3,550 research outputs found

    The Feasibility of Wearable Sensors for the Automation of Distal Upper Extremity Ergonomic Assessment Tools

    Get PDF
    Work-related distal upper limb musculoskeletal disorders are costly conditions that many companies and researchers spend significant resources on preventing. Ergonomic assessments evaluate the risk of developing a work-related musculoskeletal disorder (WMSD) by quantifying variables such as the force, repetition, and posture (among others) that the task requires. Accurate and objective measurements of force and posture are challenging due to equipment and location constraints. Wearable sensors like the Delsys Trigno Quattro combine inertial measurement units (IMUs) and surface electromyography to solve collection difficulties. The purpose of this work was to evaluate the joint angle estimation of IMUs and the relationship between sEMG and overall task intensity throughout a controlled wrist motion. Using a 3 degrees-of-freedom wrist manipulandum, the feasibility of a small, lightweight wearable was evaluated to collect accurate wrist flexion and extension angles and to use sEMG to quantify task intensity. The task was a repeated 95º arc in flexion/ extension with six combinations of wrist torques and grip requirements. The mean wrist angle difference (throughout the range of motion) between the WristBot and the IMU of 1.70° was not significant (p= 0.057); but significant differences existed throughout the range of motion. The largest difference between the IMU and the WristBot was 10.7° at 40° extension; this discrepancy is smaller than typical visual inspection joint angle estimate errors by ergonomists of 15.6°. All sEMG metrics (flexor muscle root mean square (RMS), extensor muscle RMS, mean RMS, integrated sEMG (iEMG), physiological cross-sectional area weighted RMS) and ratings of perceived exertion (RPE) had significant regression results with the task intensity. Variance in RPE was better explained by task intensity than the best sEMG metric (iEMG) with R2 values of 0.35 and 0.21, respectively. Wearable sensors can be used in occupational settings to increase the accuracy of postural assessments; additional research is required on relationships between sEMG and task intensity to be used effectively in ergonomics. There is potential for sEMG to be a powerful tool; however, the dynamic nature and combined exertion (grip and flexion/ extension) make it difficult to quantify task intensit

    Neural and Electromyographic Correlates of Wrist Posture Control

    Get PDF
    In identical experiments in and out of a MR scanner, we recorded functional magnetic resonance imaging and electromyographic correlates of wrist stabilization against constant and time-varying mechanical perturbations. Positioning errors were greatest while stabilizing random torques. Wrist muscle activity lagged changes in joint angular velocity at latencies suggesting trans-cortical reflex action. Drift in stabilized hand positions gave rise to frequent, accurately directed, corrective movements, suggesting that the brain maintains separate representations of desired wrist angle for feedback control of posture and the generation of discrete corrections. Two patterns of neural activity were evident in the blood-oxygenation-level-dependent (BOLD) time series obtained during stabilization. A cerebello-thalamo-cortical network showed significant activity whenever position errors were present. Here, changes in activation correlated with moment-by-moment changes in position errors (not force), implicating this network in the feedback control of hand position. A second network, showing elevated activity during stabilization whether errors were present or not, included prefrontal cortex, rostral dorsal premotor and supplementary motor area cortices, and inferior aspects of parietal cortex. BOLD activation in some of these regions correlated with positioning errors integrated over a longer time-frame consistent with optimization of feedback performance via adjustment of the behavioral goal (feedback setpoint) and the planning and execution of internally generated motor actions. The finding that nonoverlapping networks demonstrate differential sensitivity to kinematic performance errors over different time scales supports the hypothesis that in stabilizing the hand, the brain recruits distinct neural systems for feedback control of limb position and for evaluation/adjustment of controller parameters in response to persistent errors

    Quantifying Forearm Muscle Activity during Wrist and Finger Movements by Means of Multi-Channel Electromyography.

    Get PDF
    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported

    Neuro-Musculoskeletal Mapping for Man-Machine Interfacing.

    Get PDF
    We propose a myoelectric control method based on neural data regression and musculoskeletal modeling. This paradigm uses the timings of motor neuron discharges decoded by high-density surface electromyogram (HD-EMG) decomposition to estimate muscle excitations. The muscle excitations are then mapped into the kinematics of the wrist joint using forward dynamics. The offline tracking performance of the proposed method was superior to that of state-of-the-art myoelectric regression methods based on artificial neural networks in two amputees and in four out of six intact-bodied subjects. In addition to joint kinematics, the proposed data-driven model-based approach also estimated several biomechanical variables in a full feed-forward manner that could potentially be useful in supporting the rehabilitation and training process. These results indicate that using a full forward dynamics musculoskeletal model directly driven by motor neuron activity is a promising approach in rehabilitation and prosthetics to model the series of transformations from muscle excitation to resulting joint function

    Human Motion Analysis with Wearable Inertial Sensors

    Get PDF
    High-resolution, quantitative data obtained by a human motion capture system can be used to better understand the cause of many diseases for effective treatments. Talking about the daily care of the aging population, two issues are critical. One is to continuously track motions and position of aging people when they are at home, inside a building or in the unknown environment; the other is to monitor their health status in real time when they are in the free-living environment. Continuous monitoring of human movement in their natural living environment potentially provide more valuable feedback than these in laboratory settings. However, it has been extremely challenging to go beyond laboratory and obtain accurate measurements of human physical activity in free-living environments. Commercial motion capture systems produce excellent in-studio capture and reconstructions, but offer no comparable solution for acquisition in everyday environments. Therefore in this dissertation, a wearable human motion analysis system is developed for continuously tracking human motions, monitoring health status, positioning human location and recording the itinerary. In this dissertation, two systems are developed for seeking aforementioned two goals: tracking human body motions and positioning a human. Firstly, an inertial-based human body motion tracking system with our developed inertial measurement unit (IMU) is introduced. By arbitrarily attaching a wearable IMU to each segment, segment motions can be measured and translated into inertial data by IMUs. A human model can be reconstructed in real time based on the inertial data by applying high efficient twists and exponential maps techniques. Secondly, for validating the feasibility of developed tracking system in the practical application, model-based quantification approaches for resting tremor and lower extremity bradykinesia in Parkinson’s disease are proposed. By estimating all involved joint angles in PD symptoms based on reconstructed human model, angle characteristics with corresponding medical ratings are employed for training a HMM classifier for quantification. Besides, a pedestrian positioning system is developed for tracking user’s itinerary and positioning in the global frame. Corresponding tests have been carried out to assess the performance of each system

    Using High Density EMG to Proportionally Control 3D Model of Human Hand

    Get PDF
    Control of human hand using surface electromyography (EMG) is already established in various mechanisms, but proportionally controlling magnitudes degrees of freedom (DOF) of humanoid hand model is still highly developed in recent years. This paper proposes another method to achieve a proportional estimation and control of human’s hand multiple DOFs. Gestures in the form of American Sign Language (ABCDFIKLOW) were chosen as the targets, of which ten alphabetical gestures were specifically used following their clarity on its 3D model. Then the dataset of the movements gestures was simultaneously recorded using High-density electromyography (HD-EMG) and motion capture system. Sensor placements were on intrinsic - extrinsic muscles for HD-EMG and finger joints for the motion capture system. To derive the proportional control in time series between both datasets (HD-EMG and kinematics data), neural network (NN) and k-Nearest Neighbour were used. The models produced around 70-95 % (R index) accuracy for the eleven DOFs in four healthy subjects’ hand. kNN’s performance was better than NN, even if the input features were reduced either using manual selections or principal component analysis (PCA). The time series controls could also identify most sign language gestures (9 of 10), with difficulty was given on O gesture. The false interpretation was because of nearly identical muscle’s EMG and kinematics data between O and C. This paper intends to extend its conference version [1] by adding more in-depth Results and Discussion along making other sections more comprehensive

    Changes in motor synergies for tracking movement and responses to perturbations depend on task-irrelevant dimension constraints

    Get PDF
    We investigated the changes in the motor synergies of target-tracking movements of hands and the responses to perturbation when the dimensionalities of target positions were changed. We used uncontrolled manifold (UCM) analyses to quantify the motor synergies. The target was changed from one to two dimensions, and the direction orthogonal to the movement direction was switched from task-irrelevant directions to task-relevant directions. The movement direction was task-relevant in both task conditions. Hence, we evaluated the effects of constraints on the redundant dimensions on movement tracking. Moreover, we could compare the two types of responses to the same directional perturbations in one- and two-dimensional target tasks. In the one-dimensional target task, the perturbation along the movement direction and the orthogonal direction were task-relevant and -irrelevant perturbations, respectively. In the two-dimensional target task, the both perturbations were task-relevant perturbations. The results of the experiments showed that the variabilities of the hand positions in the two-dimensional target-tracking task decreased, but the variances of the joint angles did not significantly change. For the task-irrelevant perturbations, the variances of the joint angles within the UCM that did not affect hand position (UCM component) increased. For the task-relevant perturbations, the UCM component tended to increase when the available UCM was large. These results suggest that humans discriminate whether the perturbations were task-relevant or -irrelevant and then adjust the responses of the joints by utilizing the available UCM

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level
    • …
    corecore