 0, and assigning equal weights to all θi’s results in the basic rejec-
tion ABC algorithm. The regression adjustment therefore gives the adjusted
parameter values Θ̃ = (θ̃1, . . . , θ̃Mε

).



4. Proposed Kernel-based Approximate Bayesian Computation Method 219

Algorithm 11 ABC with MMD and Regression Adjustment
Input: Parameter values Θ, corresponding simulated data X , observed Z &
number of accepted samples Mε.

Compute M̂MD
2
kSE

(Xi,Z) for all data-sets Xi ∈ X using I.9.
Accept theMε parameters with the smallest MMD distance and denote these
Θ∗ = (θ∗1, . . . ,θ

∗
Mε

).
Compute S∗ and sobs = S(Z), then solve the optimisation problem in (I.17)
with Θ∗, S∗, and sobs to get β̂.
Adjust Θ∗ using (I.16) to obtain Θ̃.

Output: Adjusted samples Θ̃ from the Rejection-ABC posterior.

4.3 Importance Sampling using PMC
As a means to explore the posterior distribution over the parameter space
efficiently, we employ a sequential Monte Carlo technique called PMC [20, 22,
52]. In PMC, the current parameter values Θ̃ are used to generate a new
set of parameters for the next iteration of the algorithm through importance
sampling. This is a two-step procedure: (1) sample from the current parameters
based on their importance weights, and (2) perturb the sampled parameter
values using a proposal density.

The set of parameters in the initial iteration, Θ̃(1) = (θ̃(1)
1 , . . . , θ̃

(1)
Mε

), are
assigned equal weights. The next set of parameters is obtained by drawing M
values from Θ̃(1) and perturbing these according to a probability distribution,
called proposal. For simplicity, we perturb independently in each dimension
using a Gaussian distribution, and reject values outside the prior range. Thus,
the proposal reads

ϕ(θ; θ̃,Σ) = 1(θ ∈ R)e− 1
2 (θ−θ̃)>Σ−1(θ−θ̃) (I.18)

where 1 is an indicator function, R ⊂ Rp is the prior range, and Σ is a
diagonal matrix with variances σ2

j > 0 corresponding to parameter θj along the
diagonal. We set the diagonal elements of Σ to twice the empirical variance of
the adjusted parameter samples. This is denoted as Σ = 2V̂ar(Θ̃).

The set of M parameter values at iteration t, Θ(t), is then used to simulate
X (t) from the model for MMD computation and regression adjustment (i.e.
Alg. 11). In subsequent iterations, weights are assigned as

w
(t)
j ∝ p

(
θ

(t)
j

)
/

Mε∑
i=1

w
(t−1)
i ϕ

(
θ

(t)
j ; θ̃(t−1)

i ,Σ(t−1)
)
, (I.19)

j = 1, . . . ,Mε. The adjusted parameter values after iteration T are taken as
samples from the approximate posterior distribution. Point estimates of θ,
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Algorithm 12 PMC-ABC with MMD
Input: Prior p(θ), model Pθ, observed data Z, Mε, M and T .

Initialize t = 1, draw Θ(1) iid∼ p(θ) and simulate X (1) using the parameters in
Θ(1).
Apply Algorithm 11 on {X (1),Θ(1)} to obtain Θ̃(1).
Set w(1)

j = 1 for j = 1, . . . ,Mε, and set Σ(1) = 2V̂ar
(
Θ̃(1)).

for t = 2, . . . , T do
Compute qj = w

(t−1)
j /

∑Mε

i=1 w
(t−1)
i for j = 1, . . . ,Mε.

for i = 1, . . . ,M do
Sample θ∗i from Θ̃(t−1) s.t. θ̃(t−1)

j is selected with prob qj .
Generate θ(t)

i ∼ ϕ
(
·;θ∗i ,Σ(t−1)).

Simulate X(t)
i from the model with parameter θ(t)

i .
end for
Apply Algorithm 11 on {X (t),Θ(t)} to obtain Θ̃(t).
Set w(t)

j using (I.19) for j = 1, . . . ,Mε.
Set Σ(t) = 2V̂ar

(
Θ̃(t)).

end for
Output: Samples

(
θ̃

(T )
1 , . . . , θ̃

(T )
Mε

)
from the PMC-ABC posterior.

such as the approximate posterior mean,

θ̂
(T )

= 1
Mε

Mε∑
i=1

θ̃
(T )
i , (I.20)

are straightforward to compute from the samples.

4.4 Handling Model Misspecification
We have now completed the description of Alg. 12. However, the framework
of ABC relies on the implicit assumption that there exist parameter values
in the prior support that yield simulated data “close” to the measured data.
This assumption may not always hold if the model parameters cannot be set
in any way to reproduce the data well. In this case, we say that the model is
misspecified for the data. Misspecification can be detected and accounted for
in the algorithm as explained in this subsection.

Consider a univariate parameter θ in the range [θmin, θmax] resulting in a
univariate statistic s in [smin, smax] simulated from the model. If the observed
statistic sobs /∈ [smin, smax], then the model is likely to be misspecified. This
is a challenge since under model misspecification, the local-linear regression
adjustment has been shown to concentrate posterior mass on a completely dif-
ferent value than the rejection ABC [54]. In fact for parameters with bounded
support, the regression adjustment moves the parameter samples outside the
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Fig. I.5: Local linear regression adjustment of parameter θ inspired from [55]. First,
the regression model is fitted based on accepted parameter and statistic values. Then,
the parameters are adjusted based on the fitted model, which can move them outside
the prior range if (si − sobs) is large.

prior range as illustrated in Fig. I.5. Hence, if sobs lies outside the range of
statistics that the model can simulate, then there is no guarantee that the
adjusted samples of θ will lie inside the prior range.

We check for model misspecification by observing whether each element of
sobs lies within the range of corresponding statistics simulated from the model
using Θ(1). If any element of sobs lies outside the range of values simulated
from the model, then the model is deemed misspecified. In such a case, we
replace sobs by an alternative term, s̆obs, computed from the model instead of
the data using the parameter

θ̆ = arg max
θ

f(θ; Θ∗), (I.21)

where f(θ; Θ∗) is the kernel density estimate computed from the samples Θ∗,
and θ̆ is the parameter corresponding to the mode of f(θ; Θ∗). Another choice
for θ̆ could be the posterior mean of rejection ABC [54]. However, we found
the mean estimate to be unstable, especially in the initial iterations of the
algorithm. Hence, in case of model misspecification, we set sobs = s̆obs in each
iteration of the PMC-ABC algorithm, thus ensuring that the adjustment does
not lead to parameter samples outside the prior range.

5 Simulation Experiments
We test the performance of the proposed calibration method on two different
channel models, namely the Saleh-Valenzuela (S-V) and the propagation graph
(PG) model. We chose models which differ significantly in their mathematical
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Fig. I.6: Boxplots of the estimated MMD2 between Xtrue (Nobs = 1000) and X′ as
a function of Nsim computed by repeating the experiment 100 times for each value of
Nsim. X′ is generated from θ′ = [2 × 10−8, 6 × 107, 108, 2 × 10−8, 10−9, 5 × 10−10]>
and Xtrue from θtrue = [5 × 10−8, 2 × 107, 109, 10−8, 2 × 10−9, 10−9]>. The dashed
green line is a corresponds to the value of the MMD2 being approximated. Since this
value is not available in closed-form, it is approximated by using Nsim = 104.

structure to highlight the generality of our approach. We first study in depth
the advantages and drawbacks of our algorithm on simulated data. Then,
in Section 6, we calibrate these models to data from an indoor measurement
campaign [56].

For ease of comparison, we use the same measurement settings as in [56]
for both simulations and measurements, i.e. B = 4 GHz, Ns = 801, and
tmax = 200 ns. We map the channel measurements to the first I = 4 tempo-
ral moments. In each iteration of the ABC algorithm, M = 2000 parameter
samples are generated, out of which Mε = 100 are accepted to estimate the
posterior distribution.

5.1 Application to the Saleh-Valenzuela model
The seminal S-V model [2] is widely used as it is easy to simulate from, but is
notoriously difficult to calibrate due to its structure. Even though the model
can be analyzed using the theory of spatial point processes [57, 58] and mo-
ments derived [59], its likelihood function is unavailable. Recent discussions
of the physical interpretation of the S-V model, also outlining some difficul-
ties with the model calibration, is given in [60–62]. These difficulties have
inspired the use of many different heuristic calibration methods, as outlined in
the introduction.

In the S-V model, the multipath components are assumed to arrive in clus-
ters. The arrival time of the clusters and that of the rays within the clusters
are modeled as one-dimensional homogeneous Poisson point processes with ar-
rival rates Λ and λ, respectively. The gains of the multipath components are
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Fig. I.7: Estimated MMD2 values plotted against parameters of the S-V model.
The parameters are uniformly sampled 200 times from the prior range one at a time,
keeping the others fixed to the true values denoted by the dark green lines. See
Tab. I.1 for the prior ranges.

modeled as iid zero-mean complex Gaussian random variables with conditional
variance that depends on three parameters; the average power of the first ar-
riving multipath component Q, and the cluster and ray power decay constants
Γ, γ, respectively. We refer the readers to [2] and [57] for a detailed descrip-
tion of the model. Including the noise variance, the parameter vector becomes
θ = [Q,Λ, λ,Γ, γ, σ2

W ]>.
We begin by finding a reasonable value of Nsim. To that end, we generate

pseudo-observed log moments, Xtrue, with Nobs = 1000 realizations from the
model by setting θ to a “true” value. Using another value of the parameter
vector, say θ′, we simulate X′ from the model with varying Nsim and compute
the estimated MMD between X′ and Xtrue. This process is repeated 100 times
to create error bars as shown in Fig. I.6. Although the MMD estimate gets
more accurate as Nsim increases, the improvement however is small. Choosing
a higher Nsim improves the MMD estimate, but increases the run-time of the of
the algorithm significantly (since the computational cost is quadratic in Nsim,
and simulating from the model can also be slow). Therefore, we set Nsim = 100
as a reasonable compromise considering the trade-off between accuracy and
computational cost.

We first verify that the MMD computed from the temporal moments reacts
to changes in the S-V model parameters. To that end, we generate simulated
data-sets by varying one parameter uniformly in the prior support while keeping
the others fixed to their true value. As can be seen from Fig. I.7, the estimated
MMD values increase as each of the parameters move away from their true
value, and the minimum is (approximately) achieved when both the data-sets
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Table I.1: Parameter estimates obtained for measured data. The standard deviation
of the approximate posterior samples is given in parenthesis.

θ Prior range Estimate (std. deviation)
S-
V

m
od

el
Q [10−9, 10−7] 4.7× 10−8 (4.6× 10−9)
Λ [5× 106, 108] 8.6× 107 (9.8× 106)
λ [5× 10−9, 3× 109] 1.5× 108 (4.2× 107)
Γ [5× 10−9, 5× 10−8] 8.2× 10−9 (2.7× 10−10)
γ [5× 10−10, 5× 10−9] 4.4× 10−9 (4.7× 10−10)
σ2
W [2× 10−10, 2× 10−9] 3.5× 10−10 (2.5× 10−11)

PG
m
od

el g [0,1] 0.50 (0.019)
Nscat [5,35] 18 (1.73)
Pvis [0,1] 0.99 (7.9× 10−4)
σ2
W [2× 10−10, 2× 10−9] 4.4× 10−10 (4.3× 10−12)

are generated from approximately the same parameters. The MMD reacts to
changes in all the parameters, albeit more for some than others, as can be
seen from the different scales of the y-axis. We therefore conclude that the
distribution of the first four log temporal moments is informative about the
S-V model parameters.

We now use the proposed method to calibrate the S-V model using Xtrue.
We assume uninformative (flat) priors in the range given in Tab. I.1 for all
the parameters to ensure that their marginal posteriors are unaffected by any
prior beliefs. The prior ranges were set according to the measurement settings
as done in [20]. The plots indicating convergence of the algorithm and the
marginal posterior distributions for T = 10 iterations are shown in Fig. I.8.
The approximate posterior samples concentrate around the true value for all the
parameters. The algorithm converges rather quickly and the posteriors taper
as the iterations proceed. In principle, the iterations could be stopped after
four or five iterations, but we let it run till T = 10 for clarity. The algorithm
gives a reasonable estimate for the parameters even in the first iteration. The
proposed method is able to estimate Λ accurately as well, unlike in [20] where
some post-processing was required to estimate Λ.

5.2 Application to the Propagation Graph model
As our second example, we demonstrate the performance of our proposed
method on the PG model. The PG model was first introduced in [63], and
since then has been applied to a wide range of scenarios in [64–67]. Recently,
it has been extended to account for polarization in [15, 68, 69]. Although the
model is easy to simulate from, its likelihood function is unknown. A method
of moments based estimator was applied to calibrate the model in [15], but
the moments equations were based on approximation and it required manually
fixing one of the parameters.

The PG model [63] represents the radio channel as a directed graph with
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Fig. I.8: Violin plots of ABC posterior samples of S-V model parameters as a function
of PMC iterations. Note that a violin plot is similar to a box plot with the addition
of a rotated kernel density plot on each side. The dark green lines denote the true
parameter values θtrue = [5× 10−8, 2× 107, 109, 10−8, 2× 10−9, 10−9]>.
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Fig. I.9: Averaged power delay profiles simulated from the PG model for different
SNR levels.

the transmitters, receivers and scatterers as vertices. Edges model the wave
propagation between the vertices. Edges are defined randomly depending on
the probability of visibility, Pvis. Other parameters of the model include the
number of scatterers, Nscat, and the reflection gain, g, resulting in the param-
eter vector θ = [g,Nscat, Pvis, σ

2
W ]>. Note that Nscat is assumed to be real-

valued during the regression adjustment, following which, its adjusted samples
are rounded off to the nearest integer. We used the antenna positions and
room geometry for the model according to the measurement conditions given
in [56]. Hence, Nobs = Nsim = 625 for the PG model. For each call of the
model, the scatterer positions are drawn uniformly across the room, and all
625 realizations are generated based on those positions.

We again use uniform priors for the parameters (see Tab. I.1) and apply
T = 10 iterations of the proposed method to calibrate the PG model to the
pseudo-observed data-set generated from θtrue. To prevent biased results due to
a particular configuration of the scatterers, we generate the pseudo-observed
data by combining data from four different calls of the model using θtrue.
From Fig. I.11, we observe that the algorithm converges very quickly, and gives
posteriors which are highly concentrated around the true value for Pvis, Nscat,
and σ2

W . The approximate posterior for g starts off very wide and then gets
narrower as the iterations proceed. The method is therefore able to accurately
calibrate the PG model.
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To asses how the performance of the proposed algorithm is affected by the
presence of noise, we now repeat this simulation experiment for different noise
levels. We fix g = 0.6, Pvis = 0.5, Nscat = 15 and vary σ2

W from 10−10 to 10−6.
The signal-to-noise ratio (SNR), is defined as

SNR = 10 log10(m̄0B/σ
2
W ) [dB], (I.22)

where m̄0 is the sample mean of of the zeroth temporal moment computed by
setting σ2

W = 0 in the PG model. The resulting averaged power delay profile
(APDP) is shown in Fig. I.9. We run T = 10 iterations of the algorithm for each
of the SNR values. The prior for σ2

W is adjusted according to the true value in
each run of the algorithm. The violin plots of the approximate posterior after
the tenth iteration in each case is shown in Fig. I.10.

We observe that the noise variance σ2
W is estimated extremely accurately at

each SNR level. The estimation accuracy for Pvis and Nscat seems to suffer only
at the lowest SNR level. Reducing the SNR impacts the estimation accuracy
of g the most, with its approximate posterior converging to the prior as SNR
decreases. This is expected as the higher the noise variance, the less visible the
slope of the power delay profile which is determined by g. In conclusion, the
algorithm performs well at SNR values encountered in measurements.

6 Application to Measured Data
We now attempt to fit both the S-V and the PGmodels to millimetre-wave radio
channel measurements obtained from [56]. The measurements of the channel
transfer function were performed in the bandwidth 58 GHz to 62 GHz with a
VNA, using Ns = 801 equally spaced frequency points. The bandwidth of B =
4 GHz means the frequency separation was ∆f = 5 MHz and tmax = 200 ns. We
use measurements taken in a small conference room of dimension 3×4×3 m3 in a
non-line-of-sight scenario. At both transmitter and receiver sides, 5×5 antenna
arrays were used. Although the antenna elements used in the measurement
were dual polarized, we focus on the vertical-vertical polarization since both
the models are uni-polarized. This gives Nobs = 5 × 5 × 5 × 5 = 625. We
keep the settings M = 2000 and Mε = 100 of the algorithm same as in the
simulation experiments.

6.1 Calibrating the Saleh-Valenzuela model
Upon applying Alg. 12 to the measured data, regression adjustment yielded
parameter samples outside the prior range. This indicated that the model is
misspecified. That is indeed evident from Fig. I.12 where we plot elements
of the vector s, namely the mean and variance of z0 and z1, obtained from
the measurements and the S-V model. The simulated summaries correspond
to 2000 parameter values drawn from the prior. We observe that varying the
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Fig. I.10: Violin plots of ABC posterior samples of PG model parameters after
T = 10 iterations for different SNR levels. The APDP corresponding to each SNR is
shown in Fig. I.9.

parameters of the S-V model in the prior range generated mean values that
overlap the mean value from the measurements. However, the variance values
from the S-V model does not capture the value observed in the measurements.
That is, there exists no such θ in the prior range that leads to s “close” to
sobs in terms of the variance of the temporal moments. Hence, the model is
misspecified for this data and so we obtain sobs from the model as per Sec. 4.4.

The posteriors obtained from the measured data are shown in Fig. I.13 for
T = 15 iterations. The marginal approximate posteriors for λ, Γ, and σ2

W are
highly concentrated. Posteriors for Γ and σ2

W appear to converge from the
second iteration itself, indicating that these parameters affect the MMD the
most. The posterior for λ becomes narrow and converges after the first few
iterations. The posteriors for Q, Λ and γ take around eight or nine iterations
to converge to a different location in the prior range than where they began
from, unlike the simulation experiment. This is potentially due to the model
being misspecified for the data, and so parameters that affect the distribution of
the log temporal moments the most converge first. The approximate estimates
after 15 iterations are reported in Tab. I.1. Considering that the regression
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Fig. I.11: Violin plots of ABC posterior samples of PG model parameters as a
function of PMC iterations. A violin plot is similar to a box plot with the addition
of a rotated kernel density plot on each side. θtrue = [0.6, 15, 0.5, 10−9]> is denoted
by the dark green dashed line.

adjustment in the first few iterations are done based on a coarse estimate of
sobs from the model, the algorithm seems to work very well. The estimate of Λ
is high, indicating arrival of around 17 clusters on an average, while that of λ is
quite low. The model is therefore forced to the case with many clusters having
very few multipath components each, thus approaching the “unclustered” Turin
model with constant rate.

The misspecification of the S-V model for the measured data is not sur-
prising, as the measurement conditions are not replicated in the model. The
virtual array measurements are from a single array position in the room, hence
the same clusters are observed in each transmit-receive antenna pair. On the
other hand, each realization out of the S-V model is an independent realization
from the underlying point process. As a result, we hardly see any variance in
the log temporal moments of the data, which is not achieved in the S-V model
for any configuration of the parameters.
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observed summary lies in the point cloud generated by the model. In contrast, the
S-V model is not able to replicate the higher moments of the data, as seen from the
variance plot (right), indicating model misspecification. Each of the 2000 simulated
summaries correspond to one parameter drawn from the prior.

6.2 Calibrating the Propagation Graph model
The results obtained on calibration of the PG model on measured data after
T = 10 iterations is shown in Fig. I.14. In this case, the model is not misspeci-
fied for the considered data. The approximate marginal posterior distributions
for all the parameters start off wide and then seem to converge after around
four or five iterations. The posteriors are also quite concentrated for all the
four parameters, especially Pvis and σ2

W . Overall, the results are similar to
what is observed in the simulation experiment. See Tab. I.1 for approximate
estimates of the parameters after T = 10 iterations. The estimates are very
similar to the ones reported in [22] where the polarized PG model was cali-
brated on data from the same measurement campaign. The estimate of Pvis is
almost one, indicating that nearly all scatterers are connected. The estimates
of g and Pvis are consistent with the values reported from measurements [15]
in other in-room scenarios for the PG model. Moreover, these values are close
to those used in simulations with the PG model in [63, 70].

6.3 Model Validation
While the proposed method easily calibrates both the S-V and the PG models
to measured data, there is no guarantee that the fitted models replicate the data
well. This effect is of course not specific to the proposed method, but pertains
to any calibration method. Thus, an extra step, termed model validation,
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Fig. I.14: Violin plots of the ABC posterior samples of PG model parameters as a
function of PMC iterations for measured data.

should be performed where predictions of the calibrated models are compared
to the data, and possibly other data-sets not used in the calibration process.
Performing a full model validation is out of scope of this paper, as our focus is
on the calibration method itself. Instead, as a final step we check how well the
two calibrated models fit the input data-set.

To this end, we simulate 625 channel realizations from both models with
parameters set according to Tab. I.1. We compare the outputs from the models
to the measured data in terms of the APDP and the empirical cumulative
distribution function (cdf) of root mean square (rms) delay spread τrms, mean
delay τ̄ , and received power P0 computed per channel realization, according to

P0 = m0, τ̄ = m1

m0
, and τrms =

√
m2

m0
−
(
m1

m0

)2
. (I.23)

It appears from Fig. I.15 that both the models are able to fit the APDP of
the measurements well. The slope is captured well by both the models, along
with the noise floor, although the S-V model slightly underestimates it. The
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S-V model, however, is not able to replicate the peaks in the APDP of the
measurements, while the PG model represents the initial peaks better. This
effect is to be expected for the particular settings of the S-V model with many
clusters and very few within-cluster components. The peaks from the S-V
model are averaged out since the channel realizations are independent. This is
unlike the PG model where positions of the antennas in the virtual array are
included, thus simulating correlated channel realizations.

Even though the APDPs are similar, the two models yields very different
empirical cdfs of τrms, τ̄ , and P0 as reported in Fig. I.15. The PG model
captures the behavior of the cdfs very well, while the S-V model clearly fails
to do so, especially for the mean delay and the received power. The means of
the rms delay spread from both the models are fairly close to the measured
data, but the spread differs for the S-V model. As noticed theoretically in
[61, 62], multipath models can yield temporal moments with similar means
while differing vastly in variance. Indeed, for a stochastic multipath model,
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the covariance structure of the temporal moments depends on both first- and
second-order properties of the underlying point process [71].

The misspecification of the S-V model arises from disregarding the de-
pendencies between the measurements obtained from different antennas in the
array. This in turn leads to the discrepancy in the variance of the log temporal
moments as observed in Fig I.12. Thus, to alleviate the misspecification, the
array structure should be incorporated in the model, as is done inherently in
the PG model. This could be a contributing reason why other authors [72]
have found fully stochastic models inadequate and instead recommended using
geometry-based and fully deterministic approaches for millimetre-wave data.
Irrespective of the cause, such misspecifications can be detected by the pro-
posed method, thereby assisting in the modeling process.

7 Discussion
The proposed method makes certain choices such as the number of tempo-
ral moments to use. We found that using the I = 4 temporal moments,
(m0,m1,m2,m3), gives accurate estimates with narrow posteriors after the
first couple of iterations itself, while slight degradation in the performance is
observed with I = 3 moments m0, m1 and m2. Although the method permits
the use of arbitrarily many moments, we did not see significant improvements
in performance when including more than four moments. Although the tem-
poral moments seem adequate for calibration, the channel measurements could
in principle be summarized into other statistics as long as they are informative
about the model parameters.

Other choices for the method include the prior distribution and the settings
of the ABC algorithm. We used uninformative priors to demonstrate the accu-
racy of the method based on data alone. However, including informative priors
would speed up the convergence of the algorithm. For a reasonable approxima-
tion to the posterior distribution from samples, we suggest setting Mε = 100
or more. Depending on the computational budget, ε can be set around 5% or
less. Our chosen settings seem to work well for both the models, and hence,
they can be a good starting point for initial experiments. We do not provide a
stopping criterion for the algorithm, but instead encourage monitoring the pos-
terior distributions for convergence, as the number of iterations required may
vary across different parameters and models. Potentially a stopping criterion
could be implemented where the iterations are stopped if the MMSE estimate
changes less than some tolerance over iterations.

To calibrate a new channel model using our method, we suggest the fol-
lowing sequence of steps. Start by setting up priors for the model parameters
based on available knowledge. Taking J = 4 temporal moments as a starting
point, perform the simulation study of computing the MMD2 by varying one
parameter at a time as done in Fig. I.7. This experiment is informative in
qualifying the required number of temporal moments. If the MMD is clearly
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impacted by varying the parameters, apply the method to calibrate the new
model with the proposed settings ofM andMε. If not, then adjust the number
of temporal moments J and repeat the process. Finally, monitor the posterior
distributions for convergence and terminate the algorithm accordingly.

As the MMD compares infinitely many summaries of the two data-sets, it
works better than comparing only the low-order moments such as the means
and covariances of the temporal moments as in [19, 20, 22]. When choosing a
characteristic kernel, the MMD also guarantees that distributions are uniquely
identified by these moments, unlike the case when comparing a finite number
of moments. The MMD is a strong notion of distance in the sense that re-
covery of the true parameter value is guaranteed as the number of data points
grows. The MMD also leads to robust estimators; i.e. estimators which will
return reasonable estimates even in the presence of outliers in the data or mild
model misspecification [26, 27]. The median heuristic is a reasonable choice for
balancing robustness and efficiency as discussed in [26]. The choice of kernel
is not as impactful as the choice of the lengthscale, and the proposed squared-
exponential kernel seems to work well.

The proposed method is computationally lightweight and can be run on
standard laptops with reasonable run-time. In the experiments, the algorithm
ran on a Lenovo ThinkPad with Intel Core i7 processor having 24 GB RAM.
This gave a run-time of 5.5 hours for the PG model and around 2 days for the
S-V model for ten iterations of the algorithm. In our tests, the computation
time is dominated by the particular model evaluation time, while computation
of temporal moments and the MMD is negligible. Thus, the computational cost
depends heavily on the specific model and its implementation. Furthermore,
the run-time is impacted by specific settings of some parameters, e.g. Λ and λ in
S-V model andNscat in PGmodel. For higher “true” values of these parameters,
the model, and in turn, the calibration algorithm, takes considerably longer
time to run. An obvious way to reduce the run-time is to run the algorithm on
hardware with more processing power or by making parallel calls to the model
during each iteration.

The proposed method relies solely on the ability to simulate from the model
being calibrated, and not on the tractability of the likelihood or moment func-
tions. Moreover, the method does not depend on the particular mathematical
construction of the model, which enables calibration of very different models
using the exact same procedure. This presents the opportunity to compare and
select the best fitting model for a given data-set. Additionally, the proposed
method inherently estimates the uncertainty of the fitted parameters, which is
lacking in the state-of-the-art calibration approaches. In contrast to the rather
complex state-of-the-art calibration methods, the proposed method is simple
to implement in R, MATLAB or Python and requires very few settings such
as M and Mε. This has the clear advantage that results obtained from the
method are easy to reproduce. Moreover, the method can detect and calibrate
misspecified models as well. This is usually ignored or treated heuristically in
standard algorithms.
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The proposed method can be used for a broad class of models where the
likelihood is not known or difficult to compute. This is a great advantage in
the model development as models can potentially be calibrated before their
derivation is finalized. If the model is deemed worthy of further study, effort
may be devoted to derive its likelihood function. The proposed method may
also be used in cases where such a likelihood is in fact available, or available up
to some intractable normalization constant. In such cases the ABC approach
may, however, be less effective than methods based on the likelihood. In those
cases, other distances could be used; see for example Stein discrepancies for
cases where the likelihood is unnormalised [73]. Similarly, if factorization of
the likelihood is possible and some factors can be evaluated, more efficient
inference methods than ABC may be derived relying e.g. on message passing
techniques. Such methods rely extensively on the particular models and the
structure of their likelihoods. Thus, the gain in efficiency comes at a cost in the
form of a loss in generality compared to the proposed ABC method. Finally, we
remark that distance metrics such as the Wasserstein or the Hellinger distance
could potentially be used instead of the MMD. However, future studies are
required to assess their applicability for calibrating stochastic channel models.

8 Conclusion
The proposed ABC method based on MMD is able to accurately calibrate
wideband radio models of very different mathematical structure. The pro-
posed method relies on computing temporal moments of the received signal,
and thereby circumvents the need for multipath extraction or clustering. As a
result, the method is automatic as no pre- or post-processing of the data and
estimates are required. We find that the method is able to fit models to both
simulated and measured data. This work opens possibilities of developing sim-
ilar methods for calibrating directional and time-dependent channel models.
Potentially, maximum mean discrepancy could be used for other problems in
propagation and communication studies that involve comparing data-sets.
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